中国地质调查局 中国地质科学院主办
科学出版社出版

内蒙古乌拉特前旗大佘太地区农田表层土壤重金属生态安全风险评价

袁帅, 张思源, 张雪琼, 袁国礼, 王永亮, 边鹏, 邰苏日嘎拉. 2024. 内蒙古乌拉特前旗大佘太地区农田表层土壤重金属生态安全风险评价[J]. 中国地质, 51(5): 1686-1700. doi: 10.12029/gc20220302002
引用本文: 袁帅, 张思源, 张雪琼, 袁国礼, 王永亮, 边鹏, 邰苏日嘎拉. 2024. 内蒙古乌拉特前旗大佘太地区农田表层土壤重金属生态安全风险评价[J]. 中国地质, 51(5): 1686-1700. doi: 10.12029/gc20220302002
YUAN Shuai, ZHANG Siyuan, ZHANG Xueqiong, YUAN Guoli, WANG Yongliang, BIAN Peng, TAI Surigala. 2024. Ecological health risk assessment of farmland surface soil heavy metals in Dashetai, Ulat Front Banner, Inner Mongolia[J]. Geology in China, 51(5): 1686-1700. doi: 10.12029/gc20220302002
Citation: YUAN Shuai, ZHANG Siyuan, ZHANG Xueqiong, YUAN Guoli, WANG Yongliang, BIAN Peng, TAI Surigala. 2024. Ecological health risk assessment of farmland surface soil heavy metals in Dashetai, Ulat Front Banner, Inner Mongolia[J]. Geology in China, 51(5): 1686-1700. doi: 10.12029/gc20220302002

内蒙古乌拉特前旗大佘太地区农田表层土壤重金属生态安全风险评价

  • 基金项目: 中国地质调查局项目(DD20211591)资助。
详细信息
    作者简介: 袁帅,男,1991年生,工程师,主要从事地质环境研究工作;E-mail:yuanshuaicugb@163.com
    通讯作者: 张思源,男,1991年生,工程师,主要从事自然资源综合调查工作;E-mail:zhangsy5@qq.com。;  张雪琼,女,1990年生,讲师,主要从事环境地球化学工作;E-mail:lxyzxq@imau.edu.cn
  • 中图分类号: X826; X53

Ecological health risk assessment of farmland surface soil heavy metals in Dashetai, Ulat Front Banner, Inner Mongolia

  • Fund Project: Supported by the project of China Geological Survey (No.DD20211591).
More Information
    Author Bio: YUAN Shuai, male, born in 1991, engineer, mainly engaged in geological environment research; E-mail: yuanshuaicugb@163.com .
    Corresponding authors: ZHANG Siyuan, male, born in 1991, engineer, mainly engaged in comprehensive survey of natural resources; E-mail: zhangsy5@qq.com ZHANG Xueqiong, female, born in 1990, lecturer, mainly engaged in environmental earth chemistry; E-mail:lxyzxq@imau.edu.cn.
  • 研究目的

    为查明乌拉特前旗大佘太地区农田土壤重金属污染状况,采集表层土壤样品845件,农作物样品30件,饮用水样品17件,分析测定As、Cd、Cr、Cu、Hg、Ni、Pb、Zn等 8 种重金属元素含量。

    研究方法

    通过采用地累积指数法、潜在生态危害指数法和健康风险评估模型,对该区土壤、农作物以及饮用水中的重金属污染程度、生态风险和健康风险进行评估。

    研究结果

    大佘太农田土壤中重金属含量整体与河套地区背景值相当;土壤中潜在重金属生态危害以轻微风险和中等风险为主;人体健康风险评估显示,在口和皮肤双重摄入途径下,土壤会对居民造成致癌风险(5.69×10−6),谷物(1.03)及蔬菜(1.30)会对居民有一定的健康风险。

    结论

    Hg受人类影响较大,中等—强风险区位于大佘太镇;其余元素主要受成土母质控制,Cd中等风险区分布在乌梁素海沿岸一带。As在蔬菜、谷物以及饮用水健康风险中贡献最大,应该受到关注。

  • 加载中
  • 图 1  研究区位置图

    Figure 1. 

    图 2  研究区采样点分布图

    Figure 2. 

    图 3  研究区表层土壤重金属元素空间分布

    Figure 3. 

    图 4  研究区表层土壤重金属元素污染点位分布图

    Figure 4. 

    图 5  研究区土壤重金属元素生态风险等级分布图

    Figure 5. 

