North−south−trending structure in Jilong Valley, Xizang and its effect on engineering geological safety
-
摘要:
研究目的 吉隆沟将是未来西藏穿越喜马拉雅山脉重大工程建设的重要区段,但是对该区基础地质特征认识较为薄弱,特别是对南北向构造的认识不足可能造成潜在的工程建设风险。
研究方法 本文通过野外地质调查、节理统计、音频大地电磁测深、地热调查及U系测年方法系统刻画吉隆沟南北向断层与节理构造特征,分析与南北向构造相关的主要工程地质风险。
研究结果 吉隆沟南北向断层普遍规模较小,少数切穿高喜马拉雅带,同时还是吉隆盆地的控盆断层。吉隆盆地的形成及沉积演化受控于其东界与内部4条南北向正断层,盆地东界断层附近震积岩及内部大量同沉积断层指示盆地具间歇性活动特征。南北向节理呈区域透入性分布,应力分析显示受控于与南北向裂谷相似的应力场。
结论 吉隆沟南北向构造潜在的工程地质风险源包括全新世活动性及其对区域地热和崩塌、滑坡、泥石流等地质灾害的控制作用。提出南北向构造是吉隆沟重大工程规划建设地质安全风险评价的重点关注方向之一。
Abstract:This paper is the result of geological survey engineering.
Objective Jilong Valley will serve as an important segment for significant engineering construction across the Himalayas in Xizang in the coming years. However, the systematic understanding of the fundamental geological characteristics of this area remains insufficient, especially the inadequate comprehension of N−S−trending structures, which may cause unexpected risks during the engineering construction.
Methods This article systematically delineates the structural characteristics of the N−S−trending faults and joints in Jilong Valley through a combination of field geological surveys, joint statistics, audio−frequency magnetotellurics, geothermal investigations, and calcite U−series dating, in order to analyze the primary engineering geological risks associated with these N−S−trending structures.
Results The N−S−trending faults in Jilong Valley are generally small in scale, with a few cutting through the high Himalayan belt, and are also basin−controlling faults in the Jilong Basin. The formation and sedimentary evolution of the Jilong Basin are controlled by four N−S−trending normal faults in its eastern boundary and interior. The presence of seismic rocks near the eastern boundary faults and a large number of syn−sedimentary faults indicate intermittent activity in the basin. The N−S−trending joints exhibit a regional penetrative distribution, and the stress analysis reveals that they are controlled by a stress field similar to that of the N−S−trending rift.
Conclusions The potential engineering geological risk sources associated with the N−S−trending structure in Jilong Valley encompass Holocene activity, as well as the control exerted over regional geothermal activity and geological disasters, including landslide, debris flows and related hazards. It is proposed that the N−S oriented structure represents one of the key focal points for geological safety risk assessment in the planning and construction of major engineering projects in Jilong Valley.
-
Key words:
- Jilong Basin /
- N−S−trending structure /
- geological safety risk /
