Seismic response characteristics of the cavern group of the Beishan underground research laboratory for the geological disposal of high-level radioactive waste
-
摘要: 高放废物北山地下实验室紧邻的河西走廊和北祁连地区地震环境复杂、强震多发, 而地下实验室作为由三竖井+螺旋斜坡道构成的复杂地下结构, 具有明显的大尺度空间分布特征, 研究地下实验室地下结构群的地震反应特征, 对于后期场址的地壳稳定性评价工作具有重要的工程意义。本文根据地下实验室的设计和已有的围岩物理、力学参数, 建立了岩体—地下结构体系精细化三维有限元计算模型, 开展了关键断裂对地下实验室近场地震安全性影响研究。结果表明:传统的地震动衰减关系难以考虑近场可能存在的有限断层效应、破裂方向性效应和上盘效应等近场震源效应, 采用随机有限断层法可以有效地考虑上述近场地震动特性; 目标场址场地类型为花岗岩硬基岩场地, 近场发震断裂引起的地震动传到场址的反应谱中高频部分发育明显; 因地下实验室的非规则结构引起的地下硐室群地震动反应表现出明显的空间变异性, 岩体软化带对应地表峰值加速度富集明显, 工程中应规避此区域。本次研究为将来高放废物处置库的选址和场址评价提供了地震安全分析方面的依据。
-
关键词:
- 高放废物处置地下实验室 /
- 地震动 /
- 断层 /
- 地震反应 /
- 数值模拟
Abstract: The Hexi Corridor and northern Qilian region, adjacent to the Beishan underground research laboratory (URL) for the geological disposal of high-level radioactive waste, exhibit complex seismic environments characterized by frequent strong earthquakes. The Beishan URL, featuring a complex underground structure consisting of three vertical shafts and a spiral ramp, displays significant large-scale spatial distribution characteristics. Investigating the seismic response characteristics of the underground structure group holds great engineering significance for the subsequent assessment of crustal stability at the site. Based on the design of the URL, along with existing physical and mechanical parameters of surrounding rocks, this study established a fine-scale three-dimensional finite element model of the rock mass-underground structure system. Using this model, this study investigated the impacts of key faults on the near-field seismic safety of the URL. The results indicate that traditional seismic attenuation relationships are difficult to consider near-source effects, such as finite fault effects, fracturing directivity effects, and hanging wall effects. In contrast, the stochastic finite-fault method can effectively consider these near-field ground shaking characteristics. The target site exhibits hard granite bedrock, and the response spectra of the earthquakes induced by near-field seismogenic faults, received at the site, display pronounced high-frequency components. Furthermore, the ground shaking of the underground cavern group, caused by the irregular structure of the URL, presents significant spatial variability, with the rock mass softening zone exhibiting a notable accumulation of peak ground acceleration. This zone should be avoided in engineering applications. This study offers a basis for seismic safety analysis for the future site selection and evaluation of the disposal repositories of high-level radioactive waste. -
-
[1] Kickmaier W, Mckinley I.A review of research carried out in European rock laboratories[J].Nuclear Engineering and Design, 1997, 176(1/2):75-81.
[2] Zhang C L, Wang J, Su R.Concepts and tests for disposal of radioactive waste in deep geological formations[J].Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4):750e68.
[3] 王驹, 陈伟明, 苏锐, 等.高放废物地质处置及其若干关键科学问题[J].岩石力学与工程学报, 2006, 25(4):801-802.Wang J, Chen W M, Su R, et al.Geology disposal of high-level radioactive waste and its key scientific issues [J].Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4):801-812.
[4] Wang J.High-level radioactive waste disposal in China:Update 2010[J].Journal of Rock Mechanics and Geotechnical Engineering 2010, 2(1):1-11.
[5] Uenishi K, Sakurai S.Characteristic of the vertical seismic waves associated with the 1995 Hyogo-ken Nanbu (Kobe), Japan earthquake estimated from the failure of the Daikai Underground Station[J].Earthquake Engineering and Structural Dynamics, 2000, 29(6):813-822.