    表 1  健康风险评价模型暴露因子参数

    Table 1.  Exposure factor parameters of health risk assessment mode

    符号 参数 单位 参考值
    $ {\mathrm{O}\mathrm{I}\mathrm{S}\mathrm{E}\mathrm{R}}_{n} $ 非致癌(致癌)效应下经口摄入土壤暴露量
    $ {\mathrm{P}\mathrm{I}\mathrm{S}\mathrm{E}\mathrm{R}}_{n} $ 非致癌(致癌)效应下吸入土壤颗粒暴露量
    $ {\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{E}\mathrm{R}}_{n} $ 非致癌(致癌)效应下皮肤接触土壤暴露量
    $ \mathrm{O}\mathrm{I}\mathrm{S}\mathrm{R} $ 每日摄入土壤量 mg/d 100
    $ \text{E}{\mathrm{D}}_{s} $ 暴露时长 a 25
    $ \text{E}{\mathrm{F}}_{s} $ 暴露频率 d/a 250
    $ {\text{ABS}}_{0} $ 经口摄入吸收效率因子 无量纲 1
    BW 平均体重 kg 61.8
    $ {\text{AT}}_{\mathrm{s}} $ 非致癌(致癌)效应平均时长 d 27740(致癌)9125(非致癌)
    $ \mathrm{D}\mathrm{A}\mathrm{I}\mathrm{R} $ 每日空气呼吸量 m3/d 14.5
    $ {\mathrm{P}\mathrm{M}}_{10} $ 空气中可吸入悬浮颗粒物总量 mg/m3 0.119I
    PIAF 吸入土壤颗粒物在体内滞留比例 无量纲 0.75
    $ \mathrm{f}\mathrm{s}\mathrm{p}\mathrm{i} $ 室内空气中来自土壤的颗粒物所占比例 无量纲 0.8
    EFi 室内暴露频率 d/a 187.5
    $ \mathrm{f}\mathrm{s}\mathrm{p}\mathrm{o} $ 室外空气中来自土壤的颗粒物所占比例 无量纲 0.5
    EFo 室外暴露频率 d/a 62.5
    $ \text{SAE} $ 皮肤暴露面积 cm2 3033II
    $ \text{SSAR} $ 皮肤表面土壤黏附系数 mg/cm2 0.2
    $ {\mathrm{A}\mathrm{B}\mathrm{S}}_{{{\mathrm{d}}}} $ 皮肤接触吸收效率因子 无量纲 0.001(镉)0.03(砷)
    E 每日皮肤接触事件频率 次/d 1
    RfD 不同途径参考剂量 mg/(kg·d) 见表2
    RfDo 经口摄入参考剂量 mg/(kg·d) 见表2
    RfDi 呼吸吸入参考剂量 mg/(kg·d) 见表2
    RfDd 皮肤接触参考剂量 mg/(kg·d) 见表2
    SF 不同途径的致癌斜率因子 (kg·d)/mg 见表2
    SFo 经口摄入的致癌斜率因子 (kg·d)/mg 见表2
    SFd 皮肤接触的致癌斜率因子 (kg·d)/mg 见表2
    SFi 呼吸吸入的致癌斜率因子 (kg·d)/mg 见表2
      注:Ⅰ为引用自《建设用地土壤污染风险评估技术导则》(HJ 25.3—2019);Ⅱ为根据《建设用地土壤污染风险评估技术导则》(HJ25.3—2019)计算得出。
    下载: 导出CSV

    表 2  土壤重金属不同暴露途径的RfD和SF

    Table 2.  RfD and SF values for different exposure pathways of soil heavy metals

    重金属元素 参考剂量/(mg/(kg·d)) 致癌斜率因子/((kg·d)/mg)
    $ {\mathrm{R}\mathrm{f}\mathrm{D}}_{{\mathrm{o}}} $ 数据
    来源
    $ {\mathrm{R}\mathrm{f}\mathrm{D}}_{\mathrm{i}} $ 数据
    来源
    $ {\mathrm{R}\mathrm{f}\mathrm{D}}_{\mathrm{d}} $ 数据
    来源
    $ {\mathrm{S}\mathrm{F}}_{{\mathrm{o}}} $ 数据
    来源
    $ {\mathrm{S}\mathrm{F}}_{\mathrm{i}} $ 数据
    来源
    $ {\mathrm{S}\mathrm{F}}_{\mathrm{d}} $ 数据
    来源
    As 3.00×10−4 I 3.52×10−6 II 3.00×10−4 II 1.50 I 1.83×10−2 II 1.50 II
    Cd 1.00×10−3 I 2.35×10−6 II 2.50×10−5 II 7.06 II
    Cr 3.00×10−3 I 2.35×10−5 7.5×10−2 II 4.71×10−2 II
    Cu 4.00×10−2 I 4.00×10−2 II
    Hg 3.00×10−4 I 7.04×10−5 II 2.10×10−5 II
    Ni 2.00×10−2 I 2.11×10−5 II 8.00×10−4 II 1.11 II
    Zn 3.00×10−1 I 3.00×10−1 II
      注:Ⅰ为引用自HJ《建设用地土壤污染风险评估技术导则》(HJ 25.3—2019); Ⅱ为根据《建设用地土壤污染风险评估技术导则》(HJ 25.3—2019)计算得出。
    下载: 导出CSV

    表 3  土壤重金属致癌风险的分级标准

    Table 3.  Classification standard of carcinogenic risk of soil heavy metals

    等级$ \mathrm{C}\mathrm{R} $致癌风险
    1$ \mathrm{C}\mathrm{R}\leqslant {10}^{-6} $无风险
    2$ {10}^{-6} < \mathrm{C}\mathrm{R}\leqslant {10}^{-5} $低风险,可接受
    3$ {10}^{-5} < \mathrm{C}\mathrm{R}\leqslant {10}^{-4} $中风险,可接受
    4$ \mathrm{C}\mathrm{R} > {10}^{-4} $有,不可接受
    下载: 导出CSV

