Pore size distribution characteristics of the Gufeng Formation shale in the Lower Yangtze area and its effect on gas–bearing properties
-
摘要:
研究目的 页岩储层孔径分布是影响页岩气赋存的关键要素,明确页岩孔径分布特征是研究页岩气富集规律的基础。
研究方法 本文以WWD−1井孤峰组页岩为例,借助XRD、有机地球化学、高压压汞、N2吸附及CO2吸附等实验,开展下扬子地区孤峰组页岩孔径分布特征研究,并进一步探讨了孔径分布对页岩含气性的影响。
研究结果 孤峰组页岩有机质丰度高,TOC介于2.72%~6.71%,具备良好的生烃潜力;孤峰组页岩孔径分布复杂,微孔、介孔与宏孔均有发育,但孤峰组页岩的孔隙体积主要由介孔贡献,介孔贡献率达50%~68%;有机质生烃演化为孤峰组页岩提供了大量微孔和介孔,黏土矿物主要发育微孔,碳酸盐矿物则对宏孔发育具有重要意义;微孔与介孔控制着页岩储层比表面积的发育程度,同时介孔、宏孔对总孔体积具有重要影响,微孔与介孔的发育有利于吸附气的赋存,增加内在气体保存能力,而介孔、宏孔的发育可为游离气提供赋存空间,增加总含气量;在构造稳定区,介孔及宏孔储层可作为有利勘探对象,但在复杂构造区,则介孔储层具备更大优势。
结论 位于下扬子复杂构造区,以介孔为主的孤峰组页岩,可兼具吸附气与游离气混合赋存特征,在保证总含气量的同时,具备一定的抗逸散能力,可作为下扬子页岩气勘探开发的主力层位。
Abstract:This paper is the result of oil and gas exploration engineering.
Objective The pore size distribution of shale reservoirs is a key factor affecting the occurrence of shale gas, and clarifying the pore size distribution characteristics of shale is the basis to study the law of shale gas enrichment.
Methods By a case study of the Gufeng Formation shale in Well WWD-1, this paper studies the pore size distribution characteristics of the Gufeng Formation shale in the Lower Yangtze region by means of XRD, organic geochemical, high pressure mercury injection, N2 adsorption and CO2 adsorption experiments, and further discusses the effect of pore size distribution on the gas-bearing properties of shale.
Results The shale of the Gufeng Formation has an abundance of organic matter, and TOC is between 2.72% and 6.71% which has a good potential for hydrocarbon generation. The pore size distribution of Gufeng shale is complex, with micropores, mesopores and macropores widely developed. However, the pore volume of Gufeng shale is mainly contributed by mesopores, and the contribution rate of mesopores is 50%–68%. The hydrocarbon generation and evolution of organic matter provided a large number of micropores and mesopores for the shale of the Gufeng Formation. Clay minerals mainly developed micropores, and carbonate minerals were important for the development of macropores. Micropores and mesopores control the development of specific surface area of shale reservoirs, while mesopores and macropores have an important influence on the total pore volume. The development of micropores and mesopores is conducive to the occurrence of adsorbed gas and increases the preservation of internal gas. The development of mesopores and macropores can provide space for free gas and increase the total gas content. In the areas of structural stability, mesoporous and macroporous reservoirs can be used as advantageous exploration targets, but in complex structural areas, mesoporous reservoirs have an advantage.
Conclusions The Gufeng Formation shale is located in the complex structural area of the Lower Yangtze. The pore types are mainly mesopores, with characteristics of mixed enrichment of adsorbed gas and free gas. The Gufeng Formation shale has a certain ability of anti-leaking under the guarantee of the total gas content, which is a target as the main layer of shale gas exploration and development in the Lower Yangtze.
-
-
图 1 下扬子地区构造区划图(a,据黄保家等, 2013)及二叠系综合柱状图(b,据白卢恒等, 2021)
Figure 1.
图 13 页岩比表面积、总孔体积与含气性的关系(据杨博伟等, 2024修改)
Figure 13.
