中国地质调查局 中国地质科学院主办
科学出版社出版

龙门山冲断带中—新生代隆升及扩展的热年代学证据

金文正, 王善民, 白万奎, 叶治续. 2025. 龙门山冲断带中—新生代隆升及扩展的热年代学证据[J]. 中国地质, 52(4): 1528-1542. doi: 10.12029/gc20220306001
引用本文: 金文正, 王善民, 白万奎, 叶治续. 2025. 龙门山冲断带中—新生代隆升及扩展的热年代学证据[J]. 中国地质, 52(4): 1528-1542. doi: 10.12029/gc20220306001
JIN Wenzheng, WANG Shanmin, BAI Wankui, YE Zhixu. 2025. Thermochronology of the Meso–Cenozoic uplift and tectonic growth of the Longmenshan Thrust Belt[J]. Geology in China, 52(4): 1528-1542. doi: 10.12029/gc20220306001
Citation: JIN Wenzheng, WANG Shanmin, BAI Wankui, YE Zhixu. 2025. Thermochronology of the Meso–Cenozoic uplift and tectonic growth of the Longmenshan Thrust Belt[J]. Geology in China, 52(4): 1528-1542. doi: 10.12029/gc20220306001

龙门山冲断带中—新生代隆升及扩展的热年代学证据

  • 基金项目: 国家自然科学基金项目“龙门山冲断带构造分段变形机制研究”(41002072)、云南省科技计划项目“云南省中深层地热能开发利用关键技术研究”(202302AF080001)和油气资源与工程全国重点实验室开放课题基金“川北碧口地块中生代以来构造隆升的热年代学研究”(PRP/open-1307)联合资助。
详细信息
    作者简介: 金文正,男,1978年生,博士,讲师,主要从事油气地质和含油气盆地分析专业方向研究工作;E-mail:jwz@cugb.edu.cn
  • 中图分类号: P542

Thermochronology of the Meso–Cenozoic uplift and tectonic growth of the Longmenshan Thrust Belt

  • Fund Project: Supported by National Natural Science Foundation of China “Study on the Mechanism of Structural Segmental Deformation in Longmenshan Thrust Belt” (No.41002072), Yunnan Province Science and Technology Plan “Research on Key Technologies for the Development and Utilization of Medium to Deep Geothermal Energy in Yunnan Province” (No. 202302AF080001), Open Fund of the State Key Laboratory of Oil and Gas Resources and Exploration “Thermochronological study on tectonic uplift of Bikou block since Mesozoic in northern Sichuan”(No.PRP/open-1307).
More Information
    Author Bio: JIN Wenzheng, male, born in 1978, doctor, lecturer, mainly engaged in research of petroleum geology and basin analysis; E-mail: jwz@cugb.edu.cn .
  • 研究目的

    为探讨龙门山冲断带中—新生代垂向构造隆升与横向构造扩展之间的关系,本文开展了低温热年代学测试及分析工作。

    研究方法

    通过磷灰石和锆石裂变径迹测定及结果分析,剖析构造隆升演化特征。

    研究结果

    磷灰石裂变径迹长度介于(11.4±2.6)~(12.2±2.2) μm,有效反映本地构造隆升史;热史模拟结果表明本地区样品经历了“构造快速隆升期—构造稳定期—构造快速隆升期”三个阶段,且构造隆升具有北早南晚的特征;研究区内各岩石样品冷却速率介于1.211~6.053 ℃/Ma,自南东向北西构造隆升速率逐渐增加,构造隆升时间逐渐变晚。

    结论

    龙门山冲断带在中—新生代(150 Ma)以来表现出后展式扩展,此后分别在晚白垩世—始新世(70~50 Ma)和渐新世以来(约20 Ma),又再次表现为后展式特征,龙门山冲断带中西部地区具有多期构造隆升叠加的特征。

  • 加载中
  • 图 1  研究区地质图和年龄数据分布图(a)、区域构造位置图(b)及磷灰石和锆石裂变径迹取样位置剖面(c)

    Figure 1. 

    图 2  磷灰石和锆石单颗粒年龄放射图

    Figure 2. 

    图 3  研究区样品热史模拟图

    Figure 3. 

    图 4  两种冷却速率计算原理对比图

    Figure 4. 

    图 5  磷灰石和锆石冷却速率对比图

    Figure 5. 

    图 6  裂变径迹年龄与海拔关系对比图

    Figure 6. 

    表 1  岩石样品位置、岩性及所属地层

    Table 1.  Sample locations, lithology and stratum of rock samples

    样品号 海拔/m 经度 纬度 岩性 地层
    B1 510 E105°50.9674′ N32°28.8581′ 砂岩 J(侏罗系)
    B2 502 E105°51.0681′ N32°30.0785′ 砂岩 T3(上三叠统)
    B28 630 E105°28.3507′ N32°40.7565′ 砾岩 E(古近系)
    B33 948 E105°26.8822′ N32°20.1112′ 砂岩 T3(上三叠统)
    B34 597 E105°16.6763′ N32°17.4941′ 砂岩 D2(中泥盆统)
    B36 868 E104°31.5042′ N32°25.2379′ 砂岩 D2(中泥盆统)
    B37 750 E104°44.9799′ N32°18.3751′ 砂岩 1(下寒武统)
    B38 676 E104°47.9201′ N32°10.2420′ 粉砂岩 1(下寒武统)
    B46 529 E104°41.3768′ N31°42.0479′ 粉砂岩 K1(下白垩统)
    Z1 613 E103°32.0622′ N30°41.3491′ 粉砂岩 K(白垩系)
    Z2 894 E103°28.5814′ N30°59.1777′ 砂岩 T3(上三叠统)
    Z5 1368 E103°34.2993′ N31°30.0655′ 砂岩 S(志留系)
    Z7 2234 E102°58.3640′ N31°30.0724′ 灰岩 T3(上三叠统)
    Z16 1858 E103°44.0767′ N32°07.8980′ 板岩 S(志留系)
    Z23 938 E104°06.5794′ N31°34.0174′ 灰岩 Z(震旦系)
    Z24 768 E104°08.8564′ N31°29.5380′ 砂岩 T1(下三叠统)
    Z26 737 E104°01.2653′ N31°18.4734′ 砂岩 J(侏罗系)
    下载: 导出CSV

