Groundwater dependent ecosystems assessment in catchment scale of semi−arid regions: A case study in the Hailiutu catchment of the Ordos Plateau
-
摘要:
研究目的 综合利用地表、地下信息,探索建立适用于半干旱区流域尺度植被依赖地下水程度评价的新方法,以期为干旱区地下水合理开发利用与生态保护修复提供技术支撑。
研究方法 以黄河流域中游鄂尔多斯高原海流兔河流域为研究区,选取地下水位埋深、土壤类型、干旱期蒸散发、植被覆盖度等涵盖水、土、气、生4个圈层的评价指标,以野外数据采集和遥感解译为主要手段,获取以上指标的空间分布,最后在GIS平台中采用综合评价的方法确定依赖地下水生态系统的分布及依赖程度分级。
研究结果 评价结果表明,依赖地下水程度非常高和高的植被分布面积占流域总面积的10.2%。尽管依赖地下水植被生态系统在整个流域占比不高,但由于地下水提供了比降水更加稳定的供水水源,该地区的生物多样性与生物量远高于其他地区,具有极其重要的生态价值。
结论 通过场地尺度地下水依赖程度的对比,该方法评价的结果是可靠的,在其他的半干旱区也具有一定的适用性;指标灵敏度分析表明,土壤类型与地下水位埋深是最敏感的指标,因此在野外调查时应加强这两类指标的数据采集。
Abstract:This paper is the result of hydrogeological survey engineering.
Objective A new evaluation method for catchment scale dependent groundwater ecosystem in semi-arid region was established. The method will include both surface and sub−surface information and provides a technical support to groundwater resources development and ecosystem protection in semi−arid areas.
Methods Taking the Hailiutu catchment in the Ordos Plateau as the study area. Four indicators including depth to water table, soil types, vegetation coverage and evapotranspiration were selected and the spatial distributions of these indicators were determined based on field survey and remote sensing interpretation. Finally, a systematic assessment was performed in a GIS platform to identify the distribution of GDE and the degree of dependency.
Results The results indicate that the areas very high and high dependent on groundwater accounts for 10.2%. Although the areas are small, biodiversity and bio-mass in such place are much higher with high ecological value than the that of others due to the contribution of groundwater to vegetation growth.
Conclusions Based on the comparison between this study and site studies, the results have a good agreement and are reliable, indicating that the proposed method is applicable to other similar regions. The sensitivity analysis shows that the most sensitive parameters are soil types and depth to water table that should be paid more attention during data collection in field works.
-
-
表 1 依赖地下水植被(GDEs)评价指标及其量化分级
Table 1. Indices and their classification of groundwater dependent ecosystems assessments
依赖程度分级
评价指标非常低 低 中等 高 非常高 备注 Ⅰ(1分) Ⅱ(2分) Ⅲ(3分) Ⅳ(4分) Ⅴ(5分) 评分标准按5级分类 水位埋深/m >15 m 10~15 m 5~10 m 2~5 m <2 m 依据常见水位埋深分区,结合植被与地下水位关系确定 土壤类型 1 2 3 4 5 根据土壤中砂质和黏质含量的高低,将土壤按持水能力由低到高划分 植被覆盖度/% <10% 10%~30% 30%~45% 45%~60% >60% 依据常用植被覆盖度划分标准 蒸散发ET/(mm/d) <1.2 1.2~2.1 2.1~3.0 3.0~4.9 >4.9 根据数据统计特征,按照自然断点法(Natural Breaks- Jenks)划分 表 2 植被对地下水依赖程度综合指数评价等级划分
Table 2. Index classification of comprehensive groundwater dependent ecosystems assessments
评价指数 依赖程度分级 Ⅰ(非常低) Ⅱ(低) Ⅲ(中等) Ⅳ(高) Ⅴ(非常高) R R≤1.75 1.75<R≤2.5 2.5<R≤3.25 3.25<R≤4.0 R>4.0 表 3 研究区土壤类型分级
Table 3. Classification of soil type in the study area