表 1 页岩样品有机质含量及矿物组分特征
Table 1. Organic matter content and mineral composition characteristics of shale samples
样品编号 TOC/% 矿物成分含量/% 黏土矿物相对含量/% 石英 斜长石 方解石 白云石 黄铁矿 黏土矿物 伊利石 高岭石 绿泥石 伊/蒙混层 样品1 3.46 52 2 27 0 1 18 60 15 22 3 样品3 4.36 66 / 31 0 1 2 / / / / 样品5 3.75 79 / 17 1 2 1 / / / / 样品9 6.26 72 / 25 0 2 1 / / / / 样品11 5.56 58 / 9 2 6 25 36 60 0 4 样品15 5.13 52 / 21 23 2 2 / / / / 样品17 6.71 63 / 28 1 5 3 32 66 0 2 样品19 4.89 58 / 29 2 2 9 26 71 0 3 样品21 5.77 69 / 23 2 3 3 / / / / 样品23 5.23 56 / 17 3 7 17 27 70 0 3 样品34 2.72 67 / 25 5 2 1 / / / / 样品35 3.29 37 / 44 3 2 14 / / / / 样品36 3.71 21 / 70 1 2 6 / / / / 样品37 5.48 39 / 49 1 4 7 / / / / 样品38 3.33 25 / 55 7 3 10 / / / / 表 2 下扬子地区孤峰组页岩不同类型孔隙分布
Table 2. Distribution of different types of pores in the Gufeng Formation shale in the Lower Yangtze area
样品编号 孔隙体积/(mL/g) 总孔体积/(mL/g) 孔隙体积占比/% 微孔(<2 nm) 介孔(2~50 nm) 宏孔(>50 nm) 微孔 介孔 宏孔 样品1 0.00419 0.0141823 0.0036346 0.0220069 19.04 64.44 16.52 样品11 0.00417 0.0128858 0.0023411 0.0193968 21.50 66.43 12.07 样品17 0.00316 0.0114927 0.0023991 0.0170517 18.53 67.40 14.07 样品19 0.00362 0.0128201 0.0028251 0.0192652 18.79 66.55 14.66 样品36 0.00222 0.0129889 0.01081 0.0260189 8.53 49.92 41.55 样品38 0.00358 0.0131805 0.0035787 0.0203392 17.60 64.80 17.59 -
[1] Bai Luheng, Shi Wanzhong, Zhang Xiaoming, Xu Xiaofeng, Liu Yuzuo, Yang Yang, Feng Qian, Cao Shenting. 2021. Characteristics of Permian marine shale and its sedimentary environment in Xuanjing area, South Anhui Province, Lower Yangtze Area[J]. Earth Science, 46(6): 2204−2217 (in Chinese with English abstract).
[2] Bi He, Jiang Zhenxue, Li Peng, Li Zhuo, Tang Xianglu, Zhang Dingyu, Xu Ye. 2014. Shale reservoir characteristics and its influence on gas content of Wufeng–Longmaxi Formation in the southeastern Chongqing[J]. Natural Gas Geoscience, 25(8): 1275−1283 (in Chinese with English abstract).
[3] Brunauer S, Deming L S, Deming W E, Teller E. 1940. On a theory of the van der Waals adsorption of gases[J]. Journal of the American Chemical Society, 62(7): 1723−1732. doi: 10.1021/ja01864a025
[4] Cao Taotao, Deng Mo, Liu Hu, Cao Qingu, Liu Guangxiang. 2021. Reservoir characteristics and methane adsorption capacity of the Wujiaping formation shale: A case study in Lichuan area, Western Hubei[J]. Journal of China University of Mining and Technology, 50(1): 138−153 (in Chinese with English abstract).
[5] Chen F W, Zheng Q, Ding X, Lu S F, Zhao H Q. 2020. Pore size distributions contributed by OM, clay and other minerals in over–mature marine shale: A case study of the Longmaxi shale from Southeast Chongqing, China[J]. Marine and Petroleum Geology, 122: 104679. doi: 10.1016/j.marpetgeo.2020.104679
[6] Chen Jie. 2021. Pore structure characteristics of shale in Early Cambrian Niutitang Formationin, Fenggang area, Guizhou Province[J]. East China Geology, 42(3): 359−366 (in Chinese with English abstract).