    表 4  土壤重金属参数统计

    Table 4.  Parameter statistics of heavy metals in soil

    元素 最小值 最大值 均值 标准差 变异系数 富集系数 河套平原表层
    土壤背景值
    农用地土壤污染
    风险筛选值
    As 2.54 24.9 8.63 2.40 0.28 0.89 9.68 25
    Cd 0.05 0.28 0.13 0.04 0.30 1.08 0.12 0.6
    Cr 31.7 104 68.66 10.79 0.16 1.23 56 250
    Cu 6.94 43.5 20.35 5.75 0.28 1.06 19.2 100
    Hg 0.007 0.067 0.018 0.0072 0.40 0.72 0.0249 34
    Ni 12 46.1 25.4 5.70 0.22 1.02 25 190
    Pb 11 28.9 17.19 2.64 0.15 0.92 18.76 170
    Zn 27.9 108 56.37 12.67 0.22 1.01 55.7 300
    pH 8.07 9.99
      注:参与统计样品数共计845件。最小值、最大值、均值、河套平原表层土壤背景值、农用地土壤污染风险筛选值单位为mg/kg,其他无单位。
    下载: 导出CSV

    表 6  重金属地累积指数分级结果

    Table 6.  Classification criteria of index of geo−accumulation

    评价项目 平均值 分级样本数 污染点数占比/%
    ≤0 0~1
    As −0.8 832 13 1.54
    Cd −0.56 765 80 9.47
    Cr −0.31 766 79 9.35
    Cu −0.56 767 78 9.23
    Hg −1.14 827 18 2.13
    Ni −0.59 806 39 4.62
    Pb −0.73 844 1 0.12
    Zn −0.6 805 40 4.73
    下载: 导出CSV

    表 5  土壤重金属主成分分析结果

    Table 5.  Principal component analysis results of soil heavy metals

    重金属 主成分
    1 2
    特征值 6.11 0.58
    贡献率/% 76.36 7.23
    累积贡献率/% 76.36 83.59
    As 0.827 0.265
    Cd 0.881 0.018
    Cr 0.864 −0.339
    Cu 0.958 −0.103
    Hg 0.720 0.559
    Ni 0.952 −0.182
    Pb 0.812 0.102
    Zn 0.949 −0.164
    下载: 导出CSV

    表 7  土壤重金属潜在生态危害指数特征

    Table 7.  Characteristics of potential ecological damage index of soil heavy metals

    值域 分级样本数/件
    轻微 中等 很强 极强
    $E_r^i$ As 2.62~25.72 845 0 0 0 0
    Cd 12.5~69.75 694 151 0 0 0
    Cr 1.13~3.71 845 0 0 0 0
    Cu 0.36~2.27 845 0 0 0 0
    Hg 11.24~107.63 721 118 6 0 0
    Ni 2.4~9.22 845 0 0 0 0
    Pb 2.93~2.70 845 0 0 0 0
    Zn 0.50~1.94 845 0 0 0 0
    $ \mathrm{R}\mathrm{I} $ 40.61~217.86 835 10 0 0 0
    下载: 导出CSV

    表 8  土壤重金属非致癌健康风险指数(10−4

    Table 8.  Non-carcinogenic health risk index of soil heavy metal (10−4)

    重金属 $ {{\mathrm{H}\mathrm{Q}}_{\mathrm{o}\mathrm{i}\mathrm{s}}}_{_n} $ $ {{\mathrm{H}\mathrm{Q}}_{\mathrm{d}\mathrm{c}\mathrm{s}}}_{_n} $ $ {{\mathrm{H}\mathrm{Q}}_{\mathrm{pis}_{n}}} $ $ \mathrm{H}\mathrm{Q} $
    As 最大值 1839.78 334.80 1572.62 3737.20
    平均值 637.26 115.97 544.72 1297.96
    Cd 最大值 6.18 1.50 26.39 34.08
    平均值 2.82 0.68 12.03 15.53
    Cr 最大值 192.11 983.86 1175.96
    平均值 126.90 649.93 776.84
    Cu 最大值 24.11 24.11
    平均值 11.28 11.28
    Hg 最大值 4.95 0.21 5.16
    平均值 1.34 0.06 1.40
    Ni 最大值 51.09 485.72 536.81
    平均值 28.23 268.39 296.62
    Zn 最大值 7.98 7.98
    平均值 4.17 4.17
    HI 最大值 2006.93 335.53 2469.77 4801.23
    平均值 811.92 116.66 1474.58 2403.15
      注:$ {{\mathrm{H}\mathrm{Q}}_{\mathrm{o}\mathrm{i}\mathrm{s}}}_{_n} $$ {{\mathrm{H}\mathrm{Q}}_{\mathrm{d}\mathrm{c}\mathrm{s}}}_{_n} $$ {{\mathrm{H}\mathrm{Q}}_{\mathrm{p}\mathrm{i}\mathrm{s}}}_{n} $分别为经口摄入、皮肤接触、吸入土壤颗粒途径的危害商。
    下载: 导出CSV

    表 9  土壤重金属致癌健康风险指数(10−8

    Table 9.  Carcinogenic health risk index of soil heavy metals (10−8)

