中国地质调查局 中国地质科学院主办
科学出版社出版

塔里木盆地石炭纪—二叠纪岩浆活动对烃源岩热演化的影响

赵禹杭, 朱传庆, 张宝收, 徐同, 陈天戈. 2024. 塔里木盆地石炭纪—二叠纪岩浆活动对烃源岩热演化的影响[J]. 中国地质, 51(6): 1991-2001. doi: 10.12029/gc20201104003
引用本文: 赵禹杭, 朱传庆, 张宝收, 徐同, 陈天戈. 2024. 塔里木盆地石炭纪—二叠纪岩浆活动对烃源岩热演化的影响[J]. 中国地质, 51(6): 1991-2001. doi: 10.12029/gc20201104003
ZHAO Yuhang, ZHU Chuanqing, ZHANG Baoshou, XU Tong, CHEN Tiange. 2024. Influence of Carboniferous–Permian magmatic activities on thermal evolution of hydrocarbon source rocks in Tarim Basin[J]. Geology in China, 51(6): 1991-2001. doi: 10.12029/gc20201104003
Citation: ZHAO Yuhang, ZHU Chuanqing, ZHANG Baoshou, XU Tong, CHEN Tiange. 2024. Influence of Carboniferous–Permian magmatic activities on thermal evolution of hydrocarbon source rocks in Tarim Basin[J]. Geology in China, 51(6): 1991-2001. doi: 10.12029/gc20201104003

塔里木盆地石炭纪—二叠纪岩浆活动对烃源岩热演化的影响

  • 基金项目: 国家科技重大专项课题(2017ZX05008−004)资助。
详细信息
    作者简介: 赵禹杭,男,1995年生,硕士,地质工程专业;E-mail: 347155143@qq.com
    通讯作者: 朱传庆,男,1981年生,博士,教授,主要从事地热地质学工作;E-mail: zhucq@cup.edu.cn
  • 中图分类号: P618.13

Influence of Carboniferous–Permian magmatic activities on thermal evolution of hydrocarbon source rocks in Tarim Basin

  • Fund Project: Supported by National Science and Technology Major Special Projects (No.2017ZX05008–004).
More Information
    Author Bio: ZHAO Yuhang, male, born in 1995, master, majors in geological engineering; E-mail: 347155143@qq.com .
    Corresponding author: ZHU Chuanqing, male, born in 1981, doctor, professor, engaged in geothermic geology; E-mail: zhucq@cup.edu.cn.
  • 研究目的

    地层温度史决定了烃源岩有机质成熟度演化和生排烃过程。除盆地热流史演化和沉积埋藏过程之外,岩浆活动等异常热事件对地层温度史的影响不容忽视,对其研究有利于了解有机质的成熟过程。

    研究方法

    本文基于塔里木油田勘探开发相关成果,通过数值模拟方式计算了侵入体时空影响范围和强度,结合钻井模拟,讨论了岩浆侵入作用对地层温度和烃源岩热演化的影响。

    研究结果

    塔里木盆地台盆区中西部地区多口钻井中石炭纪—二叠系实测镜质体反射率值出现与火成岩相关的异常高值,为晚石炭世—二叠纪时期岩浆活动的记录。单井热史模拟结果显示了岩浆活动对盆地古生界烃源岩层的烘烤加热作用,有机质成熟度热演化过程促进,快速进入高—过成熟阶段。

    结论

    岩浆异常热事件有利于增大烃源岩生烃强度,使其相对产烃率达到最高,有机质得以快速成熟。

  • 加载中
  • 图 1  塔里木盆地火成岩残余分布(据杨树锋等, 2014修改)

    Figure 1. 

    图 2  塔里木盆地典型井Ro–深度剖面

    Figure 2. 

    图 3  塔里木盆地顺2井二叠系部分层段测井剖面

    Figure 3. 

    图 4  塔里木盆地岩浆侵入体冷却模拟结果

    Figure 4. 

    图 5  侵入体向上方(a)和向下方(b)不同位置温度冷却曲线

    Figure 5. 

    图 6  顺2井火成岩侵入热效应与地层温度史综合模型

    Figure 6. 

    图 7  塘参1井火成岩侵入热效应与地层温度史综合模型

    Figure 7. 

    图 8  塔里木盆地顺2井石炭系烃源岩相对产烃率演化史对比图

    Figure 8. 