等级 赋值评分 主要土壤类型 Ⅰ(非常低) 1 侵蚀黄沙土、固定半固定风沙土、沙质草甸风沙土、多砾绵沙土等 Ⅱ(低) 2 黄绵土、绵沙土、轻沙泥田等 Ⅲ(中等) 3 沙化栗钙土、变质栗钙土、料姜硬红土等 Ⅳ(高) 4 侵蚀黄土、沙黑炉土、沙盖红黄土等 Ⅴ(非常高) 5 沙潮土、沙质沼泽土、轻度马尿盐化草甸土、夹沙壤质灰淤土等 -
[1] Bertrand G, Goldscheider N, Gobat J M, Hunkeler D. 2012. Review: from multi−scale conceptualization to a classification system for inland groundwater−dependent ecosystems[J]. Hydrogeology Journal, 20: 5−25. doi: 10.1007/s10040-011-0791-5
[2] Brown J, Bach L, Aldous A, Wyers A, DeGagné J. 2011. Groundwater−dependent ecosystems in Oregon: An assessment of their distribution and associated threats[J]. Frontiers in Ecology and the Environment, 9(2): 97−102. doi: 10.1890/090108
[3] Cui Xudong, Tao Zhengping, Zhang Jun, Wang Xiaoyong. 2011. Regional evapotranspiration calculation using SEBS method and its reliability analysis: A case study of Hailiutu River in Ordos Plateau[J]. Site Investigation Science and Technology, 4(6): 10−12 (in Chinese with English abstract).
[4] Dang Xueya, Lu Na, Gu Xiaofan, Jin Xiaomei. 2019. Groundwater threshold of ecological vegetation in Qaidam Basin[J]. Hydrogeology & Engineering Geology, 46(3): 1−7 (in Chinese with English abstract).
[5] Eamus D, Froend R. 2006. Groundwater−dependent ecosystems: The where, what and why of GDEs[J]. Australian Journal of Botany, 54(2): 91−96. doi: 10.1071/BT06029
[6] Eamus D, Froend R, Loomes R, Hose G, Murray B. 2006. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater−dependent vegetation[J]. Australian Journal of Botany, 54(2): 97−114. doi: 10.1071/BT05031
[7] Eamus D, Zolfaghar S, Villalobos−Vega R, Cleverly J, Huete A. 2015. Groundwater−dependent ecosystems: Recent insights from satellite and field−based studies[J]. Hydrology and Earth System Sciences, 19(10): 4229−4256. doi: 10.5194/hess-19-4229-2015
[8] Fang Shibo, Tan Kaiyan, Liu Jiandong, Zhang Xinshi. 2009. Vegetation cover and its relationship with environmental factors at different scales in the Ordos region of China[J]. Chinese Journal of Plant Ecology, 33(1): 25−33 (in Chinese with English abstract).
[9] Glanville K, Ryan T, Tomlinson M, Muriuki G, Ronan M, Pollett A. 2016. A method for catchment scale mapping of groundwater−dependent ecosystems to support natural resource management (Queensland, Australia)[J]. Environmental Management, 57(2): 432−449. doi: 10.1007/s00267-015-0612-z
[10] Gou S, Gonzales S, Miller G R. 2015. Mapping potential groundwater−dependent ecosystems for sustainable management[J]. Ground Water, 53(1): 99−110. doi: 10.1111/gwat.12169
[11] Hou Guangcai, Zhao Zhenhong. 2017. Groundwater and Ecological Environment of Ordos Energy Base[M]. Beijing: Geological Publishing House (in Chinese).
[12] Hou Guangcai, Zhang Maosheng, Wang Yonghe, Zhao Zhenhong, Liang Yongping, Tao Zhengping, Yang Yuncheng, Li Qing, Yin Lihe, Wang Xiaoyong, Wang Dong, Li Ying. 2007. Groundwater resources of the Ordos Basin and its development and utilization[J]. Northwestern Geology, 40(1): 7−34 (in Chinese with English abstract).