[6] Tsinidis G, Silva F D, Snastasopoulo I, et al.Seismic behaviour of tunnels:From experiments to analysis[J].Tunnelling and Underground Space Technology, 2020, 5:99.
[7] 张雨霆, 肖明, 李玉婕.汶川地震对映秀湾水电站地下厂房的震害影响及动力响应分析[J].岩石力学与工程学报, 2010, 29(2):3663-3671.
Zhang Y T, Xiao M, Li Y J.Effect of earthquake on earthquake damage and dynamic response analysis of underground powerhouse of Yingxiuwan Hydropower Station[J].Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2):3663-3671.
[8] 杜修力, 蒋家卫, 许紫刚, 等.浅埋矩形框架地铁车站结构抗震性能指标标定研究[J].土木工程学报, 2019, 52(10):111-119, 128.
Du X L, Jiang J W, Xu Z G, et al.Study on quantification of seismic performance index for rectangular frame subway station structure [J].China Civil Engineering Journal, 2019, 52 (10):111-119, 128.
[9] 刘晶波, 王文晖, 赵冬冬, 等.复杂断面地下结构地震反应分析的整体式反应位移法[J].土木工程学报, 2014, 47(1):134-142.
Liu J B, Wang W G, Zhao D D, et al.Integral response deformation method in seismic analysis of complex section underground structures[J].China Civil Engineering Journal, 2014, 47(1):134-142.
[10] Yuan Y, Yu H T, Chen Z Y.Evaluation of seismic calculation methods for shallow-buried frame structures in soft soil [J].Journal of Vibration & Shock, 2009, 28(8):50-56.
[11] Zhang H Y, Zhao C , Chen S, et al.Seismic performance of underground subway station with sliding between column and longitudinal beam-Science Direct [J].Tunnelling and Underground Space Technology, 2020, 102:103439.
[12] 何川, 耿萍.强震活动断裂带铁路隧道建设面临的挑战与对策[J].中国铁路, 2020, 702(12):65-72
.He C, Geng P.Challenges and countermeasures of railway tunnel construction in macroseismic active fault zone[J].China Railway, 2020, 702(12):65-72
[13] 崔臻, 盛谦, 冷先伦, 等.地下洞室地震动力响应的岩体结构控制效应[J].岩土力学, 2018, 39(5):274-287.
Cui Z, Sheng Q, Leng X L, et al.Control effect of large geological discontinuity on seismic response and stability of underground rock caverns[J].Rock and Soil Mechanics, 2018, 39(5):274-287.
[14] Hashash Y M A., Park D, Yao J I C.Ovaling deformations of circular tunnels under seismic loading, an update on seismic design and analysis of underground structures[J].Tunn.Undergr. Space Technol, 2005, 20 (5), 435-441.
[15] Coigliano M, Scandella L, Lai C G, et al.Seismic analysis of deep tunnels in near fault conditions:A case study in Southern Italy[J].Bulletin of Earthquake Engineering, 2011, 9(4):975-995.
[16] Wang J, Chen L, Su R, et al.The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China:Planning, site selection, site characterization and in situ tests[J].Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3):411-435.
[17] Ungless R F.An infinite finite element[D].Vancouver:University of British Columbia, 1973.
[18] Bettess P.More on infinite element[J].International Journal for Numerical Methods in Engineering, 2010, 15(11):1613-1626.
[19] Beer G, Meek J L.Infinite domain element [J].International Journal for Numerical Methods in Engineering, 1981, 17(1):43-52.
[20] 陈继峰, 赵翠萍, 杨立明.甘肃地区S波非弹性衰减Q值研究[J].地震, 2010, 30(1):125-130
.Chen J F, Zhao C P, Yan G L M.Q values of S wave inelastic attenuation in Gansu Region[J].Earthquake, 2010, 30(1):125-130
[21] 陈继峰, 杨立明.甘肃地区震源参数的相关性研究[J].地震地磁观测与研究, 2011, 32(1):10-14
.Chen J F, Yang L M.Study on source parameters and its similar relationship of earthquakes occurred in Gansu region[J].Seismological and geomagnetic observation and research, 2011, 32(1):10-14
-
计量
- 文章访问数: 35
- PDF下载数: 5
- 施引文献: 0