    表 1  塔里木盆地典型研究钻井Ro值

    Table 1.  Ro values of research wells in Tarim Basin

    井号 深度/m 层位 Ro/% 岩性 井号 深度/m 层位 Ro/% 岩性
    Sh1 3177 T1k 0.68 泥岩 TC1 3283 P 0.62 泥岩
    Sh1 3198 T1k 0.7 泥岩 TC1 3556 P 0.63 泥岩
    Sh1 3239 T1k 0.78 泥岩 TC1 4049 P 1.03 泥岩
    Sh1 3252 T1k 0.8 泥岩 TC1 4135 C 1.05 泥岩
    Sh1 3613 P1kk 1.7 英安质凝灰熔岩 TC1 4242 C 0.97 泥岩
    Sh1 3992 C2x 0.99 灰泥岩 TC1 4339 C 0.83 泥岩
    Sh1 4124 C1kl 0.97 细砂岩 TC1 4356 C 0.83 泥岩
    Sh1 4223 C1kl 1.07 细砂岩 TC1 4442 C 0.89 泥岩
    Sh1 4836 D3k 1.32 泥质粉砂岩 Z1 2658 T 0.6 泥岩
    H4 954 P 0.41 泥岩 Z1 2764 T 0.66 泥岩
    H4 1058 P 0.48 泥岩 Z1 2808 T 0.62 泥岩
    H4 1061 P 0.51 泥岩 Z1 3784 P 1 泥岩
    H4 1070 P 0.52 泥岩 Z1 3880 P 0.93 泥岩
    H4 1240 C 0.96 泥岩 Z1 4035 C1kl 1.03 泥岩
    H4 1243 C 0.96 泥岩 Z1 4066 C1kl 1.04 黑色泥岩
    H4 1244 C 0.98 粉砂质泥岩 Z1 4093 C1kl 1.06 黑色碳质泥岩
    H4 1260 C 1 泥岩 Z1 4142 C1kl 1.09 灰色泥岩
    H4 1264 C 0.97 泥质粉砂岩 Z1 4210 C1b 1.09 粉砂质泥岩
    H4 1285 C 0.76 泥岩 Z1 4270 C1b 1.06 泥岩
    H4 1312 C 0.74 泥岩 Sh2 3180 T 0.55 泥岩
    H4 1340 C 0.75 泥岩 Sh2 3620 T 0.62 泥岩
    H4 1542 C 0.8 泥质粉砂岩 Sh2 4326 P 0.81 泥岩
    H4 1544 C 0.8 泥质粉砂岩 Sh2 4446 P 0.83 泥岩
    H4 1570 C 0.81 泥岩 Sh2 4520 C2x 0.97 泥岩
    H4 1653 C 0.8 灰质泥岩 Sh2 4700 C1-2kl 1.04 泥灰岩
    H4 1815 D 0.83 粉砂质泥岩 Sh2 5240 D1-2 1.01 泥岩
    H4 1818 D 0.83 粉砂质泥岩 Sh2 5698 S1t 1.07 含粉砂泥岩
    H4 1820 D 0.84 粉砂质泥岩 Sh2 5722 S1t 1.14 泥岩
    TC1 2680 T 0.56 泥岩 Sh2 5806 S1t 1.15 浅绿色泥岩
    TC1 2844 T 0.57 泥岩 Sh2 5951 S1t 1.19 深灰色泥岩
    TC1 3128 P 0.61 泥岩 Sh2 6051 S1t 1.23 深灰色泥岩
    下载: 导出CSV
  • [1]

    Barry K, Tuvia W, Ling C, Ken F, Simon B. 2019. Low−temperature thermochronology of francolite: Insights into timing of Dead Sea Transform motion[J]. Terra Nova, 31(3): 205−219. doi: 10.1111/ter.12387

    [2]

    Burnham A K, Sweeney J J. 1989. A chemical kinetic model of vitrinite maturation and reflectance[J]. Geochimica et Cosmochimica Acta, 53(10): 2649−2657. doi: 10.1016/0016-7037(89)90136-1

    [3]

    Chang J, Qiu N S, Song X Y, Li H L. 2016. Multiple cooling episodes in the Central Tarim (Northwest China) revealed by apatite fission track analysis and vitrinite reflectance data[J]. International Journal of Earth Sciences, 105(4): 1257−1272. doi: 10.1007/s00531-015-1242-7

    [4]

    Chang Jian, Qiu Nansheng. 2017. Apatite low−temperature thermochronometry and applications to Tarim Basin in the Northwestern China[J]. Earth Science Frontiers, 24(3): 79−93 (in Chinese with English abstract).