[7] Chen Shangbin, Zhu Yanming, Wang Hongyan, Liu Honglin, Wei Wei, Fang Junhua. 2012. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 37(3): 438−444 (in Chinese with English abstract).
[8] Chen Yang, Tang Hongming, Liao Jijia, Luo Chao, Zhao Shengxian, Zheng Majia, Zhong Quan. 2022. Analysis of shale pore characteristics and controlling factors based on variation of buried depth in the Longmaxi Formation, Southern Sichuan Basin[J]. Geology in China, 49(2): 472−484 (in Chinese with English abstract).
[9] Fu Changqing. 2017. Study on Reservoir Characteristics and Shale Gas Enrichment of Wufeng–Longmaxi Formation Shale in Southeast Chongqing[D]. Xuzhou: China University of Mining and Technology, 1–209 (in Chinese with English abstract).
[10] Hu J G, Tang S H, Zhang S H. 2016. Investigation of pore structure and fractal characteristics of the Lower Silurian Longmaxi shales in western Hunan and Hubei Provinces in China[J]. Journal of Natural Gas Science and Engineering, 28: 522−535. doi: 10.1016/j.jngse.2015.12.024
[11] Huang Baojia, Shi Rongfu, Zhao Xinbing, Zhou Gang. 2013. Geological conditions of Paleozoic shale gas formation and its exploration potential in the South Anhui, Lower Yangtze area[J]. Journal of China Coal Society, 38(5): 877−882 (in Chinese with English abstract).
[12] Jiang Tao, Jin Zhijun, Liu Guangxiang, Hu Zongquan, Liu Quanyou, Liu Zhongbao, Wang Pengwei, Wang Ruyue, Yang Tao, Wang Guanping. 2021. Pore structure characteristics of shale reservoirs in the Ziliujing Formation in Yuanba area, Sichuan Basin[J]. Oil and Gas Geology, 42(4): 909−918 (in Chinese with English abstract).
[13] Jiang Zhenxue, Tang Xianglu, Li Zhuo, Huang Hexing, Yang Peipei, Yang Xiao, Li Weibing, Hao Jin. 2016. The whole–aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan basin[J]. Earth Science Frontiers, 23(2): 126−134 (in Chinese with English abstract).
[14] Li J Q, Lu S F, Xie L J, Zhang J, Xue H T, Zhang P F, Tian S S. 2017. Modeling of hydrocarbon adsorption on continental oil shale: A case study on n–alkane[J]. Fuel, 206: 603−613. doi: 10.1016/j.fuel.2017.06.017
[15] Li Jianqing, Zhang Chengcheng, Huang Zhengqing, Fang Chaogang, Wu Tong, Shao Wei, Zhou Daorong, Teng Long, Wang Yuanjun, Huang Ning. 2021. Discovery of overpressure gas reservoirs in the complex structural area of the Lower Yangtze and its key elements of hydrocarbon enrichment[J]. Geological Bulletin of China, 40(4): 577−585 (in Chinese with English abstract).
[16] Li Qianwen, Tang Ling, Pang Xiongqi. 2020. Dynamic evolution model of shale gas occurrence and quantitative evaluation of gas–bearing properties[J]. Geological Review, 66(2): 457–466 in Chinese with English abstract).
[17] Li Qiqi, Xu Shang, Chen Ke, Song Teng, Meng Fanyang, He Sheng, Lu Yongchao, Shi Wanzhong, Gou Qiyang, Wang Yuxuan. 2022. Analysis of shale gas accumulation conditions of the Upper Permian in the Lower Yangtze Region[J]. Geology in China, 49(2): 383−397 (in Chinese with English abstract).
[18] Li Tengfei, Tian Hui, Chen Ji, Chen Lijun. 2015. The application of low pressure gas adsorption to the characterization of pore size distribution for shales: An example from southeastern Chongqing area[J]. Natural Gas Geoscience, 26(9): 1719−1728 (in Chinese with English abstract).
