Design and implementation of key technologies for real-time three-dimensional ground-penetrating radar
-
摘要: 为了提高市政道路检测水平, 快速有效地解决市政道路塌陷灾害预警、市政管网分布查找等问题, 设计研发了一款实时三维探地雷达。实时三维探地雷达基于FPGA& DSP架构, 完成了多通道高速采集系统多个关键技术的设计与实现, 丰富了道路检测领域的探测技术和方法。实时三维探地雷达天线采用五发六收模式的水平极化方式, 实现了十通道雷达数据高速采集, 通道间通过高速开关实现切换, 所有通道以交互内插方式进行工作; 雷达最大可支持扩展到32通道工作, 用开关切换天线阵列, 满足60 km/h(2cm道间隔)以上的探测速度。通过对空洞实验场和金属板实验场的实验数据进行对比, 验证了最佳的天线极化方式设计, 最终确定了天线的最优方案。实测结果表明, 相比于通用的LTD-2600型雷达, 实时三维探地雷达具有更高速的采集速度以及良好幅度与相位性能, 有利于改进道路灾害的检测技术, 具有较大的市场需求。Abstract: To improve the detection level of municipal roads for rapid and effective municipal road collapse warning and rapid search for municipal pipe network distribution, the 22nd Research Institute of China Electronics Technology Group Corporation designed and developed real-time three-dimensional ground-penetrating radar (3D GPR). With the real-time 3D GPR, which is based on the architecture of field programmable gate array and digital signal processor (FPGA& DSP), the institute achieved the design and implementation of several key technologies for the multi-channel high-speed acquisition system, enriching the road detection techniques and methods. The real-time 3D GPR enables high-speed acquisition of ten-channel radar data using the horizontally polarized antennae equipped with five transmitters and six receivers. The channels can be switched using high-speed switches, which operate in an interactive interpolation manner. The 3D GPR allows for up to 32 channels and detection speeds of above 60 km/h (channel interval: 2 cm). This is attributed to the switching of the antenna array using switches. The optimum antenna polarization design was verified by the comparison of experimental data from cavity- and metal-plate-based experimental sites. As a result, the optimal antenna scheme was determined. The measured results show that, compared to general LTD-2600 radar, the real-time 3D GPR boasts a higher acquisition speed and higher performance in terms of amplitude and phase, conducive to the improvement of road disaster detection technologies. Therefore, there is high market demand for the real-time 3D GPR.
-
-
[1] 王方力, 张群英, 叶盛波, 等.一种基于SAA的三维探地雷达系统[J].现代雷达, 2020, 42(9):21-27.
Wang F L, Zhang Q Y, Ye S B, et al.A three-dimensional imaging ground penetrating radar system based on SAA[J].Modern Radar, 2020, 42(9):21-27.
[2] 许泽善, 周江涛, 刘四新, 等.三维步进频率探地雷达在沥青层厚度检测中的应用[J].物探与化探, 2019, 43(5):1145-1150.
Xu Z S, Zhou J T, Liu S X, et al.The realization of applying 3D frequency stepped ground penetrating to the detection of asphalt layer thickness[J].Geophysical and Geochemical Exploration, 2019, 43(5):1145-1150.
[3] Harry M Jol.探地雷达理论与应用[M].雷文太, 童孝忠, 周旸, 等译.北京:电子工业出版社, 2011. Harry M Jol.Ground penetrating radar:Theory and applications[M].Lei W T, Tong X Z, Zhou Y, et al translate.Beijing:Publishing House of Electronics Industry, 2011.
[4] 贺靖, 周斌, 方广有.双通道伪随机编码超宽带探地雷达主控机设计[J].电子测量技术, 2022, 45(11):1-9.
He J, Zhou B, Fang G Y.Design of a pseudo-random coded ultra-wideband dual-channel ground penetrating radar controller[J].Electronic Measurement Technology, 2022, 45(11):1-9.
[5] 程江洲, 陈秋航, 卞九洲, 等.探地雷达技术在变电站地层隐蔽管线探测中的应用[J].现代雷达, 2021, 43(2):82-88.
Cheng J Z, Chen Q H, Bian J Z, et al.Application of ground penetrating radar to substation concealed pipeline detection[J].Modern Radar, 2021, 43(2):82-88.
[6] 罗传熙, 张肖宁, 虞将苗, 等.基于三维探地雷达对沥青路面厚度检测影响因素分析[J].公路, 2021, 66(1):95-99.
Luo C X, Zhang X N, Yu J M, et al.Analysis on influencing factors of asphalt pavement thickness detection based on 3D ground penetrating radar[J].Highway, 2021, 66(1):95-99.
[7] 薛策文, 冯晅, 李晓天, 等.全极化探地雷达多极化数据融合分析研究[J].雷达学报, 2021, 10(1):74-85.
Xue C W, Feng X, Li X T, et al.Multi-polarization data fusion analysis of full-polarimetric ground penetrating radar[J].Journal of Radars, 2021, 10(1):74-85.
-
计量
- 文章访问数: 43
- PDF下载数: 6
- 施引文献: 0