    表 2  磷灰石裂变径迹分析结果

    Table 2.  Results of apatite fission track

    样品号 颗粒数/n ρs/(105/cm2)
    (Ns)
    ρi/(105/cm2)
    (Ni)
    ρd/(105/cm2)
    (Nd)
    P2)/
    %
    中值年龄/
    Ma (±1σ)
    池年龄/
    Ma(±1σ)
    铀含量/
    10−6
    径迹长度/
    μm(N)
    B2 28 4.229(673) 11.75(1870) 9.359(7380) 45.8 66±4.7 65±4.3 14.51 12.2±2.2(125)
    B28 11 0.65(47) 4.243(307) 15.379(7380) 82.8 45±7.7 45±7.4 3.87 ——
    B33 7 3.505(82) 15.345(359) 15.774(7380) 47.9 70±9.3 69±9.1 12.48 11.7±1.6(10)
    B38 28 0.647(29) 9.816(440) 14.392(7380) 49.3 19±3.9 18±3.6 7.92 ——
    B46 28 2.89(433) 12.923(1936) 13.889(7380) 0 60±5.9 60±4.3 11.11 12.2±1.9(100)
    Z1 27 3.951(600) 18.463(2804) 12.077(5782) 14.7 52±4 53±3 20.49 12.1±1.9(106)
    Z2 31 1.266(158) 18.832(2351) 12.962(5782) 98.8 18±2 18±2 18.06 12.0±2.1(53)
    Z5 36 0.133(26) 2.343(459) 13.552(5782) 57.1 17±4 16±3 2.93 ——
    Z24 21 4.845(361) 18.078(1347) 10.896(5782) 0.1 50±6 60±4 21.75 11.4±2.6(54)
    Z26 29 2.781(395) 15.798(2244) 12.667(5782) 0 41±5 46±3 18.06 11.7±2.4(105)
    下载: 导出CSV

    表 3  锆石裂变径迹分析结果

    Table 3.  Results of zircon fission track

    样品号 颗粒数/n ρs/(105/cm2)
    (Ns)
    ρi/(105/cm2)
    (Ni)
    ρd/(105/cm2)
    (Nd)
    P2)/
    %
    中值年龄/
    Ma(±1σ)
    池年龄/
    Ma(±1σ)
    铀含量/
    10−6
    B1 22 133.396(4183) 40.341(1265) 10.905(8136) 3.4 154±8 154±7 134.27
    B2 25 133.022(6878) 43.361(2242) 10.68(8136) 0 142±9 140±6 148.66
    B28 25 69.847(3330) 32.763(1562) 14.619(8136) 9.3 132±7 133±6 84.27
    B33 26 108.127(4783) 22.652(1002) 13.944(8136) 7.3 280±15 281±14 62.53
    B34 24 95.484(3501) 29.237(1072) 13.719(8136) 18.1 191±10 190±9 83.99
    B36 26 103.047(3049) 44.578(1319) 13.268(8136) 31.2 131±6 131±6 128.51
    B37 5 124.06(500) 67.985(274) 13.099(8136) 17.2 102±10 102±8 350.02
    B38 23 133.445(3122) 50.95(1192) 12.921(8136) 0 145±9 144±7 145.33
    B46 23 108.49(3402) 45.156(1416) 14.394(8136) 24.5 148±7 147±7 120.38
    Z1 14 137.91(1559) 58.384(660) 12.568(7846) 82.9 142±9 142±9 181.53
    Z2 27 144.277(4198) 64.131(1866) 13.1247846) 5.8 142±7 141±7 187.72
    Z5 7 95.872(311) 89.399(290) 14.792(7846) 36.0 76±7 76±7 221.44
    Z7 4 52.177318) 81.219(495) 15.348(7846) 0 38±18 48±4 194.97
    Z16 3 128.179(252) 80.875(159) 12.985(7846) 46.8 99±11 99±11 213.51
    Z23 15 178.962(2199) 83.499(1026) 14.236(7846) 47.0 146±8 146±8 205.22
    Z24 16 156.288(2581) 64.852(1071) 14.792(7846) 48.3 170±9 170±9 154.72
    Z26 28 152.666(4262) 64.512(1801) 15.904(7846) 8.1 179±9 180±9 155.86
      注:n为测试的颗粒数;ρs为自发径迹密度;Ns为自发径迹数量;ρi为外探测器诱发径迹密度;Ni为外探测器诱发径迹数量;ρd为标准玻璃的诱发径迹密度;Nd为标准玻璃的诱发径迹数量;P2)是在自由度为(Nc−1)时得到的χ2值的概率。
    下载: 导出CSV

    表 4  裂变径迹年龄分解结果

    Table 4.  Decomposed results of fission track age

    样品号 年龄类型 较年轻的峰年龄/Ma
    (所占比例)
    较老的峰年龄/Ma
    (所占比例)
    B46 磷灰石 6.1±3.7(3.7%±3.6%) 63.7±4.6(96.3%±3.6%)
    Z24 磷灰石 40.1±4.7(68%±15%) 78.4±7.1(32%±15%)
    Z26 磷灰石 28.2±3(65%±12%) 72±6.5(35%±12%)
    B1 锆石 131±10(38%±20%) 172±12(62%±20%)
    B2 锆石 108.8±6.6(36%±12%) 166.4±8.5(64%±12%)
    B38 锆石 109.1±9.6(30%±14%) 166±10(70%±14%)
    Z7 锆石 20.6±2.3(75%±22%) 156±20(25%±22%)
    下载: 导出CSV