[13] Howard J, Merrifield M, Maya M A. 2010. Mapping groundwater dependent ecosystems in California[J]. Plos One, 5(6): e11249. doi: 10.1371/journal.pone.0011249
[14] Hute A, Justice C, Leewen W V. 1996. MODIS Vegetation Index (MODIS13) Algorithm Theoretical Basis Document[M]. New York: NASA Press.
[15] Iongel D L, José L A, Loretto A. 2022. A new method to map groundwater−dependent ecosystem zones in semi−arid environments: A case study in Chile[J]. Science of the Total Environment, 816: 1−14.
[16] Jia W H, Yin L H, Zhang M S, Zhang X X, Zhang J, Tang X P, Dong J Q. 2021. Quantification of groundwater recharge and evapotranspiration along a semi−arid wetland transect using diurnal water table fluctuations[J]. Journal of Arid Land, 13(5): 455−469.
[17] Jin Xiaomei, Zhang Qiang, Yang Chunjie. 2013. Research on vegetation distribution and its relationship with topography and groundwater depth in the Hailiutu River Basin[J]. Earth Science Frontiers, 20(3): 227−233 (in Chinese with English abstract).
[18] Jin S M, Sader S A. 2005. MODIS time−series imagery for forest disturbance detection and quantification of patch size effects[J]. Remote Sensing and Environment, 99(4): 462−470. doi: 10.1016/j.rse.2005.09.017
[19] Knight J F, Lunetta R S, Ediriwickrema J, Khorram S. 2006. Regional scale land−cover characterization using MODIS−NDVI 250 m multi−temporal imagery: A phenology based approach[J]. Mapping Sciences & Remote Sensing, 43(1): 1−23.
[20] King M D, Grerenstone R. 1999. EOS Reference Handbook: A Guide to NASA’s Earth Science Enterprise and the Earth Observing System[M]. Greenbelt: NASA/GSFC.
[21] Lei Lei, Wang Shuangming, Huang Jinting, Pan Guixing. 2015. The relationship between the vegetation coverage of growing season and climate factors of Hai Liutu River basin[J]. Journal of Northwest University (Natural Science Edition), 45(2): 327−332 (in Chinese with English abstract).
[22] Liu C, Liu H, Yu Y, Zhao W, Yetemen O. 2021. Mapping groundwater−dependent ecosystems in arid Central Asia: Implications for controlling regional land degradation[J]. Science of the Total Environment, 797(10): 149027.
[23] Liu Hu, Zhao Wenzhi, Li Zhongkai. 2018. Ecohydrology of groundwater dependent ecosystems: A review[J]. Advances in Earth Science, 33(7): 741−750 (in Chinese with English abstract).
[24] Lü J J, Wang X S, Zhou Y X, Qian K Z, Wan L, Eamus D, Tao Z P. 2013. Groundwater−dependent distribution of vegetation in Hailiutu River catchment, a semi−arid region in China[J]. Ecohydrology, 6(1): 142−149. doi: 10.1002/eco.1254
[25] Lü Jingjing. 2013. Effect of Groundwater on Vegetation Index in Hailiutu River Catchment[D]. Beijing: China University of Geosciences, 1−127 (in Chinese with English abstract).
[26] Münch Z, Conrad J. 2007. Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa[J]. Hydrogeology Journal, 15(1): 19−28. doi: 10.1007/s10040-006-0125-1
[27] Purvis K, Wright V P. 2009. Calcretes related to phreatophytic vegetation from the Middle Triassic Otter Sandstone of South West England[J]. Sedimentology, 38(3): 539−551.
[28] Song G, Huang J T, Ning B H, Wang J W, Zeng L. 2021. Effects of groundwater level on vegetation in the arid area of western China[J]. China Geology, 4(3): 527−535.
[29] Wang Z, Wang L J, Shen J M, Nie Z L, Meng L Q, Cao L, Wei S B, Zeng X F. 2021. Groundwater characteristics and climate and ecological evolution in the Badain Jaran Desert in the southwest Mongolian Plateau[J]. China Geology, 4(3): 421−432.
