中国地质调查局 中国地质科学院主办
科学出版社出版

中国燃煤电厂与沉积盆地咸水层CO2封存的源汇匹配研究

李毅, 周凡, 王金生, 盖鹏, 王浩. 2025. 中国燃煤电厂与沉积盆地咸水层CO2封存的源汇匹配研究[J]. 中国地质, 52(4): 1513-1527. doi: 10.12029/gc20231118003
引用本文: 李毅, 周凡, 王金生, 盖鹏, 王浩. 2025. 中国燃煤电厂与沉积盆地咸水层CO2封存的源汇匹配研究[J]. 中国地质, 52(4): 1513-1527. doi: 10.12029/gc20231118003
LI Yi, ZHOU Fan, WANG Jinsheng, GAI Peng, WANG Hao. 2025. Research on source−sink matching between coal−fired power plants and CO2 saline aquifer storage in sedimentary basins in China[J]. Geology in China, 52(4): 1513-1527. doi: 10.12029/gc20231118003
Citation: LI Yi, ZHOU Fan, WANG Jinsheng, GAI Peng, WANG Hao. 2025. Research on source−sink matching between coal−fired power plants and CO2 saline aquifer storage in sedimentary basins in China[J]. Geology in China, 52(4): 1513-1527. doi: 10.12029/gc20231118003

中国燃煤电厂与沉积盆地咸水层CO2封存的源汇匹配研究

  • 基金项目: 国家自然科学基金项目(41902248)资助。
详细信息
    作者简介: 李毅,男,1989年生,副教授,主要从事地下深部咸水层储气储能理论和模拟研究;E-mail:liyi_bnuphd@mail.bnu.edu.cn
    通讯作者: 王金生,男,1957年生,教授,主要从事地下水理论与数值模拟研究;E-mail:wangjs@bnu.edu.cn
  • 中图分类号: X773; X701

Research on source−sink matching between coal−fired power plants and CO2 saline aquifer storage in sedimentary basins in China

  • Fund Project: Supported by the project of the National Natural Science Foundation of China (No.41902248).
More Information
    Author Bio: LI Yi, male, born in 1989, associate professor, mainly engaged in the research of subsurface saline aquifers; E-mail: liyi_bnuphd@mail.bnu.edu.cn .
    Corresponding author: WANG Jinsheng, male, born in 1957, professor, mainly engaged in the research of underground water; E-mail: wangjs@bnu.edu.cn.
  • 研究目的

    燃煤电厂是中国CO2排放的一个主要集中源,为了完成碳减排的目标,需对其进行碳捕获和封存(CCUS)改造,利用咸水层进行封存是有效手段,两者的源汇匹配评价是推动改造工程的重要一环。但当前缺乏详细和系统地针对全国燃煤电厂CO2排放和沉积盆地咸水层封存的源汇匹配研究。

    研究方法

    本文从盆地一级构造尺度出发,基于全国燃煤电厂CO2排放特征,建立一套考虑全流程的源汇匹配优化模型。

    研究结果

    99%的电厂均可在唯一的封存地进行封存,陆域盆地作为封存地仍是大多数电厂的首选,海域盆地在沿海地区的匹配中体现出优越性。针对10~40年改造目标年限,2021—2030年电厂到封存地的最大运输距离达到539.28 km,2031—2040年、2041—2050年和2051—2060年的最大运输距离均为660.58 km。

    结论

    从CO2年捕集量和运输距离来看,在华北、华东、华中和西北地区建立大规模的CO2运输管网进行封存的潜力大于东北和南方。CCUS改造技术成本和运输距离是影响源汇匹配结果的最重要因素,随着改造技术的提高,平均改造成本从500元/t CO2下降到300元/t CO2以内。本研究结果为燃煤电厂的CCUS改造提供了政策决定依据。

  • 加载中
  • 图 1  不同阶段成本变化

    Figure 1. 

    图 2  中国燃煤电厂位置和排放量分布

    Figure 2. 

    图 3  盆地一级构造封存潜力及适宜性评价

    Figure 3. 

    图 4  模型输入的源汇数据,

    Figure 4. 

    图 5  2021—2030情景下最优源汇匹配路径

    Figure 5. 

    图 6  2031—2040情景下最优源汇匹配路径

    Figure 6. 

    图 7  2041—2050情景下最优源汇匹配路径

    Figure 7. 

    图 8  2051—2061情景下最优源汇匹配路径

    Figure 8. 

    图 9  不同情景下电厂年捕集量与运输距离对比

    Figure 9. 

    图 10  不同情景下盆地CO2封存量

    Figure 10. 