    表 5  热史模拟方法获得的样品冷却速率参数

    Table 5.  Parameters for the sample cooling rate by thermal history simulation

    样品号 阶段划分 冷却阶段/Ma 温度区间/℃ 冷却速率/(℃/Ma)
    B2 I 149~137 148~103 3.750
    II 137~43 103~75 0.298
    III 43~0 75~20 1.279
    B33 I 150~77 150~72 1.068
    II 77~5 72~55 0.236
    III 5~0 55~20 7.000
    B46 I 148~103 148~85 1.400
    II 103~20 85~52 0.398
    III 20~0 52~20 1.600
    Z1 I 149~100 150~58 1.878
    II 100~36 58~45 0.203
    III 36~0 45~0 1.250
    Z2 I 100~46 149~72 1.426
    II 46~7 72~48 0.615
    III 7~0 48~20 4.000
    下载: 导出CSV

    表 6  磷灰石裂变径迹年龄—封闭温度方法计算的样品冷却速率

    Table 6.  Parameters for calculating the sample cooling rate by apatite fission track age closure temperature

    样品号 年龄差值/Ma 冷却阶段/Ma 冷却速率/(℃/Ma)
    B2 65 65~0 1.538
    B28 45 45~0 2.222
    B33 69 69~0 1.449
    B38 18 18~0 5.556
    B46 60 60~0 1.667
    Z1 53 53~0 1.887
    Z2 18 18~0 5.556
    Z5 16 16~0 6.250
    Z24 50 50~0 2.000
    Z26 41 41~0 2.439
      注:磷灰石退火温度为120℃,现今地表温度20℃。
    下载: 导出CSV

    表 7  锆石裂变径迹年龄—封闭温度方法计算的样品冷却速率

    Table 7.  Parameters for calculating the sample cooling rate by zircon fission track age closure temperature

    样品号 年龄差值/Ma 冷却阶段/Ma 冷却速率/(℃/Ma)
    B1 154 154~0 1.494
    B2 142 142~0 1.620
    B34 190 190~0 1.211
    B36 131 131~0 1.756
    B37 102 102~0 2.255
    B38 145 145~0 1.586
    Z1 142 142~0 1.620
    Z2 141 141~0 1.631
    Z5 76 76~0 3.026
    Z7 38 38~0 6.053
    Z16 99 99~0 2.323
    Z23 146 146~0 1.575
    Z24 170 170~0 1.353
    Z26 180 180~0 1.278
      注:锆石退火温度为250℃,现今地表温度20℃。
    下载: 导出CSV
  • [1]

    Bai Mingkun, Chevalier M L, Li Haibing, Pan Jiawei, Wu Qiong, Wang Shiguang, Liu Fucai, Jiao Liqing, Zhang Jinjiang, Zhang Lei, Gong Zheng. 2022. Late Quaternary slip rate and earthquake hazard along the Qianning segment, Xianshuihe fault[J]. Acta Geologica Sinica, 96(7): 2312−2332 (in Chinese with English abstract).

    [2]

    Brandon M T. 1996. Probability density plot for fission–track grain–age samples[J]. Radiation Measurements, 26: 663−676. doi: 10.1016/S1350-4487(97)82880-6

    [3]

    Burchfiel B C, Chen Zhiliang, Liu Yuping, Royden L H. 1995. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 37: 661−735. doi: 10.1080/00206819509465424

    [4]

    Chen Hongde, Liu Lei, Lin Liangbiao, Wang Xinglong, Wang Zhiwei, Yu Yu, Zeng Jian, Li Pengwei. 2021. Depositional responses of Xujiahe Formation to the uplifting of Longmenshan during the Late Triassic, western Sichuan Depression[J]. Oil & Gas Geology, 42(4): 801−815 (in Chinese with English abstract).

    [5]

    Chen Zhuxin, Jia Dong, Zhang Qie, Wei Guoqi, Li Benliang, Wei Dongtao, Shen Yang. 2005. Balanced cross–section analysis of the fold–thrust belt of the Longmen Mountains[J]. Acta Geologica Sinica, 79(1): 38−45 (in Chinese with English abstract).

    [6]

    Cook K L, Royyden L H, Burchfiel B C, Lee Y H, Tan X. 2013. Constraints on Cenozoic tectonics in the southwestern Longmen Shan from low–temperature thermochronology[J]. Lithosphere, 5(4): 393−406. doi: 10.1130/L263.1

    [7]

    Deng Bin, He Yu, Huang Jiaqiang, Yang Rongjun, Zhou Zheng, Lai Dong, Luo Qiang, Zheng Wenxin, Li Zhiwu, Liu Shugen. 2019. Eastward growth of the Longmenshan fold–and–thrust belt: Evidence from the low temperature thermochronometer model[J]. Acta Geologica Sinica, 93(7): 1588−1600 (in Chinese with English abstract).

    [8]

    Deng Bin, Liu Shugen, Li Zhiwu, Liu Shun. 2009. Uplifting characteristics in eastern margin area of Tibetan Plateau: Evidence from low temperature thermochronology[J]. Quaternary Sciences, 29(3): 574−585 (in Chinese with English abstract).

    [9]

    Fan Saihua, Xie Hui, Li Binwen, Liu Yuan, Li Weiping, Xu Weina, Zhao Hu, Mou Lei. 2022. Controlling effect of Shaximiao Formation fault on gas accumulation in eastern slope area of western Sichuan Depression[J]. Geology in China, 49(4): 1275−1284 (in Chinese with English abstract).

    [10]

    Fan Zenghui, Liu Shugen, Fan Cunhui, Hu Linhui, Li Wenjia, Mi Hong, Han Chong, Han Xiaojun. 2018. Analysis of typical seismic profile and balanced cross–section recovery and tectonic evolution in the Longmenshan fold–thrust belt[J]. Geological Review, 64(2): 347−360 (in Chinese with English abstract).

    [11]

    Ge Chenglong, Li Haibing, Leloup P H, Zhang Lei, Zheng Yong, Liu Dongliang, Fellah C, Ye Xiaozhou, Zhang Jinjiang. 2025. Ductile deformation of Wenchuan-Maoxian fault constrain the early uplift of Longmen shan belt[J]. Acta Geologica Sinica, 99(4): 1134−1149 (in Chinese with English abstract).