[19] Li Yang, Zhang Yugui, Zhang Lang, Hou Jingling. 2019. Characterization on pore structure of tectonic coals based on the method of mercury intrusion, carbon dioxide adsorption and nitrogen adsorption[J]. Journal of China Coal Society, 44(4): 1188−1196 (in Chinese with English abstract).
[20] Li Yuxi, Qiao Dewen, Jiang Wenli, Zhang Chunhe. 2011. Gas content of gas–bearing shale and its geological evaluation summary[J]. Geological Bulletin of China, 30(Z1): 308−317 (in Chinese with English abstract).
[21] Liao Shenbing, Shi Gang, Li Jianqing, Zhen Hongjun, Zhou Daorong, Wang Cunzhi, Huang Ning. 2021. Well WWD1 encountered Permian Gufeng Formation shale gas in Wangjiang area, Anhui[J]. Geology in China, 48(5): 1657−1658 (in Chinese).
[22] Liu J W, Li P C, Sun Z Y, Lu Z W, Du Z H, Liang H B, Lu D T. 2017. A new method for analysis of dual pore size distributions in shale using nitrogen adsorption measurements[J]. Fuel, 210: 446−454. doi: 10.1016/j.fuel.2017.08.067
[23] Liu K, Ostadhassan M. 2019. The impact of pore size distribution data presentation format on pore structure interpretation of shales[J]. Advances in Geo–Energy Research, 3(2): 187−197.
[24] Liu K, Ostadhassan M, Sun L, Zou J, Yuan Y, Gentzis T, Zhang Y, Carvajal–Ortiz H, Rezaee R. 2019. A comprehensive pore structure study of the Bakken Shale with SANS, N2 adsorption and mercury intrusion[J]. Fuel, 245: 274−285. doi: 10.1016/j.fuel.2019.01.174
[25] Liu Weixin, Yu Linjie, Zhang Wentao, Fan Ming, Bao Fang. 2016. Characteristics of microscopic pore structure of shale of Longmaxi Formation in Southeast Sichuan[J]. Marine Geology and Quaternary Geology, 36(3): 127−134 (in Chinese with English abstract).
[26] Peng Xiaodong, Xu Jinlong, Fang Chaogang, Shen Shihao. 2022. Sequence stratigraphic characteristics and shale gas exploration prospect of Middle Permian Qixia Formation in the Xuancheng–Guangde Basin[J]. East China Geology, 43(2): 154−166 (in Chinese with English abstract).
[27] Ritter H L, Drake L C. 1945. Pressure porosimeter and determination of complete macropore–size distributions[J]. Industrial and Engineering Chemistry Analytical Edition, 17(12): 782−786. doi: 10.1021/i560148a013
[28] Shao Xinhe, Pang Xiongqi, HuTao, Xu Tianwu, Xu Yuan, Tang Ling, Li Hui, Li Longlong. 2019. Microscopic characteristics of pores in Es3 shales and its significances for hydrocarbon retention in Dongpu Sag, Bohai Bay Basin[J]. Oil and Gas Geology, 40(1): 67−77 (in Chinese with English abstract).
[29] Sun M D, Yu B S, Hu Q H, Zhang Y F, Li B, Yang R, Yuri B M, Cheng G. 2017. Pore characteristics of Longmaxi shale gas reservoir in the Northwest of Guizhou, China: Investigations using small–angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm[J]. International Journal of Coal Geology, 171: 61−68. doi: 10.1016/j.coal.2016.12.004
[30] Tian Hua, Zhang Shuichang, Liu Shaobo, Zhang Hong. 2012. Determination of organic–rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica, 33(3): 419−427 (in Chinese with English abstract).
[31] Wang F T, Guo S B. 2018. Influential factors and model of shale pore evolution: A case study of a continental shale from the Ordos Basin[J]. Marine and Petroleum Geology, 102: 271−282.