    图 11  相关性分析

    Figure 11. 

    图 12  燃煤电厂区域性成本分析

    Figure 12. 

    表 1  CCUS各环节技术成本

    Table 1.  The technical cost of CCUS of each procedure

    年份 2025 2030 2035 2040 2050 2060
    燃烧后捕集成本(元/t) 230~310 190~280 160~220 100~180 80~150 70~120
    管道运输成本(元/t/km) 0.8 0.7 0.6 0.5 0.45 0.4
    封存成本(元/t) 50~60 40~50 35~40 30~35 25~30 20~25
    下载: 导出CSV

    表 2  成本折算系数

    Table 2.  Cost conversion factor

    封存地适宜性 成本折算系数
    陆域盆地 海域盆地
    适宜 1.0 1.4
    较适宜 1.2 1.68
    一般 1.5 2.1
    较不适宜 1.8 2.52
    不适宜 2.0 2.8
    下载: 导出CSV

    表 3  不同情景运行电厂数

    Table 3.  Number of power plants retrofitted in different scenarios

    情景/年 运行电厂
    数量/个
    年排放
    量/Mt
    捕集量/Mt
    (75%捕集率)
    2021—2030 967 5998.6 4499.0
    2031—2040 967 5998.6 4499.0
    2041—2050 908 5488.3 4116.2
    2051—2060 639 4325.1 3243.8
    下载: 导出CSV
  • [1]

    Brown S, Mahgerefteh H, Martynov S, Sundara V, Dowell N M. 2015. A multi–source flow model for CCS pipeline transportation networks[J]. International Journal of Greenhouse Gas Control, 43: 108−114. doi: 10.1016/j.ijggc.2015.10.014

    [2]

    Cai Bofeng, Li Qi, Zhang Xian. 2021. Annual Report on Carbon Capture, Utilization, and Storage (CCUS) in China (2021): A study of CCUS Pathways in China[R]. Beijing: Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Centre for China's Agenda 21 (in Chinese).

    [3]

    Cao C, Liu H J, Hou Z M, Mehmood F, Feng W T. 2020. A review of CO2 storage in view of safety and cost–effectiveness[J]. Energies, 13(3): 600. doi: 10.3390/en13030600

    [4]

    Chen W Y, Huang L Y, Xiang X, Chen J Y, Sun L. 2011. GIS based CCS source–sink matching models and decision support system[J]. Energy Procedia, 4: 5999−6006. doi: 10.1016/j.egypro.2011.02.603

    [5]

    Chen Wenhui, Lu Xi. 2022. The optimal layout of CCUS clusters in China's coal–fired power plants towards carbon neutrality[J]. Climate Change Research, 18(3): 261−271 (in Chinese with English abstract).

    [6]

    Dai S X, Dong Y J, Wang F, Xing Z H, Hu P, Yang F. 2022. A sensitivity analysis of factors affecting in geologic CO2 storage in the Ordos Basin and its contribution to carbon neutrality[J]. China Geology, 5(3): 359−371.

    [7]

    Diao Yujie, Liu Ting, Wei Ning, Ma Xin, Jin Xiaolin, Fu Lei. 2023. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 50(3): 943−951 (in Chinese with English abstract).

    [8]

    Ge Shirong, Wang Bing, Feng Haohao, Jiang Xinru, Li Xue. 2023. Dynamic carbon neutrality mode for coal–based energy systems and effectiveness assessment thereof[J]. Strategic Study of CAE, 25(5): 122−135 (in Chinese with English abstract). doi: 10.15302/J-SSCAE-2023.05.011

    [9]

    Guan Y R, Shan Y L, Huang Q, Chen H L, Wang D, Hubacek K. 2021. Assessment to China's recent emission pattern shifts[J]. Earth's Future, 9(11): e2021EF002241. doi: 10.1029/2021EF002241

    [10]

    Guo Jianqiang, Wen Dongguang, Zhang Senqi, Jia Xiaofeng, Jin Xiaolin, Fan Jijiao, Peng Xuanming, Li Pengchun, Cao Ke, Diao Yujie, Zhang Hui, Li Xufeng. 2014. The Atlas of Carbon Dioxide Geological Storage Potential and Suitability Assessments of China Maor Sedimentary Basin[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    [11]

    Hasan M M, Boukouvala F, First E L, Floudas C A. 2014. Nationwide, regional, and statewide CO2 capture, utilization, and sequestration supply chain network optimization[J]. Industrial and Engineering Chemistry Research, 53(18): 7489−7506. doi: 10.1021/ie402931c

    [12]

    IEA. 2016. 20 years of carbon capture and storage: Accelerating future deployment[R]. International Energy Agency.