    [12]

    Ge Jiacheng, Jia Dong, Yin Hongwei, Yan Bing, Chen Zhuxin, Fan Xiaogen, Yang Shuang, Cui Jian, Zhong Cheng. 2023. Physical analogue modeling research on the relationship between Longmenshan fault zone and Longriba fault zone[J]. Geological Journal of China Universities, 29(4): 617−629 (in Chinese with English abstract).

    [13]

    Guo Xusheng. 2010. Litho–paleogeographic evolution in the middle–late Triassic in western Sichuan Province and its significance for petroleum exploration[J]. Oil & Gas Geology, 31(5): 610−620 (in Chinese with English abstract).

    [14]

    Hong Haitao, Tian Xingwang, Sun Yiting, Ma Kui, Li Geng, Wang Yunlong, Yang Dailin, Peng Hanlin, Luo Bing, Zhou Gang, Xue Jiuhuo, Ye Mao, Shan Shujiao. 2020. Hydrocarbon enrichment regularity of marine carbonate in Sichuan Basin[J]. Geology in China, 47(1): 99−110 (in Chinese with English abstract).

    [15]

    Hurford A J, Gleadow A J W. 1977. Calibration of fission track dating parameters[J]. Nuclear Track Detection, 1: 41−48. doi: 10.1016/0145-224X(77)90022-9

    [16]

    Jia D, Li Y Q, Yan B, Li Z G, Wang M M, Chen Z X, Zhang Y. 2020. The Cenozoic thrusting sequence of the Longmen Shan fold–and–thrust belt, eastern margin of the Tibetan plateau: Insights from low temperature thermochronology[J]. Journal of Asian Earth Sciences, 198: 104381. doi: 10.1016/j.jseaes.2020.104381

    [17]

    Jia Qiupeng, Jia Dong, Zhu Ailan, Chen Zhuxin, Hu Qianwei, Luo Liang, Zhang Yuanyuan, Li Yiquan. 2007. Active tectonics in the Longmen thrust belt to the eastern Qinghai–Tibetan Plateau and Sichuan Basin: Evidence from topography and seismicity[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 42(1): 31−44 (in Chinese with English abstract).

    [18]

    Jin Wenzheng, Wan Guimei, Cui Zehong, Wang Junpeng, Yang Xiaoqun, Bai Wankui. 2012. Key tectonic change epoch and hydrocarbon accumulation periods of continental clastic reservoir in Sichuan Basin[J]. Fault–Block Oil & Gas Field, 19(3): 273−277 (in Chinese with English abstract).

    [19]

    Ketcham R A. 2005. Forward and inverse modeling of low–temperature thermochronometry data[J]. Reviews in Mineralogy & Geochemistry, 58: 275−314.

    [20]

    Laslett G M, Green P F, Duddy I R, Gleadow A J W. 1987. Thermal annealing of fission tracks in apatite; 2: A quantitative analysis[J]. Chemical Geology (Isotope Geoscience Section), 65: 1−13. doi: 10.1016/0168-9622(87)90057-1

    [21]

    Li M, Tang L J, Yuan W M. 2015. Middle Miocene–Pliocene activities of the north Altyn fault system: Evidence from apatite fission track data[J]. Arabian Journal of Geosciences, 8: 9043−9054. doi: 10.1007/s12517-015-1873-9

    [22]

    Li Yuhang. 2018. A Study on the Lateral Spreading Movement of the Northeastern Tibetan Plateau[D]. Beijing: Institute of Geology, China Earthquake Administration, 1–127 (in Chinese with English abstract

    [23]

    Lin Jinrong, Hu Zhihua, Tao Yi, Wang Yongjian, Wang Feng. 2019. The response of zircon fission track age on the metallogenic thermal events of Zoujiashan uranium deposit in Xiangshan orefield[J]. Uranium Geology, 35(4): 193−198 (in Chinese with English abstract).

    [24]

    Lin Xiaohan, Yan Danping, Qiu Liang, Zhou Zhicheng, Song Huajie, Kong Fei, Du Chao. 2025. Structural and (U-Th)/He thermochronological constraints on the Longmen shan thrusting-gliding klippes, eastern margin of Tibetan Plateau[J]. Science China Earth Sciences, 68(4): 1142−1157. doi: 10.1007/s11430-024-1518-y

    [25]

    Liu Fangbin. 2021. Thermochronological Constraints on Cenozoic Exfoliation History in the Southeast Margin of the Qinghai–Tibet Plateau: A Case Study of Lincang Granite Area[D]. Lanzhou: Lanzhou University, 1–220 (in Chinese with English abstract).

    [26]

    Liu He, Yan Danping, Wei Guoping. 2008. Deformation and metamorphism sequence of Bikou terrane in the northwest margin of Yangtze plate: Implications for extension collapse and transition of Songpan–Garze orogenic belt[J]. Acta Geologica Sinica, 82(4): 464−474 (in Chinese with English abstract).

    [27]

    Liu Shugen, Deng Bin, Li Zhiwu, Luba Jansa, Liu Shun, Wang Guozhi, Sun Wei. 2013. Geological evolution of the Longmenshan intracontinental composite orogen and the eastern margin of the Tibetan plateau[J]. Journal of Earth Science, 6: 874−890.

    [28]

    Liu Shugen, Li Zhiwu, Kamp P J J, Ran Bo, Li Jinxi, Deng Bin, Wang Guozhi, Xu Ganqing, Danisik M, Yang Di, Wang Zijian, Li Xianghui, Liu Shun, Li Juchu. 2019. Discovery of the Mesozoic Zoige paleo–plateau in eastern Tibetan plateau and its geological significance[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 46(1): 1–28 (in Chinese with English abstract).

    [29]

    Luo Meng, Zhu Wenbin, Zheng Bihai, Zhu Xiaoqing. 2012. Mesozoic–Cenozoic tectonic evolution of the Kuqa basin: Evidence from apatite fission–track data[J]. Earth Science–Journal of China University of Geosciences, 37(5): 893−902 (in Chinese with English abstract).