[32] Wu Songtao, Zou Caineng, Zhu Rukai, Yuan Xuanjun, Yao Jinli, Yang Zhi, Sun Liang, Bai Bin. 2015. Reservoir quality characterization of upper Triassic Chang 7 shale in Ordos Basin[J]. Earth Science——Journal of China University of Geosciences, 40(11): 1810−1823 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.162
[33] Xiong Wei, Guo Wei, Liu Honglin, Gao Shusheng, Hu Zhiming, Yang Farong. 2012. Reservoir characteristics and isothermal adsorption characteristics of shale[J]. Natural Gas Industry, 32(1): 113−116,130 (in Chinese with English abstract).
[34] Yang Bowei, Shi Wanzhong, Zhang Xiaoming, Xu Xiaofeng, Liu Yuzuo, Bai Luheng, Yang Yang, Chen Xianglin. 2024. Pore structure characteristics and gas-bearing properties of shale gas reservoirs of Lower Carboniferous Dawuba Formation in southern Guizhou[J]. Lithologic Reservoirs, 36(1): 45−58 (in Chinese with English abstract).
[35] Yang Qin, Su Siyuan, Li Ang, Zhao Zhenduo, Xin Jian, Li Xuesong, Jing Cui, Zhang Jiahao, Liang Chao, Sun Yue. 2022. Influence of pore type on the occurrence state of shale gas: Taking Wufeng–Longmaxi formation shale in Changning area of southern Sichuan as an example[J]. Journal of China University of Mining and Technology, 51(4): 704−717 (in Chinese with English abstract).
[36] Yang Rui, He Sheng, Hu Dongfeng, Zhang Hanrong, Zhang Jiankun. 2015. Pore structure characteristics and main controlling factors of Wufeng–Longmaxi shale in Jiaoshiba area[J]. Geological Science and Technology Information, 34(5): 105−113 (in Chinese with English abstract).
[37] Yu Bingsong. 2012. Particularity of shale gas reservoir and its evaluation[J]. Earth Science Frontiers, 19(3): 252−258 (in Chinese with English abstract).
[38] Yu Yuxi, Wang Zongxiu, Zhang Kaixun, Chen Ming. 2020. Advances in quantitative characterization of shale pore structure by using fluid injection methods[J]. Journal of Geomechanics, 26(2): 201−210 (in Chinese with English abstract).
[39] Zhang Baomin, Cai Quansheng, Chen Xiaohong, Wang Chuanshang, Zhang Guotao, Chen Lin, Li Peijun, Li Yangui. 2021. Reservoir characteristics and gas–bearing capacity of the Wufeng–Longmaxi Formation in the Well Eyy2, east Huangling Uplift, western Hubei Province[J]. Geology in China, 48(5): 1485−1498 (in Chinese with English abstract).
[40] Zhang Jizhen, Li Xianqi, Zou Xiaoyan, Xie Zengye, Zhang Xueqing, Li Yangyang, Wang Feiyu. 2021. Pore structure characteristics of a marine–continental coal–bearing shale reservoir and its effect on the shale gas–containing property[J]. Geochimica, 50(5): 478−491 (in Chinese with English abstract).
[41] Zhang P F, Lu S F, Li J Q. 2019. Characterization of pore size distributions of shale oil reservoirs: A case study from Dongying sag, Bohai Bay basin, China[J]. Marine and Petroleum Geology, 100: 297−308. doi: 10.1016/j.marpetgeo.2018.11.024
[42] Zhao Pei, Li Xianqing, Tian Xingwang, Su Guiping, Zhang Mingyang, Guo Man, Dong Zeliang, Sun Mengmeng, Wang Feiyu. 2014. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Geoscience, 25(6): 947−956 (in Chinese with English abstract).
[43] Zhu Wenbo, Zhang Xunhua, Zhou Daorong, Fang Chaogang, Li Jianqing, Huang Zhenqing. 2021. New cognition on pore structure characteristics of Permian marine shale in the Lower Yangtze Region and its implications for shale gas exploration[J]. Natural Gas Industry, 41(7): 41−55 (in Chinese with English abstract).