    [5]

    Chen Liying, Wu Haibo, Xing Libo. 2005. Complex igneous rock lithologic logging recognition and numerical process of logging data[J]. Journal of Oil and Gas Technology, 27(6): 877−879 (in Chinese with English abstract).

    [6]

    Chen Mimi, Tian Wei, Zhang Zili, Pan Wenqing, Song Yu. 2010. Geochronology of the Permian basic–intermediate–acidic magma suite from Tarim, Northwest China and its geological implications[J]. Acta Petrologica Sinica, 26(2): 559−572 (in Chinese with English abstract).

    [7]

    Feng Changge, Liu Shaowen, Wang Liangshu, Li Cheng. 2010. Present–day geotemperature field characteristics in the Centeal Uplift Area of the Tarim Basin and implications for hydrocarbon generation and preservation[J]. Earth Science—Journal of China University of Geosciences, 35(4): 645−656 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.079

    [8]

    He Dengfa, Jia Chengzao, Li Desheng, Zhang Chaojun, Meng Qingren, Shi Xin. 2005. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 26(1): 64−77 (in Chinese with English abstract).

    [9]

    He Lijuan, Xu Hehua, Liu Qiongying. 2017. Tectono–thermal modeling of the foreland basins: A case study of the Longmenshan foreland basin[J]. Earth Science Frontiers, 24(3): 127−136 (in Chinese with English abstract).

    [10]

    Hu Shengbiao, He Lijuan, Zhu Chuanqing, Wang Jiyang. 2008. Method system of thermal reconstruction for marine basins[J]. Oil & Gas Geology, 29(5): 607−613 (in Chinese with English abstract).

    [11]

    Huang S J, Huang K K, Lv J, Lan Y F. 2014. The relationship between dolomite textures and their formation temperature: A case study from the Permian–Triassic of the Sichuan Basin and the Lower Paleozoic of the Tarim Basin[J]. Petroleum Science, 11(1): 39−51. doi: 10.1007/s12182-014-0316-7

    [12]

    Ji Tianyu, Yang Wei, Wu Xueqiong, Pu Renhai, Li Dejiang, Liu Mancang, Miao Weidong, Su Nan, Ye Ying. 2022. Evaluation of Cambrian caprock in the platform-basin area of Tarim Basin and optimization of favorable area for oil and gas caprock[J]. Geology in China, 49(2): 369−382 (in Chinese with English abstract).

    [13]

    Jia Chengzao, Li Benliang, Zhang Xingyang, Li Chuanxin. 2007. Formation and evolution of China Sea facies basins[J]. Chinese Science Bulletin, 52(S1): 1−8 (in Chinese). doi: 10.1007/s11434-007-6012-x

    [14]

    Jin Zhijun, Zhu Dongya, Hu Wenxuan, Zhang Xuefeng, Wang Yi, Yan Xiangbin. 2006. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica Sinica, 80(2): 245−253 (in Chinese with English abstract).

    [15]

    Li Cheng, Wang Liangshu, Guo Suiping, Shi Xiaobin. 2000. Thermal evolution in Tarim Basin[J]. Acta Geologica Sinica, 21(3): 13−17 (in Chinese with English abstract).

    [16]

    Li Huili, Qiu Nansheng, Jin Zhijun, He Zhiliang. 2005. Geothermal history of Tarim Basin[J]. Oil and Gas Geology, 26(5): 613−617 (in Chinese with English abstract).

    [17]

    Li Jiawei, Li Zhong, Qiu Nansheng, Zuo Yinhui, Yu Jingbo, Liu Jiaqing. 2016. Carboniferous–Permian abnormal thermal evolution of the Tarim basin and its implication for deep structure and magmatic activity[J]. Chinese Journal of Geophysics, 59(9): 3318−3329 (in Chinese with English abstract).

    [18]

    Li Zilong, Yang Shufeng, Chen Hanlin, Langmuir C H, Yu Xing, Lin Xiubin, Li Yinqi. 2008. Chronology and geochemistry of Taxinan basalts from the Tarim basin: Evidence for Permian plume magmatism[J]. Acta Petrologica Sinica, 24(5): 959−970 (in Chinese with English abstract).