    重金属 ${\mathrm{CR}}_{{\mathrm{ois}}_{_n}} $ $ {\mathrm{CR}}_{{\mathrm{dcs}}_{_n}}$ $ {\mathrm{CR}}_{{\mathrm{pis}}_{_n}} $ $ \mathrm{C}\mathrm{R} $
    As 最大值 1361.68 247.80 0.17 1609.65
    平均值 471.66 85.83 0.06 557.55
    Cd 最大值 0.72 0.72
    平均值 0.33 0.33
    Cr 最大值 1.79 1.79
    平均值 1.18 1.18
    Ni 最大值 18.71 18.71
    平均值 10.34 10.34
    CR 最大值 1361.68 247.80 21.07 1621.48
    平均值 471.67 85.83 11.90 569.40
    下载: 导出CSV

    表 10  农作物及饮用水重金属非致癌健康风险指数(10−4

    Table 10.  Non−carcinogenic health risk index of heavy metal in crops and drinking water (10−4)

    重金属 $ {\mathrm{H}\mathrm{Q}}_{\mathrm{蔬}\mathrm{菜}} $ $ {\mathrm{H}\mathrm{Q}}_{\mathrm{谷}\mathrm{物}} $ $ {\mathrm{H}\mathrm{Q}}_{\mathrm{饮}\mathrm{用}\mathrm{水}} $
    As 最大值 4955.88 10195.05 43036.08
    平均值 3007.43 6181.91 8405.17
    Cd 最大值 2485.02 325.95
    平均值 1328.53 30.45
    Cr 最大值 2579.45
    平均值 455.20
    Cu 最大值 6544.42 3176.98 225.02
    平均值 4517.47 2315.64 29.94
    Hg 最大值
    平均值
    Ni 最大值 823.03 2347.73 73.71
    平均值 290.41 965.02 14.05
    Zn 最大值 1621.28 4594.95 151.56
    平均值 1136.31 3527.86 32.91
    HI 最大值 15197.73 16581.31 43253.44
    平均值 10280.15 13021.89 8937.26
    下载: 导出CSV
  • [1]

    Adila Hayrat, Mamattursun Eziz, Gulbanu Hini, Jin Wangui, Anwar Mohammad, Alimujiang Kasimu. 2020. Pollution and health risks assessment of heavy metals of road dust in Korla City, Xinjiang[J]. Geology in China, 47(6): 1915−1925 (in Chinese with English abstract).

    [2]

    Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil in northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625−1636 (in Chinese with English abstract).

    [3]

    Cai Kui, Duan Yamin, Luan Wenlou, Li Qian, Ma Yunchao. 2016. Geochemical behavior of heavy metals Pb and Hg in the farmland soil of Hebei plain[J]. Geology in China, 43(4): 1420−1428 (in Chinese with English abstract).

    [4]

    Cao Shengwei, Liu Chunlei, Li Yasong, Li Jing, Hao Qichen, Gao Jie, Dong Yan, Lu Chenming. 2022. Sources and ecological risk of heavy metals in the sediments of offshore area in Quanzhou Bay, Fujian Province[J]. Geology in China, 49(5): 1481−1496 (in Chinese with English abstract).

    [5]

    Chen Jiping, Chao Zhongdong, Ren Rui, Luo Ting, Chao Xu, Zhang Zhimin, Qiao Xinxing. 2021. Correlation and safety evaluation of crop heavy metal content in Shaanxi Guanzhing selenium−enriched aveas[J]. Northwestern Geology, 54(2): 273−281 (in Chinese with English abstract).

    [6]

    Fang Qing, Xian Ping, Meng Zhengcheng. 2021. Environmental health risk assessment model of ricultural land based on Month Carlo Simulation and its application[J]. Environmental Engineering, 39(2): 147−152 (in Chinese with English abstract).

    [7]

    Forstner U, Ahlf W, Calmano W. 1993. Sediment quality objectivesand criteria development in Germany[J]. Water Science and Technology, 28(8): 307−314.

    [8]

    Guo Huaming, Ni Ping, Jia Yongfeng, Zhang Bo, Zhang Yang. 2015. Characteristics and their causes of surface water−groundwater geochemistry in the Hetao Basin, Inner Mongolia[J]. Geoscience, 29(2): 229−237 (in Chinese with English abstract).

    [9]

    Guo Jungang, Zhao Hengqin, Bian Xiaodong, Sun Xiaoyan. 2021. Characteristics and ecological risk of soil heavy metals of a Tungsten mine in Yudu, Jiangxi Province[J]. Geological Bulletin of China, 40(7): 1195−1202 (in Chinese with English abstract).

    [10]

    Guo Xiaoxiao, Liu Congqiang, Zhu Zhaozhou, Wang Zhongliang, Li Jun. 2011. Evaluation methods for soil heavy metals contamination[J]. Chinese Journal of Ecology, 30(5): 889−896 (in Chinese with English abstract).

    [11]

    Hakanson L. 1980. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8

    [12]

    Lei Peiyu, Zheng Jingli, Jia Ru, Meng Zhaowei. 2022. Health risk assessment of typical metalloid and heavy metals in rural drinking water in Shaanxi Province in 2020[J]. Journal of Hygiene Research, 51(1): 45−50 (in Chinese with English abstract).