    [30]

    Shen Chuanbo, Mei Lianfu, Liu Zhaoqian, Xu Sihuang. 2009. Apatite and zircon fission track data, evidences for the Mesozoic–Cenozoic uplift of Huangling dome, central China[J]. Journal of Mineralogy and Petrology, 29(2): 54−60 (in Chinese with English abstract).

    [31]

    Su Zhe, Wang E, Wang Gang, Fan Chun. 2016. GPS strain rate and seismic activity before the Ludian earthquake (Ms 6.5), northeast Yunnan, China: New implications for eastward Chuan–Dian block extrusion[J]. Terrestrial Atmospheric and Oceanic Sciences, 27(6): 837−851. doi: 10.3319/TAO.2016.02.15.01(TT)

    [32]

    Sun Lijing, Zhao Zhongbao, Pan Jiawei, Liang Fenghua, Zhang Lei, Zhang Jinjiang. 2021. The stress and strain state of Yalahe fault in the Kangding segment of the Xianshuihe fault zone and its seismogenic environment[J]. Acta Petrologica Sinica, 37(10): 3225−3240 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.10.15

    [33]

    Tan Xibin, Li Yuanxi, Xu Xiwei, Chen Wenyu, Xu Chong, Yu Guihua. 2013. Cenozoic fault activity of the southern segment of the Longmenshan thrust belt: Evidence from low–temperature thermochronology data[J]. Seismology and Geology, 35(3): 506−517 (in Chinese with English abstract).

    [34]

    Tan Xibin, Xu Xiwei, Li Yuanxi, Yuan Renmao, Yu Guihua, Xu Chong. 2015. Differential Late–Cenozoic vertical motions of the Beichuan–Yingxiu fault and the Jiangyou–Guanxian fault in the central Longmenshan range and their tectonic implications[J]. Chinese Journal of Geophysics, 58(1): 143−152 (in Chinese with English abstract).

    [35]

    Tang Y, Qin Y D, Gong X D, Duan Y Y Chen G, Yao H Y, Liao J X, Liao S Y, Wang D B, Wang B D. 2020. Discovery of eclogites in Jinsha River suture zone, Gonjo county, eastern Tibet and its restriction on Paleo–Tethyan evolution[J]. China Geology, 3(1): 83−103. doi: 10.31035/cg2020003

    [36]

    Tang Yuan, Wang Peng, Deng Hong, Liu Yuping, Tang Wenqing. 2022. Petrological records of major tectono–magmatic events since Oligocene in the southeastern segment of Xianshuihe fault zone in the eastern margin of Tibetan plateau[J]. Geological Bulletin of China, 41(7): 1121−1143 (in Chinese with English abstract).

    [37]

    Tao Yaling. 2021. Cenozoic Uplift and Exhumation of the Yalong River Thrust Belt on the Eastern Margin of the Qinghai Tibet Plateau and its Implications for Plateau Expansion[D]. Beijing: Institute of Geology, China Earthquake Administration, 1−143 (in Chinese with English abstract).

    [38]

    Tao Yaling, Zhang Huiping, Ge Yukui, Pang Jianzhang, Yu Jingxing, Zhang Jiawei, Zhao Xudong, Ma Zifa. 2020. Cenozoic exhumation and fault activities across the eastern Tibet: Constraints from low–temperature thermochronological data[J]. Chinese Journal of Geophysics, 63(11): 4154−4167 (in Chinese with English abstract).

    [39]

    Tian Y T, Kohn B P, Gleadow A J W, Hu S B. 2013. Constructing the Longmen Shan eastern Tibetan Plateau margin: Insights from low–temperature thermochronology[J]. Tectonics, 32: 576−592. doi: 10.1002/tect.20043

    [40]

    Tian Y T, Li R, Tang Y, Xu X, Wang Y J, Zhang P Z. 2018. Thermochronological constraints on the Late Cenozoic morphotectonic evolution of the Min Shan, the eastern margin of the Tibetan plateau[J]. Tectonics, 37: 1733−1749. doi: 10.1029/2017TC004868

    [41]

    Tian Y T, Liu Y M, Li R, Sun X L, Zhang Z J, Carter A, Vermeesch P. 2022. Thermochronological constraints on Eocene deformation regime in the Longmenshan: Implications for the eastward growth of the Tibetan plateau[J]. Global and Planetary Change, 21: 103930.

    [42]

    Tian Yuntao, Yao Xinbo, Zhang Guihong, Pan Lili, Liu Yimin, Maimaiti R, Yuan Zhihuang, Li Bojiang, Zhang Zengjie, Zhang Jinjiang, Xiao Wenjiao. 2024. Thermochronometric diagnostics on the tectonic architecture of compressional deformation belts[J]. Chinese Science Bulletin, 69(18): 2518−2533 (in Chinese with English abstract

    [43]

    Tian Yuntao, Yuan Yusong, Hu Shengbiao. 2009. New progress in apatite fission track analysis[J]. Progress in Geophisics, 24(3): 909−920 (in Chinese with English abstract).

    [44]

    Tian Yuntao, Zhu Chuanqing, Xu Ming, Rao Song, Barry P K, Hu Shengbiao. 2011. Post–early Cretaceous denudation history of the northeastern Sichuan Basin: Constraints from low–temperature thermochronology profiles[J]. Chinese Journal of Geophysics, 54(3): 807−816 (in Chinese with English abstract).

    [45]

    Wagner G A, van den Haute P. 1992. Fission Track Dating[M]. Dordrecht: Kluwer Academic Publisher.

    [46]

    Wang E. 2017. Timing of the initial collision between the Indian and Asian continents[J]. Science China Earth Sciences, 60(4): 626−634. doi: 10.1007/s11430-016-5136-3

    [47]

    Wang E, Kirby E, Furlong K P, Soest M V, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two–phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 5: 640−645. doi: 10.1038/ngeo1538

    [48]

    Wang Erqi, Meng Qingren. 2008. Discussion on the Mesozoic and Cenozoic tectonic evolution of Longmenshan[J]. Science China (Earth Sciences), 38(10): 1221−1233 (in Chinese).

