中国自然资源航空物探遥感中心主办
地质出版社出版

多场耦合条件下含裂隙北山花岗岩蠕变特性研究

张海洋, 刘飞杨, 刘健. 2024. 多场耦合条件下含裂隙北山花岗岩蠕变特性研究. 物探与化探, 48(6): 1539-1544. doi: 10.11720/wtyht.2024.1557
引用本文: 张海洋, 刘飞杨, 刘健. 2024. 多场耦合条件下含裂隙北山花岗岩蠕变特性研究. 物探与化探, 48(6): 1539-1544. doi: 10.11720/wtyht.2024.1557
ZHANG Hai-Yang, LIU Fei-Yang, LIU Jian. 2024. Creep characteristics of fractured Beishan granite under the condition of multi-field coupling. Geophysical and Geochemical Exploration, 48(6): 1539-1544. doi: 10.11720/wtyht.2024.1557
Citation: ZHANG Hai-Yang, LIU Fei-Yang, LIU Jian. 2024. Creep characteristics of fractured Beishan granite under the condition of multi-field coupling. Geophysical and Geochemical Exploration, 48(6): 1539-1544. doi: 10.11720/wtyht.2024.1557

多场耦合条件下含裂隙北山花岗岩蠕变特性研究

  • 基金项目:

    国家原子能机构高放废物地质处置创新中心基金项目(CXJJ21102204)

    国防科工局核设施退役及放射性废物治理科研项目(科工二司[2020]194 号)

详细信息
    作者简介: 张海洋(1989-), 女, 2016年毕业于清华大学土木工程专业, 研究领域为高放废物地质处置岩石力学。Email:haiyangzh118@163.com
  • 中图分类号: X591; |TU45

Creep characteristics of fractured Beishan granite under the condition of multi-field coupling

  • 高放废物处置库运行后, 近场围岩将长期处于热—水—力耦合环境中, 其力学及渗透特性对处置库性能评价至关重要。我国高放处置库北山预选区围岩是典型的稀疏裂隙花岗岩体, 含裂隙花岗岩的蠕变特性直接关系着处置库的长期安全性能。为此, 首先通过水射流和线切割技术、裂隙表面封堵和岩样端部组合密封, 解决了热—水—力耦合三轴试验中含裂隙花岗岩样品的制备和密封难题。在此基础上, 开展了分级加载三轴蠕变试验。试验结果表明:在多场耦合条件下, 含裂隙花岗岩三轴蠕变强度约为三轴强度的80%, 蠕变变形随轴向荷载水平的升高而增大, 且横向蠕变比轴向蠕变更明显; 对应岩样的压密段和裂纹扩展段, 轴向应变率和渗透率均呈现先减小后增大的趋势; 渗透压差相等时, 裂隙内部较大的渗透水压会导致岩样峰值强度降低, 并产生更大的横向蠕变变形。该成果为处置库选址和围岩评价、处置库工程设计和建设提供了科学保障。
  • 加载中
  • [1]

    Rutqvist J, Freifeld B, Min K B, et al.Analysis of thermally induced changes in fractured rock permeability during 8 years of heating and cooling at the Yucca Mountain Drift Scale Test[J].International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8):1373-1389.

    [2]

    Souley M, Homand F, Pepa S, et al.Damage-induced permeability changes in granite:A case example at the URL in Canada[J].International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2):297-310.

    [3]

    欧阳蕊灿, 王卫军, 袁超.考虑孔隙水压的岩体蠕变本构模型[J].矿业工程研究, 2022, 37(2):1-8.

    Ouyang R C, Wang W J, Yuan C.On constitutive model of rock mass creep considering pore water pressure[J].Mineral Engineering Research, 2022, 37(2):1-8.

    [4]

    杨红伟, 许江, 聂闻, 等.渗流水压力分级加载岩石蠕变特性研究[J].岩土工程学报, 2015, 37(9):1613-1619.

    Yang H W, Xu J, Nie W, et al.Experimental study on creep of rocks under step loading of seepage pressure[J].Chinese Journal of Geotechnical Engineering, 2015, 37(9):1613-1619.

    [5]

    蒋海飞, 刘东燕, 黄伟, 等.高围压下高孔隙水压对岩石蠕变特性的影响[J].煤炭学报, 2014, 39(7):1248-1256.

    Jiang H F, Liu D Y, Huang W, et al.Influence of high pore water pressure on creep properties of rock under high confining pressure[J].Journal of China Coal Society, 2014, 39(7):1248-1256.

    [6]

    刘德峰, 刘鹏涛, 张臻悦, 等.轴压水压耦合作用下裂隙砂岩蠕变特性[J].工程科学与技术, 2021, 53(1):94-103.