    [19]

    Li Z L, Li Y Q, Chen H L, Santosh M, Yang S F, Xu Y G, Charles H. L, Chen Z X, Yu X, Zou S Y. 2012. Hf isotopic characteristics of the Tarim Permian large igneous province rocks of NW China: Implication for the magmatic source and evolution[J]. Journal of Asian Earth Science, 49: 191−202. doi: 10.1016/j.jseaes.2011.11.021

    [20]

    Liu P X, Deng S B, Guan P, Jin Y Q, Wang K, Chen Y Q. 2020. The nature, type, and origin of diagenetic fluids and their control on the evolving porosity of the Lower Cambrian Xiaoerbulak Formation dolostone, northwestern Tarim Basin, China[J]. Petroleum Science, 17(4): 873−895. doi: 10.1007/s12182-020-00434-0

    [21]

    Liu Shaowen, Wang Liangshu, Li Cheng, Zhang Peng, Li Hua. 2006. Lithospheric thermo–rheological structure and Cenozoic thermal regime in the Tarim Basin, Northwest China[J]. Acta Petrologica Sinica, 80(3): 344−350 (in Chinese with English abstract).

    [22]

    Pan Yun, Pan Mao, Tian Wei, Wang Zongxiu, Guan Ping, Liu Xiao, Pan Wenqing. 2013. Redefined distribution of the Permian basalt in the Central Tarim Area: A new approach based on down hole logging data explanation[J]. Acta Petrologica Sinica, 87(10): 1542−1549 (in Chinese with English abstract).

    [23]

    Qin K Z, Su B X, Sakyi P A, Tang D M, Li X H, Sun H, Xiao Q H, Liu P P. 2011. SIMS zircon U–Pb geochronology and Sr–Nd isotopes of Ni–Cu–bearing mafic–ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume[J]. American Journal of Science, 311(3): 237−260. doi: 10.2475/03.2011.03

    [24]

    Qiu Nansheng, Li Huili, Jin Zhijun. 2005. Study of the thermal history reconstruction for Lower Paleozoic carbonate succession[J]. Earth Science Frontiers, 12(4): 561−567 (in Chinese with English abstract).

    [25]

    Qiu Nansheng, Zuo Yinhui, Chang Jian, Xu Wei, Zhu Chuanqing. 2015. Characteristics of Meso–Cenozoic thermal regimes in typical eastern and western sedimentary basins of China[J]. Earth Science Frontiers, 22(1): 157−168 (in Chinese with English abstract).

    [26]

    Ren Zhanli, Tian Tao, Li Jinbu, Wang Jiping, Cui Junping, Li Hao, Tang Jianyun, Guo Ke. 2014. Review on methods of thermal evolution history in sedimentary basins and thermal evolution history reconstruction of superimposed basins[J]. Journal of Earth Sciences and Environment, 36(3): 1−21 (in Chinese with English abstract).

    [27]

    Sweeney J J, Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin, 10(10): 1559−1570.

    [28]

    Wang Liangshu, Li Cheng, Liu Shaowen, Li Hua, Xu Mingjie, Yu Dayong, Jia Chengzao, Wei Guoqi. 2005. Terrestrial heat flow distribution in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 32(4): 79−83 (in Chinese with English abstract).

    [29]

    Wang Tieguan, Dai Shifeng, Li Meijun, Zhang Weibiao, Qiu Nansheng, Wang Guangli. 2010. The thermal history of stratigraphic organic matter in the platform basin of Tarim Basin and its implications for regional geological evolution[J]. Science China: Earth Sciences, 53: 1495−1505. doi: 10.1007/s11430-010-4069-x

    [30]

    Wei X, Xu Y G, Feng Y X, Zhao J X. 2014. Plume–lithosphere interaction in the generation of the Tarim large igneous province, NW China: Geochronological and geochemical constraints[J]. American Journal of Science, 314(1): 314−356. doi: 10.2475/01.2014.09

    [31]

    Xia Linqi, Li Xiangmin, Xia Zhuchun, Xu Xueyi, Ma Zhongping, Wang Lishe. 2006. Carboniferous–Permian rift–related volcanism and mantle plume in the Tianshan, Northwestern China[J]. Northwestern Geology, 39(1): 1−49 (in Chinese with English abstract).