    [13]

    Li Haiyan, Peng Shimi, Xu Mingyang, Luo Chao, Gao Yang. 2013. CO2 storage mechanism in deep saline aquifers[J]. Science and Technology Review, 31(2): 72−79 (in Chinese with English abstract).

    [14]

    Li K, Shen S, Fan J L, Xu M, Zhang X. 2022. The role of carbon capture, utilization and storage in realizing China's carbon neutrality: A source–sink matching analysis for existing coal–fired power plants[J]. Resources, Conservation and Recycling, 178: 106070.

    [15]

    Liu Jun, Yuan Xin, Chen Heng, Pan Peiyuan, Xu Gang, Wang Xiuyan. 2023. Study on economic assessment and improvement for large–scale thermal power CCUS applications[J]. Journal of Chinese Society of Power Engineering, 43(10): 1316−1325 (in Chinese with English abstract).

    [16]

    Liu S Y, Li H Y, Zhang K, Lau H C. 2022. Techno–economic analysis of using carbon capture and storage (CCS) in decarbonizing China's coal–fired power plants[J]. Journal of Cleaner Production, 351: 131384. doi: 10.1016/j.jclepro.2022.131384

    [17]

    Liu Wei, Dong Ming. 2011. Research on carbon sequestration network planning model and solution algorithm[J]. Industrial Engineering and Management, 16(6): 128−132 (in Chinese with English abstract).

    [18]

    Middleton R S, Kuby M J, Wei R, Keating G N, Pawar R J. 2012. A dynamic model for optimally phasing in CO2 capture and storage infrastructure[J]. Environmental Modelling and Software, 37: 193−205. doi: 10.1016/j.envsoft.2012.04.003

    [19]

    Muratori M, Kheshgi H, Mignone B, Clarke L, Mcjeon H, Edmonds J. 2017. Carbon capture and storage across fuels and sectors in energy system transformation pathways[J]. International Journal of Greenhouse Gas Control, 57: 34−41. doi: 10.1016/j.ijggc.2016.11.026

    [20]

    Paltsev S, Morris J, Kheshgi H, Herzog H. 2021. Hard–to–Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation[J]. Applied Energy, 300: 117322. doi: 10.1016/j.apenergy.2021.117322

    [21]

    Qin J Z, Zhong Q H, Tang Y, Rui Z H, Qiu S, Chen H Y. 2023. CO2 storage potential assessment of offshore saline aquifers in China[J]. Fuel, 341: 127681. doi: 10.1016/j.fuel.2023.127681

    [22]

    Selosse S, Ricci O. 2017. Carbon capture and storage: Lessons from a storage potential and localization analysis[J]. Applied Energy, 188: 32−44. doi: 10.1016/j.apenergy.2016.11.117

    [23]

    Shan Y L, Guan D B, Zheng H R, Ou J M, Li Y, Meng J, Mi Z F, Liu Z, Zhang Q. 2018. China CO2 emission accounts 1997–2015[J]. Scientific Data, 5: 170201. doi: 10.1038/sdata.2017.201

    [24]

    Shan Y L, Huang Q, Guan D B, Klaus H. 2020. China CO2 emission accounts 2016–2017[J]. Scientific Data, 7(1): 54. doi: 10.1038/s41597-020-0393-y

    [25]

    Sun L, Chen W Y. 2013. The improved China CCS decision support system: A case study for Beijing–Tianjin–Hebei Region of China[J]. Applied Energy, 112: 793−799. doi: 10.1016/j.apenergy.2013.05.016

    [26]

    Sun L, Chen W Y. 2017. Development and application of a multi–stage CCUS source–sink matching model[J]. Applied Energy, 185: 1424−1432. doi: 10.1016/j.apenergy.2016.01.009

    [27]

    Sun L, Chen W Y. 2021. Impact of carbon tax on CCUS source–sink matching: Finding from the improved China CCS DSS[J]. Journal of Cleaner Production, 333: 130027.

    [28]

    Sun Liang, Chen Wenying. 2013. CCUS source–sink matching dynamic programming model based on GAMS[J]. Journal of Tsinghua University (Science and Technology), 53(4): 421−426 (in Chinese with English abstract).

    [29]

    Tang H T, Chen W Y, Zhang S, Zhang Q Z. 2023. China’s multi–sector–shared CCUS networks in a carbon–neutral vision[J]. iScience, 26(4): 106347. doi: 10.1016/j.isci.2023.106347

    [30]

    Wang F Y, Wang P T, Wang Q F, Dong L H. 2018. Optimization of CCUS source–sink matching for large coal–fired units: A case of North China[J]. IOP Conference Series Earth and Environmental Science, 170(4): 42−45.