    [49]

    Wang Erqi, Su Zhe, Xu Guang. 2009. A case study on lateral extrusion occurred along some orogenic belts in China[J]. Chinese Journal of Geology, 44(4): 1266−1288 (in Chinese with English abstract).

    [50]

    Wang Erqi, Meng Kai, Xu Guang, Fan Chun, Su Zhe. 2018. Cenozoic two–stage obduction of the Indian subcontinent: On the interaction between the Indian Ocean, Tethyan and Eurasian plates[J]. Acta Petrologica Sinica, 34(7): 1867−1875 (in Chinese with English abstract).

    [51]

    Wang Erqi, Meng Qingren, Chen Zhiliang, Chen Liangzhong. 2001. Early Mesozoic left–lateral movement along the Longmenshan fault belt and its tectonic implication[J]. Earth Science Frontiers, 8(1): 375−384 (in Chinese with English abstract).

    [52]

    Wang Nan, Zhang Zhiyong, Malusà Marco G, Wu Lin, Chew D, Zhang Jien, Xiang Dunfeng, Xiao Wenjiao. 2021. Pulsed Mesozoic exhumation in Northeast Asia: New constraints from zircon U–Pb and apatite U–Pb, fission track and (U–Th)/He analyses in the Zhangguangcai Range, NE China[J]. Tectonophysics, 5: 229075.

    [53]

    Xu Chenguang, Yan Danping, Gu Shuhang, Meng Xiangkun, Qiu Liang, Wells M L, Wang Jibin, Ma Fang. 2018. Deformation sequence and geochronological constraints on the metamorphism of the Bikou terrane, northwestern margin of the Yangtze Block[J]. Earth Science Frontiers, 25(1): 80−94 (in Chinese with English abstract).

    [54]

    Xu Dongzhuo, Li Shenghu, Meng Xiangang, Zhu Wenwu, Sun Qikai. 2016. The deformation analysis of main fault zone in eastern part of Bayankala block before and after the Lushan earthquake[J]. North China Earthquake Sciences, 34(2): 50−56 (in Chinese with English abstract).

    [55]

    Yan Danping, Li Shubing, Cao Wentao, Zhang Weichen. 2010. Multi layer detachment crustal structure in the Longmen mountains: Evidences from neo–tectonic deformation and geophysical data[J]. Earth Science Frontiers, 17(5): 106−116 (in Chinese with English abstract).

    [56]

    Yan Danping, Sun Ming, Gong Lingxiao, Zhou Meifu, Qiu Liang, Li Shubing, Zhang Sen, Gu Shuhang, Mu Hongxu. 2020. Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai–Tibet Plateau[J]. Journal of Geomechanics, 26(5): 615−633 (in Chinese with English abstract).

    [57]

    Yang Li, Yuan Wanming, Zhu Chuanbao, Hong Shujiong, Li Shiyu, Feng Zirui, Zhang Aikui. 2021. Mesozoic uplift exhumation history of East Kunlun[J]. Acta Petrologica Sinica, 37(12): 3781−3796 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.12.11

    [58]

    Yang Zhihua, Wu Ruian, Guo Changbao, Zhang Yongshuang, Lan Hengxing, Ren Sanshao, Yan Yiqiu. 2022. Geo– hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China, 49(2): 355−368 (in Chinese with English abstract).

    [59]

    Yuan Wanming. 2016. Thermochronological method of revealing conservation and changes of mineral deposits[J]. Acta Petrologica Sinica, 32(8): 2571−2578 (in Chinese with English abstract).

    [60]

    Yuan Wanming, Yang Zhiqiang, Zhang Zhaochong, Deng Jun. 2011. The uplifting and denudation of main Huangshan Mountains, Anhui Province, China[J]. Science China (Earth Sciences), 54: 1168−1176. doi: 10.1007/s11430-011-4187-0

    [61]

    Zeitler P K, Tahirkheli R A K, Naeser C W, Johnson N M. 1982. Unroofing history of a suture zone in the Himalaya of Pakistan by means of fission–track annealing ages[J]. Earth and Planetary Science Letters, 57: 227−240. doi: 10.1016/0012-821X(82)90187-X

    [62]

    Zhang Jun, Chen Min, He Yong, You Xuejun, Zhao Wei, Ling Maoqian, Zhang Qingui, Zhu Jianhua. 2023. First discovery of the tectono-strata-bound type natural asphalite in the Guangyuan, Sichuan Provience[J]. Geology in China, 50(1): 289−290 (in Chinese with English abstract).

    [63]

    Zhang Shuai, Tian Yuntao, Tian Ye, Liu Yimin, Tang Yuan, Qin Yonghui, Yan Zhaokun, Li Shihu, Shen Zhongshan, Zhang Zengjie. 2021. Early Cenpzoic paleo–stress field in the eastern margin of the Tibetan Plateau: Magnetic fabric records in the southwestern part of Sichuan Basin[J]. Chinese Journal of Geophysics, 64(5): 1643−1653 (in Chinese with English abstract).

    [64]

    Zhang Zhaojie. 2019. Analysis of Inversion Method for Apatite Fission Track Annealing Process[D]. Xi’an: Northwest University, 1–73 (in Chinese with English abstract).

    [65]

    Zhao Jing, Ren Jinwei, Jiang Zaisen, Yue Chong. 2018. Three dimensional deformation characteristics of the Xianshuihe fault zone[J]. Seismology and Geology, 40(4): 818−831 (in Chinese with English abstract).

    [66]

    Zheng Na, He Dengfa, Wang Renfu, Meng Xianwu, Wang Ying. 2024. Analysis of stratified deformation difference in piedmont zone of the middle Longmen Mountain[J]. Chinese Journal of Geology, 59(3): 768−780 (in Chinese with English abstract).