[30] Wang Xiaoyong, Yin Lihe, Dai Zebing, Gao Feng, Yang Zhong. 2014. A study of evapotranspiration in Hailiutu River Basin, Ordos[J]. Northwestern Geology, 47(1): 244−248 (in Chinese with English abstract).
[31] Yang Zeyuan, Wang Wenke, Huang Jinting, Duan Lei. 2006. Research on buried depth of eco−safety about groundwater tablein the blown−sand region of the Northern Shaanxi Province[J]. Journal of Northwest A & F University (Natural Science Edition), 34(8): 67−74 (in Chinese with English abstract).
[32] Yin L H, Xu D D, Jia W H, Zhang X X, Zhang J. 2021. Responses of phreatophyte transpiration to falling water table in hyper−arid and arid regions, Northwest China[J]. China Geology, 4(3): 410−420.
[33] Yin L H, Zhou Y X, Huang J T, Wenninger J, Zhang E Y, Hou G C, Dong J Q. 2015. Interaction between groundwater and trees in an arid site: Potential impacts of climate variation and groundwater abstraction on trees[J]. Journal of Hydrology, 528: 435−448. doi: 10.1016/j.jhydrol.2015.06.063
[34] Zhang Jun, Zhao Zhenhong, Ma Hongyun, Wang dong. 2014. Study on relationship between groundwater and vegetation in arid and semiarid region based on survival regions of plant species[J]. Research of Soil and Water Conservation, 21(5): 240−243 (in Chinese with English abstract).
[35] Zhang Jun, Zhao Zhenhong, Wang Dong, Ma Hongyun, Guo Li. 2013. The quantitative relationship between vegetations and groundwater depth in shallow groundwater area of Ordos Plateau[J]. Journal of Arid Land Resources and Environment, 27(4): 141−145 (in Chinese with English abstract).
[36] Zhang Maosheng, Dang Xueya. 2014. Water Resources and Environmental Problems in Arid and Semi−arid Areas: A Case Study of Yulin Energy and Chemical Industry Base in Northern Shaanxi Province [M]. Beijing: Science Press (in Chinese).
[37] Zhang Xucai, Jin Xiaomei, Zhu Xiaoqian, Zhang Jing. 2019. Spatial−temporal characteristics of vegetation index and its impact factors in the Golmud River Basin[J]. Geoscience, 33(2): 461−468 (in Chinese with English abstract).
[38] Zhang Yuhang, Wang Xiaolin, Hu Guangcheng. 2012. Evapotranspiration estimation of Hailiutu River Basin based on MODIS data[J]. Earth Science: Journal of China University of Geosciences, 37(2): 375−380 (in Chinese with English abstract).
[39] Zhang Zhiqiang, Liu Huan, Zuo Qiting, Yu Jintao, Li Yang. 2021. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000−2019[J]. Resources Science, 43(4): 849−858 (in Chinese with English abstract).
[40] Zhao Ming. 2021. Interaction Mechanism between Subsurface Hydrological Process and Vegetation Ecology in Mu Us Sandy Land[D]. Xi’an: Chang’an University, 1−165 (in Chinese with English abstract).
[41] Zhou Shenghui, Liu Tingxi, Duan Limin, Ji Ru, Zhang Chunyu. 2021. Hydrogeological characteristics of underwater aquifer in the Hailiutu River Basin[J]. Journal of Desert Research, 41(5): 103−110 (in Chinese with English abstract).
[42] Zhu Li, Xu Guiqing, Li Yan, Tang Lisong, Niu Ziru. 2017. Relationships among plant species diversity, biomass and the groundwater table in the Hailiutu River basin[J]. Acta Ecologica Sinica, 37(6): 1912−1921 (in Chinese with English abstract).
[43] 崔旭东, 陶正平, 张俊, 王晓勇. 2011. 基于SEBS方法的蒸散量计算及可靠度分析—以鄂尔多斯高原海流兔河为例[J]. 勘察科学技党术, 4(6): 10−12.