    [31]

    Wang H, Xu J J, Yu Y. 2023. Status of CCUS research and governance by worldwide geological surveys and organizations[J]. China Geology, 6(3): 536−540.

    [32]

    Wang P T, Wei Y M, Yang B, Li J Q, Kang J N, Liu LC, Yu B Y, Hou Y B, Zhang X. 2020. Carbon capture and storage in China's power sector: Optimal planning under the 2°C constraint[J]. Applied Energy, 263: 114694. doi: 10.1016/j.apenergy.2020.114694

    [33]

    Wang Zhong, Luo Yuyan, Kuang Jianchao, Mao Yongna. 2016. Research on source–sink matching and optimization in China's large coal–fired power plant[J]. Industrial Engineering and Management, 21(6): 75−83,89 (in Chinese with English abstract).

    [34]

    Wei N, Jiao Z S, Ellett K, Ku A Y, Liu S N, Middleton R, Li X C. 2021. Decarbonizing the coal–fired power sector in China via carbon capture, geological utilization, and storage technology[J]. Environmental Science and Technology, 55(19): 13164−13173.

    [35]

    Wei Ning, Jiang Dalin, Liu Shengnan, Nie Ligong, Li Xiaochun. 2020. Cost competitiveness analysis of retrofitting CCUS to coal–fired power plants[J]. Proceedings of the CSEE, 40(4): 1258−1265 (in Chinese with English abstract).

    [36]

    Zhou Yinbang, Wang Rui, He Yingfu, Zhao Shuxia, Zhou Yuanlong, Zhang Yao. 2023. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency, 30(2): 162−167 (in Chinese with English abstract).

    [37]

    蔡博峰, 李琦, 张贤. 2021. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021): 中国CCUS路径研究[R]. 北京: 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心.

    [38]

    陈文会, 鲁玺. 2022. 碳中和目标下中国燃煤电厂CCUS集群部署优化研究[J]. 气候变化研究进展, 18(3): 261−271.

    [39]

    刁玉杰, 刘廷, 魏宁, 马鑫, 金晓琳, 付雷. 2023. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质, 50(3): 943−951. doi: 10.12029/gc20221030001

    [40]

    葛世荣, 王兵, 冯豪豪, 姜鑫茹, 李雪. 2023. 煤基能源动态碳中和模式及其保供降碳效益评估[J]. 中国工程科学, 25(5): 122−135.

    [41]

    郭建强, 文冬光, 张森琦, 贾小丰, 金晓琳, 范基姣, 彭轩明, 李鹏春, 珂曹, 刁玉杰, 徽张, 李旭峰. 2014. 中国主要沉积盆地二氧化碳地质储存潜力与适宜性评价图集[M]. 北京: 地质出版社.

    [42]

    李海燕, 彭仕宓, 许明阳, 罗超, 高阳. 2013. CO2在深部咸水层中的埋存机制研究进展[J]. 科技导报, 31(2): 72−79. doi: 10.3981/j.issn.1000-7857.2013.02.010

    [43]

    刘骏, 袁鑫, 陈衡, 潘佩媛, 徐钢, 王修彦. 2023. 大规模火电CCUS应用的经济性评估及提升研究[J]. 动力工程学报, 43(10): 1316−1325.

    [44]

    刘巍, 董明. 2011. 碳封存网络的规划模型及求解算法研究[J]. 工业工程与管理, 16(6): 128−132. doi: 10.3969/j.issn.1007-5429.2011.06.022

    [45]

    孙亮, 陈文颖. 2013. 基于GAMS的CCUS源汇匹配动态规划模型[J]. 清华大学学报(自然科学版), 53(4): 421−426.

    [46]

    王众, 骆毓燕, 匡建超, 毛永娜. 2016. 我国大型燃煤电厂CCS源汇匹配与优化研究[J]. 工业工程与管理, 21(6): 75−83,89.

    [47]

    魏宁, 姜大霖, 刘胜男, 聂立功, 李小春. 2020. 国家能源集团燃煤电厂CCUS改造的成本竞争力分析[J]. 中国电机工程学报, 40(4): 1258−1265.

    [48]

    周银邦, 王锐, 何应付, 赵淑霞, 周元龙, 张尧. 2023. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率, 30(2): 162−167.

  • 加载中

(12)

(3)

计量
  • 文章访问数:  26
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2023-11-18
修回日期:  2023-12-31
刊出日期:  2025-07-25

目录