中国自然资源航空物探遥感中心主办
地质出版社出版

高放废物地质处置新场候选场址地下水位异常值识别方法

吉子健, 周志超, 赵敬波, 季瑞利, 张明. 2024. 高放废物地质处置新场候选场址地下水位异常值识别方法. 物探与化探, 48(6): 1530-1538. doi: 10.11720/wtyht.2024.1554
引用本文: 吉子健, 周志超, 赵敬波, 季瑞利, 张明. 2024. 高放废物地质处置新场候选场址地下水位异常值识别方法. 物探与化探, 48(6): 1530-1538. doi: 10.11720/wtyht.2024.1554
JI Zi-Jian, Zhou Zhi-Chao, Zhao Jing-Bo, JI Rui-Li, ZHANG Ming. 2024. A method for identifying anomalous values of groundwater levels at candidate sites for the geological disposal of high-level radioactive waste. Geophysical and Geochemical Exploration, 48(6): 1530-1538. doi: 10.11720/wtyht.2024.1554
Citation: JI Zi-Jian, Zhou Zhi-Chao, Zhao Jing-Bo, JI Rui-Li, ZHANG Ming. 2024. A method for identifying anomalous values of groundwater levels at candidate sites for the geological disposal of high-level radioactive waste. Geophysical and Geochemical Exploration, 48(6): 1530-1538. doi: 10.11720/wtyht.2024.1554

高放废物地质处置新场候选场址地下水位异常值识别方法

  • 基金项目:

    铀资源探采与核遥感全国重点实验室基金项目(NKLUR-2024-QN-004)

    国防科工局核设施退役治理专项科研项目(科工二司〔2022〕736号)

    中核集团2022年基础研究项目(CNNC-JCYJ-202206)

详细信息
    作者简介: 吉子健(1997-), 男, 助理工程师, 硕士, 2022年毕业于中国地质大学(北京), 主要从事高放废物地质处置水文地质研究工作。Email:18332606901@163.com
  • 中图分类号: X591; |P641.7

A method for identifying anomalous values of groundwater levels at candidate sites for the geological disposal of high-level radioactive waste

  • 地下水动态监测为高放废物地质处置候选场址的安全评价提供了关键基础数据, 但研究发现实际的监测数据中存在较多异常值, 严重干扰了对动态过程的准确判断。因此, 亟须建立一种高效的方法对异常值进行准确识别。本文基于局部加权回归的时间序列分解和最小协方差行列式方法构建了地下水位异常值检测组合模型, 使最小协方差行列式方法可以在更独立的残差项中进行异常值检测。结果表明, 构建的组合模型相较于最小协方差行列式方法的单一模型, 其对异常数据具有更好的敏感性和检测精度; 并进一步确定了组合模型的阈值应接近实际的异常值比例, 以获取最佳的检测效果; 此外, 根据新场地段BSQ01、BSQ25、BS35、BS26钻孔的水位数据对组合模型的适用性进行验证, 表明其能够准确识别出混淆于大量正常水位数据中的异常值, 同时也适用于不同类型异常事件的检测。
  • 加载中
  • [1]

    郭永海, 王驹, 金远新.世界高放废物地质处置库选址研究概况及国内进展[J].地学前缘, 2001, 8(2):327-332.

    Guo Y H, Wang J, Jin Y X.The general situation of geological disposal repository siting in the world and research progress in China[J].Earth Science Frontiers, 2001, 8(2):327-332.

    [2]

    Wang J, Chen L, Su R, et al.The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China:Planning, site selection, site characterization and in situ tests[J].Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3):411-435.

    [3]

    Calderwood A J, Pauloo R A, Yoder A M, et al.Low-cost, open source wireless sensor network for real-time, scalable groundwater monitoring[J].Water, 2020, 12(4):1066.

    [4]

    Drage J, Kennedy G.Building a low-cost, internet-of-things, real-time groundwater level monitoring network[J].Groundwater Monitoring & Remediation, 2020, 40(4):67-73.

    [5]

    Muharemi F, Logofătu D, Leon F.Machine learning approaches for anomaly detection of water quality on a real-world data set[J].Journal of Information and Telecommunication, 2019, 3(3):294-307.

    [6]

    Pang G S, Shen C H , Cao L B, et al.Deep learning for anomaly detection:A review[J].ACM Computing Surveys, 2021, 54(2):1-38.

    [7]

    Schmidl S, Wenig P, Papenbrock T.Anomaly detection in time series:A comprehensive evaluation[J].Proceedings of the VLDB Endowment, 2022, 15(9):1779-1797.

    [8]

    Rousseeuw P J, Hubert M.Anomaly detection by robust statistics[J].WIREs Data Mining and Knowledge Discovery, 2018, 8(2):e1236.