[44] 白卢恒, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 杨洋, 冯芊, 曹沈厅. 2021. 下扬子皖南宣泾地区二叠系海相页岩特征及其沉积环境[J]. 地球科学, 46(6): 2204−2217.
[45] 毕赫, 姜振学, 李鹏, 李卓, 唐相路, 张定宇, 许野. 2014. 渝东南地区黔江凹陷五峰组——龙马溪组页岩储层特征及其对含气量的影响[J]. 天然气地球科学, 25(8): 1275−1283. doi: 10.11764/j.issn.1672-1926.2014.08.1275
[46] 曹涛涛, 邓模, 刘虎, 曹清古, 刘光祥. 2021. 吴家坪组页岩储层特征及甲烷吸附能力——以鄂西利川地区为例[J]. 中国矿业大学学报, 50(1): 138−153.
[47] 陈洁. 2021. 贵州凤冈地区早寒武世牛蹄塘组页岩孔隙结构特征[J]. 华东地质, 42(3): 359−366.
[48] 陈尚斌, 朱炎铭, 王红岩, 刘洪林, 魏伟, 方俊华. 2012. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 37(3): 438−444.
[49] 陈洋, 唐洪明, 廖纪佳, 罗超, 赵圣贤, 郑马嘉, 钟权. 2022. 基于埋深变化的川南龙马溪组页岩孔隙特征及控制因素分析[J]. 中国地质, 49(2): 472−484. doi: 10.12029/gc20220209
[50] 付常青. 2017. 渝东南五峰组—龙马溪组页岩储层特征与页岩气富集研究[D]. 徐州: 中国矿业大学, 1–209.
[51] 黄保家, 施荣富, 赵幸滨, 周刚. 2013. 下扬子皖南地区古生界页岩气形成条件及勘探潜力评价[J]. 煤炭学报, 38(5): 877−882.
[52] 姜涛, 金之钧, 刘光祥, 胡宗全, 刘全有, 刘忠宝, 王鹏威, 王濡岳, 杨滔, 王冠平. 2021. 四川盆地元坝地区自流井组页岩储层孔隙结构特征[J]. 石油与天然气地质, 42(4): 909−918.
[53] 姜振学, 唐相路, 李卓, 黄何鑫, 杨佩佩, 杨潇, 李卫兵, 郝进. 2016. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 23(2): 126−134.
[54] 李建青, 章诚诚, 黄正清, 方朝刚, 吴通, 邵威, 周道容, 滕龙, 王元俊, 黄宁. 2021. 下扬子复杂构造区超高压含气层的发现及油气富集关键要素[J]. 地质通报, 40(4): 577−585. doi: 10.12097/j.issn.1671-2552.2021.04.014
[55] 李倩文, 唐令, 庞雄奇. 2020. 页岩气赋存动态演化模式及含气性定量评价[J]. 地质论评, 66(2): 457−466.
[56] 李琪琪, 徐尚, 陈科, 宋腾, 孟凡洋, 何生, 陆永潮, 石万忠, 苟启洋, 王雨轩. 2022. 下扬子地区上二叠统页岩气成藏条件分析[J]. 中国地质, 49(2): 383−397.
[57] 李腾飞, 田辉, 陈吉, 程礼军. 2015. 低压气体吸附法在页岩孔径表征中的应用——以渝东南地区页岩样品为例[J]. 天然气地球科学, 26(9): 1719−1728.
[58] 李阳, 张玉贵, 张浪, 侯金玲. 2019. 基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J]. 煤炭学报, 44(4): 1188−1196.
[59] 李玉喜, 乔德武, 姜文利, 张春贺. 2011. 页岩气含气量和页岩气地质评价综述[J]. 地质通报, 30(Z1): 308−317. doi: 10.3969/j.issn.1671-2552.2011.02.016
[60] 廖圣兵, 石刚, 李建青, 郑红军, 周道容, 王存智, 黄宁. 2021. 安徽望江地区WWD1井钻遇二叠系孤峰组页岩气[J]. 中国地质, 48(5): 1657−1658. doi: 10.12029/gc20210526
[61] 刘伟新, 俞凌杰, 张文涛, 范明, 鲍芳. 2016. 川东南龙马溪组页岩微观孔隙结构特征[J]. 海洋地质与第四纪地质, 36(3): 127−134.