    [13]

    Li Wenpeng, Shi Xiaolong, Liu Jianzhang, Chen Shuang, Cai Kui, Song Zefeng, Tian Haofei. 2024. Relationship between heavy metals and clay minerals in farmland soil around industrial zone and health risk assessment[J]. Geology in China, 51(5): 1513−1526(in Chinese with English abstract).

    [14]

    Li Yimeng, Ma Jianhua, Liu Dexin, Sun Yanli, Chen Yanfang. 2015. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng city, China[J]. Environment Science, 36(3): 1037−1044 (in Chinese with English abstract).

    [15]

    Liang Shuai, Dai Huimin, Zhang Guangyang, Liu Kai, Zhai Furong, Li Qiuyan, Wei Minghui. 2023. Heavy metal contents in soil-Chinese herbal medicine system in Xibo River Basin, Chifeng City, Inner Mongolia: Distribution characteristics and ecological effect evaluation[J]. Geology and Resources, 32(6): 779−788. (in Chinese with English abstract).

    [16]

    Lin Jin, Liang Wenjing, Jiao Yang, Yang Li, Fan Yaning, Tian Tao, Liu Xiaomeng. 2021. Ecolcgical and health risk assessment of heavy metals infarmland soil around the gold mining area in Tongguan of Shaanxi Province[J]. Geology in China, 48(3): 749−763 (in Chinese with English abstract).

    [17]

    Liu Jun, Wang Ying, Wei Wen, Zhang Lin, Liu Fulian. 2017. Using stable isotope method to identify sources of groundwater recharge in Shetai Basin, Inner Monglia[J]. Journal of China Hydrology, 37(1): 51−55 (in Chinese with English abstract).

    [18]

    Liu R P, Xu Y N, Zhang J H, Wang W K, Rafaey M Elwardany. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China[J]. China Geology, 3(3): 402−410.

    [19]

    Liu Ruixue, Qiao Dongyun, Wang Ping, An Yi, Huo Lili. 2019. Heavy metal pollution and potential ecological risk assessment in farmland soils located in Xiangtan County in Hunan Province, China[J]. Journal of Agro−Environment Science, 38(7): 1523−1530 (in Chinese with English abstract).

    [20]

    Liu Tong, Liu Chuanpeng, Deng Jun, Kang Pengyu, Wang Kaikai, Zhao Yuyan. 2022. Ecological health risk assessment of soil heavy metals in eastern Yinan County, Shandong Province[J]. Geology in China, 49(5): 1497−1508 (in Chinese with English abstract).

    [21]

    Liu Yong, Yue Lingling, Li Jinchang. 2011. Evaluation of heavy metal contamination and its potential ecological risk to the soil in Taiyuan, China[J]. Acta Scientiae Circumstantiae, 31(6): 1285−1293 (in Chinese with English abstract).

    [22]

    Lu Jin, Zhao Xingqing. 2017. Characteristics and ecological risk assessment of polluted soil by heavy metals in Shizishan, Tongling[J]. Environmental Chemistry, 36(9): 1958−1967 (in Chinese with English abstract).

    [23]

    Muller G. 1969. Index of geoaccumulation in sediments of the Rhine River[J]. Geological Journals, 2: 109−118.

    [24]

    Niu L L, Yang F X, Xu C, Yang H Y, Liu W P. 2013. Status of metal accumulation in farmland soils across China: From distribution to risk assessment[J]. Environmental Pollution, 176: 55−62. doi: 10.1016/j.envpol.2013.01.019

    [25]

    Pan L B, Ma J, Hu Y, Su B Y, Fang G L, Wang Y, Wang Z S, Wang L, Xiang B. 2016. Assessment of levels, potential ecological risk, an human health risk of heavy metals in the soils from a typical county in Shanxi Province, China[J]. Environment Science & Pollution Research, 23(19): 1−11.

    [26]

    Shang Erping, Xu Erqi, Zhang Hongqi, Huang Caihong. 2018. Spatial−temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China[J]. Environmental Science, 39(10): 4670−4683 (in Chinese with English abstract).

    [27]

    Song Mian, Gong Lei, Wang Yan, Tian Dazheng, Wang Xinfeng, Li Yue, Li Wei. 2022. Risk assessment of heavy metals on human health in topsoil of Fuping County, Hebei Province[J]. Rock and Mineral Analysis, 41(1): 133−144 (in Chinese with English abstract).

    [28]

    Song Wei, Chen Baiming, Liu Lin. 2013. Soil heavy metal pollution of cultivatde land in China[J]. Research of Soil and Water Conservation, 20(2): 293−298 (in Chinese with English abstract).

    [29]

    Wang Changyu, Zhang Surong, Liu Jihong, Xing Yi, Li Mingze, Liu Qingxue. 2021. Pollution level and risk assessment of heavy metals in a metal smelting area of Xiong'an New District[J]. Geology in China, 48(6): 1697−1709 (in Chinese with English abstract).

    [30]

    Wang Jie, Gong Jing, Liu Yujia, Yu Miao, Wang Weihao, Li Mengying, Xu Wumei, Xiang Ping. 2022. Ecological and health risk assessment of heavy metals in urban soils from a typical southwest capital city[J]. Journal of Light Industry[J]. Journal of Light Industry, 37(4): 118−126 (in Chinese with English abstract).