    [9]

    Yu Y, Zhu Y L, Li S J, et al.Time series outlier detection based on sliding window prediction[J].Mathematical Problems in Engineering, 2014:1-14.

    [10]

    Kulanuwat L, Chantrapornchai C, Maleewong M, et al.Anomaly detection using a sliding window technique and data imputation with machine learning for hydrological time series[J].Water, 2021, 13(13):1862.

    [11]

    Cabana E, Lillo R E, Laniado H.Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators[J].Statistical Papers, 2021, 62(4):1583-1609.

    [12]

    Sripriya T P, Srinivasan M R, Gallo M.Robust distance measure to detect outliers for categorical data[J].Soft Computing, 2020, 24(18):13557-13564.

    [13]

    Li J B, Izakian H, Pedrycz W, et al.Clustering-based anomaly detection in multivariate time series data[J].Applied Soft Computing, 2021, 100:106919.

    [14]

    Smiti A.A critical overview of outlier detection methods[J].Computer Science Review, 2020, 38:100306.

    [15]

    何黎, 陈磊, 纪莎莎, 等.基于K-shape聚类的连续液位监测数据异常检测方法[J].中国给水排水, 2023, 39(11):56-61.

    He L, Chen L, Ji S S, et al.Abnormal detection of continuous water level monitoring data based on K-shape clustering[J].China Water & Wastewater, 2023, 39(11):56-61.

    [16]

    Shi H X, Guo J, Deng Y D, et al.Machine learning-based anomaly detection of groundwater microdynamics:Case study of Chengdu, China[J].Scientific Reports, 2023, 13(1):14718.

    [17]

    Ayadi A, Ghorbel O, Obeid A M, et al.Outlier detection approaches for wireless sensor networks:A survey[J].Computer Networks, 2017, 129(1):319-333.

    [18]

    Sunderland K M, Beaton D, Fraser J, et al.The utility of multivariate outlier detection techniques for data quality evaluation in large studies:An application within the ONDRI project[J].BMC Medical Research Methodology, 2019, 19:102.

    [19]

    Hardin J, Rocke D M.Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator[J].Computational Statistics & Data Analysis, 2004, 44(4):625-638.

    [20]

    Hubert M, Debruyne M, Rousseeuw P J.Minimum covariance determinant and extensions[J].WIREs Computational Statistics, 2018, 10(3):e1421.

    [21]

    孙杰.基于FAST-MCD算法的异常成绩检测研究[J].现代计算机, 2021, 27(29):59-62.

    Sun J.Research on the abnormal grade detection based on the FAST-MCD algorithm[J].Modern Computer, 2021, 27(29):59-62.

    [22]

    Zhou Y J, Ren H R, Li Z W, et al.Anomaly detection via a combination model in time series data[J].Applied Intelligence, 2021, 51(7):4874-4887.

    [23]

    Lin S, Clark R, Birke R, et al.Anomaly detection for time series using VAE-LSTM hybrid model[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020:4322-4326.

    [24]

    Yokkampon U, Chumkamon S, Mowshowitz A, et al.Anomaly detection using variational autoencoder with spectrum analysis for time series data[C]//2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), 2020:1-6.

    [25]

    Lyu J M, Wang Y Q, Chen S J.Adaptive multivariate time-series anomaly detection[J].Information Processing & Management, 2023, 60(4):103383.

    [26]

    Samariya D, Thakkar A.A comprehensive survey of anomaly detection algorithms[J].Annals of Data Science, 2023, 10(3):829-850.

    [27]

    Cleveland R B, Cleveland W S.STL:A seasonal-trend decomposition procedure based on Loess[J].Journal of official statistics, 1990, 6(1):3-73.

    [28]

    Rousseeuw P J, Driessen K V.A fast algorithm for the minimum covariance determinant estimator[J].Technometrics, 1999, 41(3):212-223.

    [29]

    Li J B, Zhang Y K, Zhou Z C, et al.Using multiple isotopes to determine groundwater source, age, and renewal rate in the Beishan preselected area for geological disposal of high-level radioactive waste in China[J].Journal of Hydrology, 2024, 629:130592.

    [30]

    Hubert M, Debruyne M.Minimum covariance determinant[J].WIREs Computational Statistics, 2010, 2(1):36-43.

    [31]

    Rousseeuw P J, Hubert M.Robust statistics for outlier detection[J].WIREs Data Mining and Knowledge Discovery, 2011, 1(1):73-79.

    [32]

    李航.统计学习方法[M].北京:清华大学出版社, 2012.Li H.Statistical learning methodology[M].Beijing:Tsinghua University Press, 2012.

  • 加载中
计量
  • 文章访问数:  25
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2023-12-21
修回日期:  2024-06-25

目录