[62] 彭晓东, 徐锦龙, 方朝刚, 沈仕豪, 章诚诚. 2022. 宣广盆地中二叠世栖霞组层序地层特征及页岩气勘探前景[J]. 华东地质, 43(2): 154−166.
[63] 邵新荷, 庞雄奇, 胡涛, 徐田武, 徐源, 唐令, 李慧, 李龙龙. 2019. 渤海湾盆地东濮凹陷沙三段泥页岩储层孔隙微观特征及其对油气滞留的意义[J]. 石油与天然气地质, 40(1): 67−77. doi: 10.11743/ogg20190107
[64] 田华, 张水昌, 柳少波, 张洪. 2012. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 33(3): 419−427.
[65] 吴松涛, 邹才能, 朱如凯, 袁选俊, 姚泾利, 杨智, 孙亮, 白斌. 2015. 鄂尔多斯盆地上三叠统长7段泥页岩储集性能[J]. 地球科学(中国地质大学学报), 40(11): 1810−1823.
[66] 熊伟, 郭为, 刘洪林, 高树生, 胡志明, 杨发荣. 2012. 页岩的储层特征以及等温吸附特征[J]. 天然气工业, 32(1): 113−116,130. doi: 10.3787/j.issn.1000-0976.2012.01.025
[67] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 2024. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 36(1): 45−58. doi: 10.12108/yxyqc.20240105
[68] 杨钦, 苏思远, 李昂, 赵振铎, 邢健, 李雪松, 井翠, 张家浩, 梁超, 孙越. 2022. 孔隙类型对页岩气赋存状态的影响——以川南长宁地区五峰组—龙马溪组页岩为例[J]. 中国矿业大学学报, 51(4): 704−717. doi: 10.3969/j.issn.1000-1964.2022.4.zgkydxxb202204008
[69] 杨锐, 何生, 胡东风, 张汉荣, 张建坤. 2015. 焦石坝地区五峰组—龙马溪组页岩孔隙结构特征及其主控因素[J]. 地质科技情报, 34(5): 105−113.
[70] 于炳松. 2012. 页岩气储层的特殊性及其评价思路和内容[J]. 地学前缘, 19(3): 252−258.
[71] 俞雨溪, 王宗秀, 张凯逊, 程明. 2020. 流体注入法定量表征页岩孔隙结构测试方法研究进展[J]. 地质力学学报, 26(2): 201−210.
[72] 张保民, 蔡全升, 陈孝红, 王传尚, 张国涛, 陈林, 李培军, 李炎桂. 2021. 鄂西黄陵隆起东缘鄂宜页2井五峰组—龙马溪组页岩气储层特征与含气性[J]. 中国地质, 48(5): 1485−1498. doi: 10.12029/gc20210513
[73] 张吉振, 李贤庆, 邹晓艳, 谢增业, 张学庆, 李阳阳, 王飞宇. 2021. 海陆过渡相煤系页岩孔隙结构特征及其对含气性的影响[J]. 地球化学, 50(5): 478−491.
[74] 赵佩, 李贤庆, 田兴旺, 苏桂萍, 张明扬, 郭曼, 董泽亮, 孙萌萌, 王飞宇. 2014. 川南地区龙马溪组页岩气储层微孔隙结构特征[J]. 天然气地球科学, 25(6): 947−956. doi: 10.11764/j.issn.1672-1926.2014.06.947
[75] 朱文博, 张训华, 周道容, 方朝刚, 李建青, 黄正清. 2021. 下扬子地区二叠系海相页岩孔隙特征新认识及页岩气勘探启示[J]. 天然气工业, 41(7): 41−55. doi: 10.3787/j.issn.1000-0976.2021.07.005
-