    [32]

    Xiao Chongyang, Yang Lin, Lin Bo, You Donghua. 2020. Volcanic activity stages and distribution during the Permian in the Shunbei area, Tarim Basin[J]. Pertoleum Geology and Experiment, 42(2): 177−185 (in Chinese with English abstract).

    [33]

    Yan Lei, Li Ming, Pan Wenqing. 2014. Distribution characteristics of Permian igneous rock in Tarim basin: Based on the high–precision aeromagnetic data[J]. Progress in Geophysics, 29(4): 1843−1848 (in Chinese with English abstract).

    [34]

    Yang Shufeng, Chen Hanlin, Li Zilong, Li Yinqi, Yu Xing, Li Dongxu, Meng Lifeng. 2014. Early Permian large igneous provinces in Tarim Basin[J]. Science China: Earth Sciences, 56: 2015−2026.

    [35]

    Zheng Menglin, Wang Yi, Jin Zhijun, Li Jingchang, Zhang Zhongpei, Jiang Huashan, Xie Daqing, Guo Xin. 2014. Superimposition, evolution and petroleum accumulation of Tarim Basin[J]. Oil and Gas Geology, 35(6): 925−934 (in Chinese with English abstract).

    [36]

    Zhu C Q, Hu S B, Qiu N S, Jiang Q, Rao S, Liu S. 2018. Geothermal constraints on Emeishan mantle plume magmatism: Paleotemperature reconstruction of the Sichuan Basin, SW China[J]. International Journal of Earth Sciences, 107(1): 71−88. doi: 10.1007/s00531-016-1404-2

    [37]

    Zhu Rukai, Luo Ping, Luo Zhong. 2002. Lithofacies palaeogeography of the Late Devonian and Carboniferous in Tarim Basin[J]. Journal of Palaeogeography, 4(1): 13−24 (in Chinese with English abstract).

    [38]

    常健, 邱楠生. 2017. 磷灰石低温热年代学技术及在塔里木盆地演化研究中的应用[J]. 地学前缘, 24(3): 79−93.

    [39]

    陈立英, 吴海波, 邢丽波. 2005. 火成岩复杂岩性测井识别及测井资料数字处理[J]. 石油天然气学报(江汉石油学院学报), 27(6): 877−879.

    [40]

    陈咪咪, 田伟, 张自力, 潘文庆, 宋宇. 2010. 塔里木二叠纪基性–中性–酸性岩浆岩的年代学及其地质意义[J]. 岩石学报, 26(2): 559−572.

    [41]

    冯昌格, 刘绍文, 王良书, 李成. 2010. 塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系[J]. 地球科学(中国地质大学学报), 35(4): 645−656.

    [42]

    何登发, 贾承造, 李德生, 张朝军, 孟庆任, 石昕. 2005. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 26(1): 64−77. doi: 10.3321/j.issn:0253-9985.2005.01.010

    [43]

    何丽娟, 许鹤华, 刘琼颖. 2017. 前陆盆地构造–热演化: 以龙门山前陆盆地为例[J]. 地学前缘, 24(3): 127−136.

    [44]

    胡圣标, 何丽娟, 朱传庆, 汪集旸. 2008. 海相盆地热史恢复方法体系[J]. 石油与天然气地质, 29(5): 607−613. doi: 10.3321/j.issn:0253-9985.2008.05.009

    [45]

    季天愚, 杨威, 武雪琼, 蒲仁海, 李德江, 刘满仓, 缪卫东, 苏楠, 叶颖. 2022. 塔里木盆地台盆区寒武系盖层评价及对油气盖层有利区的优选[J]. 中国地质, 49(2): 369−382.

    [46]

    贾承造, 李本亮, 张兴阳, 李传新. 2007. 中国海相盆地的形成与演化[J]. 科学通报, 52(S1): 1−8. doi: 10.3321/j.issn:0023-074x.2007.z1.001

    [47]

    金之钧, 朱东亚, 胡文瑄, 张学丰, 王毅, 闫相宾. 2006. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报, 80(2): 245−253. doi: 10.3321/j.issn:0001-5717.2006.02.009

    [48]

    李成, 王良书, 郭随平, 施小斌. 2000. 塔里木盆地热演化[J]. 石油学报, 21(3): 13−17. doi: 10.3321/j.issn:0253-2697.2000.03.003