    [67]

    白明坤, Chevalier M L, 李海兵, 潘家伟, 吴琼, 王世广, 刘富财, 焦利青, 张进江, 张蕾, 龚正. 2022. 鲜水河断裂带乾宁段晚第四纪走滑速率及区域强震危险性研究[J]. 地质学报, 96(7): 2312−2332.

    [68]

    陈洪德, 刘磊, 林良彪, 王兴龙, 王志伟, 余瑜, 曾剑, 李朋威. 2021. 川西坳陷西部龙门山隆升时期上三叠统须家河组沉积响应[J]. 石油与天然气地质, 42(4): 801−815. doi: 10.11743/ogg20210403

    [69]

    陈竹新, 贾东, 张惬, 魏国齐, 李本亮, 魏东涛, 沈扬. 2005. 龙门山前陆褶皱冲断带的平衡剖面分析[J]. 地质学报, 79(1): 38−45.

    [70]

    邓宾, 何宇, 黄家强, 杨荣军, 周政, 赖冬, 罗强, 郑文鑫, 李智武, 刘树根. 2019. 龙门山褶皱冲断带扩展生长过程——基于低温热年代学模型证据[J]. 地质学报, 93(7): 1588−1600.

    [71]

    邓宾, 刘树根, 李智武, 刘顺. 2009. 青藏高原东缘地区隆升作用特征——低温年代学证据[J]. 第四纪研究, 29(3): 574−585.

    [72]

    范赛华, 谢辉, 李彬文, 刘媛, 李卫平, 许维娜, 赵虎, 牟蕾. 2022. 川西坳陷东坡地区沙溪庙组断裂对天然气富集的控制作用[J]. 中国地质, 49(4): 1275−1284.

    [73]

    范增辉, 刘树根, 范存辉, 胡林辉, 李文佳, 米鸿, 韩翀, 韩小俊. 2018. 龙门山褶皱冲断带典型地震剖面平衡剖面恢复及构造演化分析[J]. 地质论评, 64(2): 347−360.

    [74]

    葛成隆, 李海兵, Leloup P H, 张蕾, 郑勇, 刘栋梁, Fellah C, 叶小舟, 张进江. 2025. 青藏高原东缘汶川—茂县断裂韧性变形对龙门山早期隆升的制约[J]. 地质学报, 99(4): 1134−1149.

    [75]

    葛家成, 贾东, 尹宏伟, 闫兵, 陈竹新, 范小根, 杨双, 崔键, 钟城. 2023. 龙门山断裂带与龙日坝断裂带相互关系的物理模拟实验研究[J]. 高校地质学报, 29(4): 617−629.

    [76]

    郭旭升. 2010. 川西地区中、晚三叠世岩相古地理演化及勘探意义[J]. 石油与天然气地质, 31(5): 610−620.

    [77]

    洪海涛, 田兴旺, 孙奕婷, 马奎, 李庚, 王云龙, 杨岱林, 彭瀚霖, 罗冰, 周刚, 薛玖火, 叶茂, 山述娇. 2020. 四川盆地海相碳酸盐岩天然气富集规律[J]. 中国地质, 47(1): 99−110.

    [78]

    贾秋鹏, 贾东, 朱艾斓, 陈竹新, 胡潜伟, 罗良, 张元元, 李一泉. 2007. 青藏高原东缘龙门山冲断带与四川盆地的现今构造表现: 数字地形和地震活动证据[J]. 地质科学, 42(1): 31−44. doi: 10.3321/j.issn:0563-5020.2007.01.004

    [79]

    金文正, 万桂梅, 崔泽宏, 王俊鹏, 杨孝群, 白万奎. 2012. 四川盆地关键构造变革期与陆相油气成藏期次[J]. 断块油气田, 19(3): 273−277. doi: 10.6056/dkyqt201203001

    [80]

    李煜航. 2018. 青藏高原东北横向扩展运动研究[D]. 北京: 中国地震局地质研究所, 1–127.

    [81]

    林锦荣, 胡志华, 陶意, 王勇剑, 王峰. 2019. 相山矿田邹家山铀矿床成矿热事件的锆石裂变径迹年龄响应[J]. 铀矿地质, 35(4): 193−198. doi: 10.3969/j.issn.1000-0658.2019.04.001

    [82]

    林霄晗, 颜丹平, 邱亮, 周志成, 宋华杰, 孔霏, 都超. 2025. 青藏高原东缘龙门山推覆—滑覆飞来峰: 构造与(U−Th)/He热年代学约束[J]. 中国科学: 地球科学, 55(4): 1179−1194.

    [83]

    刘方斌. 2021. 青藏高原东南缘新生代剥露历史的热年代学约束——以临沧花岗岩地区为例[D]. 兰州: 兰州大学, 1–220.

    [84]

    刘鹤, 颜丹平, 魏国庆. 2008. 扬子板块西北缘碧口地块变形变质作用序列——松潘—甘孜造山带伸展垮塌事件的意义[J]. 地质学报, 82(4): 464−474.

    [85]

    刘树根, 李智武, Kamp P J J, 冉波, 李金玺, 邓宾, 王国芝, Xu Ganqing, Danisík M, 杨迪, 王自剑, 李祥辉, 刘顺, 李巨初. 2019. 青藏高原东缘中生代若尔盖古高原的发现及其地质意义[J]. 成都理工大学学报(自然科学版), 46(1): 1−28.

    [86]

    罗梦, 朱文斌, 郑碧海, 朱晓青. 2012. 库车盆地中新生代构造演化: 磷灰石裂变径迹证据[J]. 地球科学(中国地质大学学报), 37(5): 893−902.

    [87]

    沈传波, 梅廉夫, 刘昭茜, 徐思煌. 2009. 黄陵隆起中—新生代隆升作用的裂变径迹证据[J]. 矿物岩石, 29(2): 54−60.

    [88]

    孙丽静, 赵中宝, 潘家伟, 梁凤华, 张磊, 张进江. 2021. 鲜水河断裂带康定段雅拉河断裂深部应力应变状态及其孕震环境[J]. 岩石学报, 37(10): 3225−3240.