    [31]

    Wang Xikuan, Huang Zengfang, Su Meixia, Li Shibao, Wang Zhong, Zhao Suozhi, Zhang Qing. 2007. Characteristics of soil base value and background value in Hetao Area[J]. Rock and Mineral Analysis, 26(4): 287−292 (in Chinese with English abstract).

    [32]

    Wang Yue, Liu Yingxue, Li Dandan, He Rui, Wang Wei, Liu Yuexian, Lu Zhaohua, Zhang Meng. 2021. Characteristics of chromium soil pollution and health risk assessment in saline alkali farmland: A casestudy of Bincheng district, Binzhou City, Shandong Province, China[J]. Journal of Agro−Environment Science, 40(12): 2723−2732 (in Chinese with English abstract).

    [33]

    Wu Ting, Li Xiaoping, Cai Yue, Ai Yuwei, Sun Xuemeng, Yu Hongtao. 2017. Geochemical behavior and risk of heavy metals in different size lead−polluted soil particles[J]. China Environmental Science, 37(11): 4212−4221 (in Chinese with English abstract).

    [34]

    Xu Zhengqi, Ni Shijun, Tuo Xianguo, Zhang Chengjiang. 2008. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 31(2): 112−115 (in Chinese with English abstract).

    [35]

    Yang Bingxue, Fang Chen, Ma Qin, Xu Zhenbo. 2021. Health risk assessment of heavy metals pollution in farmland soils in a region of Zhejiang Province[J]. Journal of Anhui Agricultural Sciences, 49(7): 66−69 (in Chinese with English abstract).

    [36]

    Yang Ling, Tian Lei, Bai Guangyu, Pei Shengliang, Zhang Deqiang. 2022. Ecological risk assessments and source analysis of heavy metals in the soil of Xin Barag Youqi, Inner Mongolia[J]. Geology in China, 49(6): 1970−1983 (in Chinese with English abstract

    [37]

    Yu Fei, Zhang Yongwen, Yan Mingshu, Wan Rui, Zhang Fenglei, Zhong Keqiang, Zhu Haishan, Luo Kai. 2022. Heavy metal pollution and human health risks assessment of soil and crops near the mercury ore in Chongqing[J]. Environmental Chemistry, 41(2): 536−548 (in Chinese with English abstract).

    [38]

    Yu Yunjiang, Hu Linkai, Yang Yan, Che Fei, Sun Peng, Deng Fei. 2010. Pollution characteristics and ecological risk assessment of heavy metals in farmland soils of a typical basin[J]. Research of Environmental Sciences, 23(12): 1523−1527 (in Chinese with English abstract).

    [39]

    Zhang Haoyue, Liu Wenbo, Zhang Xujiao, Su Chunli. 2021. Analysis of spatial variability and influencing factors of arsenic in groundwater of Hetao Plain, Inner Mongolia[J]. Bulletin of Geological Science and Technology, 40(1): 192−108 (in Chinese with English abstract).

    [40]

    Zhang Lirui, Peng Xinbo, Ma Yanlong, Kang Le, Zhang Yane, Wang Quanling, Zhang Songlin. 2022. Risk assessment and attribution analysis of “five toxic" heavy metals in cultivated land in Lanzhou[J]. Environmental Science, 43(9): 4767−4778 (in Chinese with English abstract).

    [41]

    Zhang Xiaomin, Zhang Xiuying, Zhong Taiyang, JiangHong. 2014. Spatial distribution and accumulation of heavy metal in arable land soil of China[J]. Environmental Science, 35(2): 692−703 (in Chinese with English abstract).

    [42]

    Zhang Yaqun, Shang Tingting, Cao Suzhen, Zhao Xiuge, Ding Jieping, Zhou Jing, Wang Xiao, Zhang Fang. 2019. Characteristics of heavy metals contamination in soil and health risk assessment in Lanzhou[J]. Journal of Environment and Health, 36(11): 1019−1024 (in Chinese with English abstract).

    [43]

    Zhang Yi, Zhou Xinquan, Zeng Xiaomin, Feng Jiao, Liu Yurong. 2022. Characteristics and assessment of heavy metal contamination in soils of industrial regions in the Yangtze River economic belt[J]. Environmental Science, 43(4): 2062−2070 (in Chinese with English abstract).

    [44]

    Zhang Youwen, Han Jianhua, Tu Qi, Yang Yongan, Xu Yan, Shi Rong−guang. 2019. Accumulation characteristics and evaluation of heavy metals in suburban farmland soils of Tianjin[J]. Journal of Ecology and Rural Environment, 35(11): 1445−1452 (in Chinese with English abstract).

    [45]

    Zhao Jing, Tang Xu. 2011. Distribution of heavy metals in soils with different particle size[J]. Sichuan Environment, 30(4): 17−20 (in Chinese with English abstract).

    [46]

    Zhao Qingling, Li Qingcai, Xie Jiangkun, Li Yuanzhong, Ji Yonghong, Pang Chengbao, Wan Miao. 2015. Characteristics of soil heavy metal pollution and tts ecological risk assessment in south Jining district using methods of enrichment factor and index of geoaccumulation[J]. Rock and Mineral Analysis, 34(1): 129−137 (in Chinese with English abstract).