    [49]

    李慧莉, 邱楠生, 金之钧, 何治亮. 2005. 塔里木盆地的热史[J]. 石油与天然气地质, 26(5): 613−617. doi: 10.3321/j.issn:0253-9985.2005.05.009

    [50]

    李佳蔚, 李忠, 邱楠生, 左银辉, 于靖波, 刘嘉庆. 2016. 塔里木盆地石炭—二叠纪异常热演化及其对深部构造–岩浆活动的指示[J]. 地球物理学报, 59(9): 3318−3329. doi: 10.6038/cjg20160916

    [51]

    厉子龙, 杨树锋, 陈汉林, Langmuir C H, 余星, 林秀彬, 励音骐. 2008. 塔西南玄武岩年代学和地球化学特征及其对二叠纪地慢柱岩浆演化的制约[J]. 岩石学报, 24(5): 957−959.

    [52]

    刘绍文, 王良书, 李成, 张鹏, 李华. 2006. 塔里木盆地岩石圈热–流变学结构和新生代热体制[J]. 地质学报, 80(3): 344−350. doi: 10.3321/j.issn:0001-5717.2006.03.005

    [53]

    潘赟, 潘懋, 田伟, 王宗秀, 关平, 刘晓, 潘文庆. 2013. 塔里木中部二叠纪玄武岩分布的重新厘定: 基于测井数据的新认识[J]. 地质学报, 87(10): 1542−1550.

    [54]

    邱楠生, 李慧莉, 金之钧. 2005. 沉积盆地下古生界碳酸盐岩地区热历史恢复方法探索[J]. 地学前缘, 12(4): 561−567. doi: 10.3321/j.issn:1005-2321.2005.04.026

    [55]

    邱楠生, 左银辉, 常健, 许威, 朱传庆. 2015. 中国东西部典型盆地中—新生代热体制对比[J]. 地学前缘, 22(1): 157−168.

    [56]

    任战利, 田涛, 李进步, 王继平, 崔军平, 李浩, 唐建云, 郭科. 2014. 沉积盆地热演化史研究方法与叠合盆地热演化史恢复研究进展[J]. 地球科学与环境学报, 36(3): 1−21. doi: 10.3969/j.issn.1672-6561.2014.03.003

    [57]

    王良书, 李成, 刘绍文, 李华, 徐鸣洁, 于大勇, 贾承造, 魏国齐. 2005. 库车前陆盆地大地热流分布特征[J]. 石油勘探与开发, 32(4): 79−83. doi: 10.3321/j.issn:1000-0747.2005.04.013

    [58]

    王铁冠, 戴世峰, 李美俊, 张卫彪, 邱楠生, 王广利. 2010. 塔里木盆地台盆区地层有机质热史及其对区域地质演化研究的启迪[J]. 中国科学: 地球科学, 40(10): 1331−1341.

    [59]

    夏林圻, 李向民, 夏祖春, 徐学义, 马中平, 王立社. 2006. 天山石炭—二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 西北地质, 39(1): 1−49.

    [60]

    肖重阳, 杨林, 林波, 尤东华. 2020. 塔里木盆地顺北地区二叠纪火山活动期次与分布[J]. 石油实验地质, 42(2): 177−185. doi: 10.11781/sysydz202002177

    [61]

    闫磊, 李明, 潘文庆. 2014. 塔里木盆地二叠纪火成岩分布特征—基于高精度航磁资料[J]. 地球物理学进展, 29(4): 1843−1848.

    [62]

    杨树锋, 陈汉林, 厉子龙, 励音骐, 余星, 李东旭, 孟立丰. 2014. 塔里木早二叠世大火成岩省[J]. 中国科学: 地球科学, 44(2): 187−199.

    [63]

    郑孟林, 王毅, 金之钧, 李京昌, 张仲培, 蒋华山, 谢大庆, 郭忻. 2014. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 35(6): 925−934. doi: 10.11743/ogg20140619

    [64]

    朱如凯, 罗平, 罗忠. 2002. 塔里木盆地晚泥盆世及石炭纪岩相古地理[J]. 古地理学报, 4(1): 13−24. doi: 10.7605/gdlxb.2002.01.002

  • 加载中

(8)

(1)

计量
  • 文章访问数:  137
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2020-11-04
修回日期:  2021-03-05
刊出日期:  2024-11-25

目录