    [89]

    谭锡斌, 李元希, 徐锡伟, 陈玟禹, 许冲, 于贵华. 2013. 低温热年代学数据对龙门山推覆构造带南段新生代构造活动的约束[J]. 地震地质, 35(3): 506−517. doi: 10.3969/j.issn.0253-4967.2013.03.005

    [90]

    谭锡斌, 徐锡伟, 李元希, 袁仁茂, 于贵华, 许冲. 2015. 龙门山中段中央断裂和前山断裂的晚新生代垂向活动性差异及其构造意义[J]. 地球物理学报, 58(1): 143−152.

    [91]

    唐渊, 王鹏, 邓红, 刘宇平, 唐文清. 2022. 青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录[J]. 地质通报, 41(7): 1121−1143.

    [92]

    陶亚玲. 2021. 青藏高原东缘雅砻江逆冲带新生代隆升剥露及其对高原扩展的启示[D]. 北京: 中国地震局地质研究所, 1−143.

    [93]

    陶亚玲, 张会平, 葛玉魁, 庞建章, 俞晶星, 张佳伟, 赵旭东, 马字发. 2020. 青藏高原东缘新生代隆升剥露与断裂活动的低温热年代学约束[J]. 地球物理学报, 63(11): 4154−4167.

    [94]

    田云涛, 姚欣博, 张贵洪, 潘黎黎, 刘一珉, 热孜亚·麦麦提, 袁志煌, 李柏江, 张增杰, 张进江, 肖文交. 2024. 挤压构造带变形样式的热年代学诊断[J]. 科学通报, 69(18): 2518−2533.

    [95]

    田云涛, 袁玉松, 胡圣标. 2009. 磷灰石裂变径迹分析新进展[J]. 地球物理学进展, 24(3): 909−920.

    [96]

    田云涛, 朱传庆, 徐明, 饶松, Kohn B P, 胡圣标. 2011. 晚白至世以来川东北地区的剥蚀历史——多类低温热年代学数据综合剖面的制约[J]. 地球物理学报, 54(3): 807−816. doi: 10.3969/j.issn.0001-5733.2011.03.021

    [97]

    王二七, 孟恺, 许光, 樊春, 苏哲. 2018. 印度陆块新生代两次仰冲事件及其构造驱动机制: 论印度洋、特提斯和欧亚板块相互作用[J]. 岩石学报, 34(7): 1867−1875.

    [98]

    王二七, 孟庆任. 2008. 对龙门山中生代和新生代构造演化的讨论[J]. 中国科学D辑 (地球科学), 38(10): 1221−1233.

    [99]

    王二七, 孟庆仁, 陈智樑, 陈良忠. 2001. 龙门山断裂带印支期左旋走滑运动及其大地构造成因[J]. 地学前缘, 8(2): 375−384.

    [100]

    王二七, 苏哲, 许光. 2009. 我国的一些造山带的侧向挤出构造[J]. 地质科学, 44(4): 1266−1288.

    [101]

    许晨光, 颜丹平, 古术航, 孟祥坤, 邱亮, Wells M L, 王继斌, 马芳. 2018. 扬子板块西北缘碧口地块中—新生代变质、变形与年代限定[J]. 地学前缘, 25(1): 80−94.

    [102]

    徐东卓, 李胜虎, 孟宪纲, 朱文武, 孙启凯. 2016. 芦山地震前后巴颜喀拉地块东部断裂带形变分析[J]. 华北地震科学, 34(2): 50−56.

    [103]

    颜丹平, 李书兵, 曹文涛, 张维宸. 2010. 龙门山多层分层拆离地壳结构: 新构造变形与深部构造证据[J]. 地学前缘, 17(5): 106−116.

    [104]

    颜丹平, 孙铭, 巩凌霄, 周美夫, 邱亮, 李书兵, 张森, 古术航, 木红旭. 2020. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报, 26(5): 615−633.

    [105]

    杨莉, 袁万明, 朱传宝, 洪树炯, 李世昱, 冯子睿, 张爱奎. 2021. 东昆仑中生代隆升剥露历史[J]. 岩石学报, 37(12): 3781−3796. doi: 10.18654/1000-0569/2021.12.11

    [106]

    杨志华, 吴瑞安, 郭长宝, 张永双, 兰恒星, 任三绍, 闫怡秋. 2022. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质, 49(2): 355−368.

    [107]

    袁万明. 2016. 矿床保存变化研究的热年代学技术方法[J]. 岩石学报, 32(8): 2571−2578.

    [108]

    张君, 陈敏, 贺勇, 游学军, 赵伟, 凌茂前, 张芹贵, 祝建华. 2023. 四川广元地区首次发现构造−层控型天然沥青矿[J]. 中国地质, 2023, 50(1): 289–290.

    [109]

    张帅, 田云涛, 田野, 刘一珉, 唐苑, 秦咏辉, 颜照坤, 李仕虎, 沈中山, 张增杰. 2021. 青藏高原东缘新生代早期古应力环境: 来自四川盆地西南缘磁组构的记录[J]. 地球物理学报, 64(5): 1643−1653.

    [110]

    张昭杰. 2019. 磷灰石裂变径迹退火过程反演方法分析[D]. 西安: 西北大学, 1–73.

    [111]

    赵静, 任金卫, 江在森, 岳冲. 2018. 鲜水河断裂带三维变形特征[J]. 地震地质, 40(4): 818−831. doi: 10.3969/j.issn.0253-4967.2018.04.007

    [112]

    郑娜, 何登发, 汪仁富, 孟宪武, 王莹. 2024. 龙门山山前带中段分层差异变形特征及成因[J]. 地质科学, 59(3): 768−780. doi: 10.12017/dzkx.2024.055

  • 加载中

(6)

(7)

计量
  • 文章访问数:  40
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2022-03-06
修回日期:  2023-02-19
刊出日期:  2025-07-25

目录