    [47]

    Zhou C C, Liu G J, Fang T, Wu D, Lam P K S. 2014. Partitioning andtransformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue[J]. Fuel, 135: 1−8. doi: 10.1016/j.fuel.2014.06.034

    [48]

    Zhu Danni, Zou Shengzhang, Zhou Changsong, Lu Haiping, Xie Hao. 2021. Hg and As contents of soil− crop system in different tillage types andecological health risk assessment[J]. Geology in China, 48(3): 708−720 (in Chinese with English abstract).

    [49]

    阿地拉·艾来提, 麦麦提吐尔逊·艾则孜, 靳万贵, 姑力巴努·艾尼, 艾尼瓦尔·买买提, 阿里木江·卡斯木. 2020. 新疆库尔勒市道路积尘重金属污染及健康风险评价[J]. 中国地质, 47(6): 1915−1925.

    [50]

    鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625−1636. doi: 10.12029/gc20200602

    [51]

    蔡奎, 段亚敏, 栾文楼, 李倩, 马云超. 2016. 河北平原农田土壤重金属元素Pb、Hg地球化学行为的影响因素[J]. 中国地质, 43(4): 1420−1428. doi: 10.12029/gc20160425

    [52]

    曹胜伟, 刘春雷, 李亚松, 李静, 郝奇琛, 高婕, 董岩, 陆晨明. 2022. 福建泉州湾近岸海域沉积物重金属来源分析与生态风险评价[J]. 中国地质, 49(5): 1481−1496. doi: 10.12029/gc20220508

    [53]

    陈继平, 钞中东, 任蕊, 罗婷, 晁旭, 张志敏, 乔新星. 2021. 陕西关中富硒土壤区农作物重金属含量相关性及安全性评价[J]. 西北地质, 54(2): 273−281.

    [54]

    方晴, 冼萍, 蒙政成. 2021. 基于蒙特卡罗模拟的农用地土壤健康风险评价[J]. 环境工程, 39(2): 147−152.

    [55]

    郭华明, 倪萍, 贾永锋, 张波, 张扬. 2015. 内蒙古河套盆地地表水−浅层地下水化学特征及成因[J]. 现代地质, 29(2): 229−237 doi: 10.3969/j.issn.1000-8527.2015.02.001

    [56]

    郭俊刚, 赵恒勤, 卞孝东, 孙晓艳. 2021. 江西于都某钨矿区土壤重金属特征及生态风险评价[J]. 地质通报, 40(7): 1195−1202.

    [57]

    郭笑笑, 刘丛强, 朱兆洲, 王中良, 李军. 2011. 土壤重金属污染评价方法[J]. 生态学杂志, 30(5): 889−896.

    [58]

    雷佩玉, 郑晶利, 贾茹, 孟昭伟. 2022. 2020年陕西省农村饮用水典型类金属及重金属健康风险评估[J]. 卫生研究, 51(1): 45−50.

    [59]

    李文鹏, 史小龙, 刘建章, 陈爽, 蔡奎, 宋泽峰, 田浩飞. 2024. 工业区周边农田土壤重金属与黏土矿物的关系及其生态健康风险评价[J]. 中国地质, 51(5):1513−1526.

    [60]

    李一蒙, 马建华, 刘德新, 孙艳丽, 陈彦芳. 2015. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 36(3): 1037−1044.

    [61]

    梁帅, 戴慧敏, 张广阳, 刘凯, 翟富荣, 李秋燕, 魏明辉. 2023. 内蒙古赤峰锡伯河流域土壤−中药材系统中的重金属元素——含量分布特征及生态效应评价[J]. 地质与资源, 32(6): 779−788.

    [62]

    林荩, 梁文静, 焦旸, 杨莉, 范亚宁, 田涛, 刘晓萌. 2021. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 48(3): 749−763. doi: 10.12029/gc20210306

    [63]

    刘君, 王莹, 卫文, 张琳, 刘福亮. 2017. 利用稳定同位素方法识别内蒙古佘太盆地地下水补给来源[J]. 水文, 37(1): 51−55. doi: 10.3969/j.issn.1000-0852.2017.01.009

    [64]

    刘瑞雪, 乔冬云, 王萍, 安毅, 霍莉莉. 2019. 湘潭县农田土壤重金属污染及生态风险评价[J]. 农业环境科学学报, 38(7): 1523−1530. doi: 10.11654/jaes.2018-1491

    [65]

    刘同, 刘传朋, 邓俊, 康鹏宇, 王凯凯, 赵玉岩. 2022. 山东省沂南县东部土壤重金属生态健康风险评价[J]. 中国地质, 49(5): 1497−1508. doi: 10.12029/gc20220509

    [66]

    刘勇, 岳玲玲, 李晋昌. 2011. 太原市土壤重金属污染及其潜在生态风险评价[J]. 环境科学学报, 31(6): 1285−1293.

    [67]

    陆金, 赵兴青. 2017. 铜陵狮子山矿区土壤重金属污染特征及生态风险评价[J]. 环境化学, 36(9): 1958−1967. doi: 10.7524/j.issn.0254-6108.2017010304

    [68]

    尚二萍, 许尔琪, 张红旗, 黄彩红. 2018. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学, 39(10): 4670−4683

    [69]

    宋绵, 龚磊, 王艳, 田大争, 王新峰, 李跃, 李伟. 2022. 河北阜平县表层土壤重金属对人体健康的风险评估[J]. 岩矿测试, 41(1): 133−144. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201013

    [70]

    宋伟, 陈百明, 刘琳. 2013. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 20(2): 293−298.