[44] 党学亚, 卢娜, 顾小凡, 金晓媚. 2019. 柴达木盆地生态植被的地下水阈值[J]. 水文地质工程地质, 46(3): 1−7.
[45] 房世波, 谭凯炎, 刘建栋, 张新时. 2009. 鄂尔多斯植被盖度分布与环境因素的关系[J]. 植物生态学报, 33(1): 25−33. doi: 10.3773/j.issn.1005-264x.2009.01.003
[46] 侯光才, 赵振宏. 2017. 鄂尔多斯能源基地地下水及生态环境[M]. 北京: 地质出版社.
[47] 侯光才, 张茂省, 王永和, 赵振宏, 梁永平, 陶正平, 杨郧城, 李清, 尹立河, 王晓勇, 王冬, 李瑛. 2007. 鄂尔多斯盆地地下水资源与开发利用[J]. 西北地质, 40(1): 7−34. doi: 10.3969/j.issn.1009-6248.2007.01.002
[48] 金晓媚, 张强, 杨春杰. 2013. 海流兔河流域植被分布与地形地貌及地下水位关系研究[J]. 地学前缘, 20(3): 227−233.
[49] 雷磊, 王双明, 黄金廷, 潘桂行. 2015. 海流兔河流域植被生长季的覆盖度与气候因子关系研究[J]. 西北大学学报(自然科学版), 45(2): 327−332.
[50] 刘鹄, 赵文智, 李中恺. 2018. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 33(7): 741−750. doi: 10.11867/j.issn.1001-8166.2018.07.0741
[51] 吕京京. 2013. 海流兔河流域地下水对植被指数分布的影响研究[D]. 北京: 中国地质大学(北京), 1−127.
[52] 王晓勇, 尹立河, 戴泽兵, 高峰, 杨忠. 2014. 鄂尔多斯盆地海流兔河流域地表蒸散发研究[J]. 西北地质, 47(1): 244−248. doi: 10.3969/j.issn.1009-6248.2014.01.022
[53] 杨泽元, 王文科, 黄金廷, 段磊. 2006. 陕北风沙滩地区生态安全地下水位埋深研究[J]. 西北农林科技大学学报(自然科学版), 34(8): 67−74.
[54] 张俊, 赵振宏, 马洪云, 王冬. 2014. 基于物种生存域的干旱半干旱区地下水与植被关系研究[J]. 水土保持研究, 21(5): 240−243.
[55] 张俊, 赵振宏, 王冬, 马洪云, 郭莉. 2013. 鄂尔多斯高原地下水浅埋区植被与地下水埋深关系[J]. 干旱区资源与环境, 27(4): 141−145.
[56] 张茂省, 党学亚. 2014. 干旱半干旱地区水资源及其环境问题: 陕北榆林能源化工基地例析[M]. 北京: 科学出版社.
[57] 张绪财, 金晓媚, 朱晓倩, 张京. 2019. 格尔木河流域植被指数时空分布及其影响因素研究[J]. 现代地质, 33(2): 461−468.
[58] 张雨航, 王晓林, 胡光成. 2012. 基于MODIS数据的海流兔河流域蒸散量的计算[J]. 地球科学(中国地质大学学报), 37(2): 375−380.
[59] 张志强, 刘欢, 左其亭, 于锦涛, 李阳. 2021. 2000—2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 43(4): 849−858.
[60] 赵明. 2021. 毛乌素沙地植被生态与地下水文过程互馈机制研究[D]. 西安: 长安大学, 1−165.
[61] 周生辉, 刘廷玺, 段利民, 冀如, 张春雨. 2021. 毛乌素沙地海流兔河流域水文地质特征[J]. 中国沙漠, 41(5): 103−110.
[62] 朱丽, 徐贵青, 李彦, 唐立松, 牛子儒. 2017. 物种多样性及生物量与地下水位的关系—以海流兔河流域为例[J]. 生态学报, 37(6): 1912−1921.
-