    Liu D F, Liu P T, Zhang Z Y, et al.Creep characteristics of fractured sandstone under the coupling action of axial compression and hydraulic pressure[J].Advanced Engineering Sciences, 2021, 53(1):94-103.

    [7]

    陈英, 谢辉, 杨俊, 等.真实水压作用下裂隙大理岩蠕变特性试验研究[J].工程科学与技术, 2021, 53(4):149-157.

    Chen Y, Xie H, Yang J, et al.Experimental study on creep properties of fractured marble under water pressure[J].Advanced Engineering Sciences, 2021, 53(4):149-157.

    [8]

    郭保华, 田采霞.岩石裂隙的法向蠕变及渗流的影响[J].河南理工大学学报:自然科学版, 2012, 31(4):403-408.

    Guo B H, Tian C X.Normal creep deformation law of rock fracture and the influence of seepage[J].Journal of Henan Polytechnic University:Natural Science Edition, 2012, 31(4):403-408.

    [9]

    王辰霖, 郭保华.大理岩裂隙渗流的时间效应试验研究[J].地下空间与工程学报, 2018, 14(6):1498-1504.

    Wang C L, Guo B H.Experimental study on time effect of seepage properties of marble fracture[J].Chinese Journal of Underground Space and Engineering, 2018, 14(6):1498-1504.

    [10]

    Park S, Kim J S, Kim G Y, et al.Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository[J].Journal of Korean Tunnelling and Underground Space Association, 2019, 21(4):501-518.

    [11]

    Yang S Q, Xu P, Li Y B, et al.Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments[J].Geothermics, 2017, 69:93-109.

    [12]

    Yang S Q, Hu B, Tian W L.Effect of high temperature damage on triaxial mechanical failure behavior of sandstone specimens containing a single fissure[J].Engineering Fracture Mechanics, 2020, 233:107066.

    [13]

    江宗斌.多场环境作用岩石蠕变特性试验及力学模型研究[D].大连:大连海事大学, 2016.Jiang Z B.Creep characteristics test and mechanical model study of rock under multi-field environmental action[D].Dalian:Dalian Maritime University, 2016.

    [14]

    张培森, 赵成业, 侯季群, 等.温度-应力-渗流耦合条件下红砂岩渗流特性试验研究[J].岩石力学与工程学报, 2020, 39(10):1957-1974.

    Zhang P S, Zhao C Y, Hou J Q, et al.Experimental study on seepage characteristics of deep sandstone under temperature-stress-seepage coupling conditions[J].Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10):1957-1974.

    [15]

    Meng L B, Li T B, Xu J, et al.Deformation and failure mechanism of phyllite under the effects of THM coupling and unloading[J].Journal of Mountain Science, 2012, 9(6):788-797.

    [16]

    胡波, 杨圣奇, 徐鹏, 等.单裂隙砂岩蠕变模型参数时间尺度效应及颗粒流数值模拟研究[J].岩土工程学报, 2019, 41(5):864-873.

    Hu B, Yang S Q, Xu P, et al.Time-scale effect of the creep model parameters and particle flow simulation of sandstone with a single crack[J].Chinese Journal of Geotechnical Engineering, 2019, 41(5):864-873.

    [17]

    秦楠, 张作良, 冯学志, 等.蠕变作用后裂隙类岩石单轴强度和裂纹扩展规律研究[J].煤炭科学技术, 2020, 48(12):244-249.

    Qin N, Zhang Z L, Feng X Z, et al.Study on uniaxial strength and crack propagation law of cracked similar rock after creep[J].Coal Science and Technology, 2020, 48(12):244-249.

    [18]

    梁冰, 张涛, 王俊光, 等.裂隙辉绿岩蠕变试验及模型研究[J].实验力学, 2019, 34(2):351-357.

    Liang B, Zhang T, Wang J G, et al.Creep experimental study and model improvement of fissured diabase[J].Journal of Experimental Mechanics, 2019, 34(2):351-357.

    [19]

    张国朋.岩石通透裂隙扩展机理及其蠕变特性研究[D].青岛:山东科技大学, 2018.Zhang G P.Study on cracks propagation mechanism and creep properties of fractured rock[D].Qingdao:Shandong University of Science and Technology, 2018.

    [20]

    蒋海飞, 刘东燕, 赵宝云, 等.高围压高水压条件下岩石非线性蠕变本构模型[J].采矿与安全工程学报, 2014, 31(2):284-291.

    Jiang H F, Liu D Y, Zhao B Y, et al.Nonlinear creep constitutive model of rock under high confining pressure and high water pressure[J].Journal of Mining & Safety Engineering, 2014, 31(2):284-291.

  • 加载中
计量
  • 文章访问数:  23
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2023-12-20
修回日期:  2024-02-27

目录