    [71]

    汪洁, 龚竞, 刘雨佳, 于淼, 王炜皓, 李梦莹, 徐武美, 向萍. 2022. 昆明市土壤重金属的生态与健康风险评价[J]. 轻工学报, 37(4): 118−126 doi: 10.12187/2022.04.016

    [72]

    王昌宇, 张素荣, 刘继红, 邢怡, 李名则, 刘庆学. 2021. 雄安新区某金属冶炼区土壤重金属污染程度及风险评价[J]. 中国地质, 48(6): 1697−1709. doi: 10.12029/gc20210603

    [73]

    王喜宽, 黄增芳, 苏美霞, 李世宝, 王忠, 赵锁志, 张青. 2007. 河套地区土壤基准值及背景值特征[J]. 岩矿测试, 26(4): 287−292. doi: 10.3969/j.issn.0254-5357.2007.04.008

    [74]

    王玥, 刘莹雪, 李丹丹, 何睿, 王伟, 刘月仙, 陆兆华, 张萌. 2021. 盐碱农田土壤铬污染特征及健康风险评价—以山东省滨州市滨城区为例[J]. 农业环境科学学报, 40(12): 2723−2732. doi: 10.11654/jaes.2021-0415

    [75]

    吴婷, 李小平, 蔡月, 艾雨为, 孙薛梦, Hongtao Yu. 2017. 铅污染不同粒径土壤的重金属地球化学行为与风险[J]. 中国环境科学, 37(11): 4212−4221. doi: 10.3969/j.issn.1000-6923.2017.11.026

    [76]

    徐争启, 倪师军, 庹先国, 张成江. 2008. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 31(2): 112−115. doi: 10.3969/j.issn.1003-6504.2008.02.030

    [77]

    杨冰雪, 方晨, 马勤, 许振波. 2021. 浙江省某地区农田土壤重金属污染的健康风险评价[J]. 安徽农业科学, 49(7): 66−69. doi: 10.3969/j.issn.0517-6611.2021.07.018

    [78]

    杨玲, 田磊, 白光宇, 裴圣良, 张德强. 2022. 内蒙古新巴尔虎右旗土壤重金属生态风险与来源分析[J]. 中国地质, 49(6): 1970−1983. doi: 10.12029/gc20220619

    [79]

    余飞, 张永文, 严明书, 王锐, 张风雷, 钟克强, 朱海山, 罗凯. 2022. 重庆汞矿区耕地土壤和农作物重金属污染状况及健康风险评价[J]. 环境化学, 41(2): 1−13. doi: 10.7524/j.issn.0254-6108.2020101302

    [80]

    于云江, 胡林凯, 杨彦, 车飞, 孙朋, 邓飞. 2010. 典型流域农田重金属污染特征及生态风险评价[J]. 环境科学研究, 23(12): 1523−1527.

    [81]

    张皓月, 刘文波, 张绪教, 苏春利. 2021. 河套平原地下水中砷的空间变异特征及影响因素分析[J]. 地质科技通报, 40(1): 192−108.

    [82]

    张利瑞, 彭鑫波, 马延龙, 康乐, 张妍娥, 王泉灵, 张松林. 2022. 兰州市耕地“五毒”重金属的风险评价与归因分析[J]. 环境科学, 43(9): 4767−4778.

    [83]

    张小敏, 张秀英, 钟太洋, 江洪. 2014. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 35(2): 692−703.

    [84]

    张亚群, 尚婷婷, 曹素珍, 赵秀阁, 丁杰萍, 周静, 王潇, 张昉. 2019. 兰州市土壤重金属污染特征及其健康风险评价[J]. 环境与健康杂志, 36(11): 1019−1024.

    [85]

    张义, 周心劝, 曾晓敏, 冯娇, 刘玉荣. 2022. 长江经济带工业区土壤重金属污染特征与评价[J]. 环境科学, 43(4): 2062−2070

    [86]

    张又文, 韩建华, 涂棋, 杨永安, 徐艳, 师荣光. 2019. 天津市郊农田土壤重金属积累特征及评价[J]. 生态与农村环境学报, 35(11): 1445−1452.

    [87]

    赵晶, 汤旭. 2011. 不同粒径土壤中重金属的分布规律[J]. 四川环境, 30(4): 17−20. doi: 10.3969/j.issn.1001-3644.2011.04.005

    [88]

    赵庆令, 李清彩, 谢江坤, 李元仲, 姬永红, 庞成宝, 万淼. 2015. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价[J]. 岩矿测试, 34(1): 129−137

    [89]

    朱丹尼, 邹胜章, 周长松, 卢海平, 谢浩. 2021. 不同耕作类型下土壤−农作物系统中汞、砷含量与生态健康风险评价[J]. 中国地质, 48(3): 708−720. doi: 10.12029/gc20210303

  • 加载中

(5)

(10)

计量
  • 文章访问数:  284
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2022-03-02
修回日期:  2022-06-07
刊出日期:  2024-09-25

目录