- geological survey engineering /
- Jilong Valley /
- Himalayan /
- Xizang
-
-
表 1 吉隆沟内南北走向节理特征
Table 1. Characteristics of north-south trending joints of Jilong Valley
节理点位 岩石地层 岩性 节理特征 东倾节理 西倾节理 交线(σ2) 应力方向(σ1) 倾向 倾角 倾向 倾角 倾向 倾角 倾向 倾角 特提斯喜马拉雅带 D2106 拉弄拉组 中薄层状灰岩 5~20条/m,形成共轭剪节理,节理中见方解石脉 133 75 280 69.5 209 42 24 48 D2107 聂聂雄拉组 中薄层灰岩 两组共轭,并有大量方解石脉 104 73 262 59.3 186 22 346 67 D2109 普普嘎组 灰岩夹钙质砂岩 约10条/m,两组南北走向的剪节理发育 112 69 265 58.8 191 25 356 65 D2110 曲龙共巴组 钙质泥岩夹钙质砂岩 10~15条/m,两组共轭,其中一组延伸较远,节理中见大量方解石脉 100 83 261 64 186 28 344 60 D2112 色龙群 泥质灰岩 10~20条/m,两组近南北向节理共轭,节理面方解石脉充填 112 64 284 58.3 199 7 355 82 D2113 土龙群 中-厚层状灰岩 8~12条/m,两组南北走向共轭剪节理,见次级张裂脉及近水平擦痕 288 80 251 78.4 254 78 359 3 D2114 江东岩组 黑云斜长片麻岩 节理不甚发育,两组南北走向节理和一组东西走向节理 110 70 280 60 196 12 3 78 D2115 吉隆组 岩屑石英砂岩 10~15条/m,两组共轭剪节理近南北走向,切穿山体,延伸较好 93.4 59 277 84.8 6.5 6 120 76 D2116 纳兴组 岩屑石英砂岩 5~20条/m,两组近南北走向共轭剪节理,向东较为发育 94 63 278 71.5 6.4 4.7 144 83.6 D2117 纳兴组 粉砂岩、砂岩 6~9条/m,两组近南北走向节理共轭,穿越山体,偶见构造角砾 83.4 73 269 84.6 359 3.5 119 83.2 D2119 波曲组 钙质砂岩 3~5条/m,局部密集,共轭剪节理,一组延展较好,见石英脉 102 70 285 48.2 13 2.3 276 79.5 D2121 色龙群 中薄层灰岩 两组较明显南北走向节理,见方解石脉,一组延伸较远,见线理 72.1 73 269 53.5 347 15.5 201 72.5 D2122 色龙群 岩屑石英砂岩 近南北走向共轭剪节理,局部密集,切穿山体,见擦痕,偶有角砾 89.4 76 288 57.3 4.5 20 212 67.6 D2123 吉隆组 长石石英砂岩 两组近南北走向剪节理,其中一组与断层面平行,方解石充填 95.6 62 283 68 9.6 7.6 168 81.8 D2124 石器坡组 粉砂质板岩 两组近南北走向共轭剪节理,4~8条/m,其中一组较为密集 90.2 70 266 62.2 179 5.1 310 82.2 D2128 色龙群 中层状灰岩 两组近南北走向共轭剪节理,切穿山体 100 79 282 61.2 10.9 2.4 261 82.7 D2129 色龙群 中层灰岩 两组近南北走向共轭剪节理,5~20条/m,局部较密集,方解石脉充填 97 68 287 69.9 12 12.4 188 77.6 D2130 波曲组 长石石英砂岩 两组近南北向共轭剪节理,5~12条/m,切穿山体,其中一组不甚发育 89.9 52 259 76.8 173 10.4 41.8 73.4 D2144 甲村组 岩屑石英砂岩 10~15条/m,两组剪节理近南北走向,其中一组较发育 98.5 48 300 79.6 10.2 62 260 10.7 高喜马拉雅带 D2151 肉切村组 云母石英片岩 10~15条/m,共见5组节理;两组共轭剪节理近南北走向,较平直 118 48 300 53.9 28.9 1.5 147 86.9 D2152 中新世岩体 片麻状花岗岩 5~10条/m,节理面平直,两组南北走向节理充填有花岗岩脉 117 49 264 56.9 188 20.3 20 69.1 D2153 中新世岩体 花岗岩 5~8条/m,五组节理较明显;南北走向共轭剪节理其中一组较为发育 101 71 263 37.5 188 10.9 309 69.5 D2154 中新世岩体 片麻状花岗岩 节理不甚发育,3~5条/m,较平直,局部较密集 86.5 37 267 50 357 0.2 267 6.5 D2155 中新世岩体 花岗岩 节理不发育,主体为近南北走向,2~3条/m,平直,见次级节理 94.5 66 266 50.7 182 6.4 312 81.2 D2156 中新世岩体 花岗岩 不发育,1~2条/m,局部5~8条/m,南北走向共轭剪节理最明显 73.5 58 275 50.5 353 14.2 188 75.2 D2157 江东岩组 大理岩 不发育,1~2条/m,偶见西倾节理 271 67 D2158 江东岩组 黑云斜长片麻岩 不发育,1~2条/m,局部5~8条/m,节理平直,西倾较常见 80 55 284 58 2.8 17.3 178 72.6 D2159 江东岩组 眼球状片麻岩 西倾节理3~5条/m,东倾节理10~15条/m 84.3 74 262 64 173 3.3 297 84.9 注:节理产状取节理统计平均值;倾向、倾角单位为°。 表 2 吉隆沟钙华U系测年结果
Table 2. U−series dating results for travertines of Jilong Valley
编号 样品号 位置及岩性 238U
/10−9232Th
/10−12230Th/232Th
原子比g234U*
测量值230Th/238U
活度比230Th年龄/
a BP1 D2123U 雍忠日南北向断层钙华 313±0 11324±227 5.1±0.2 1044.8±3.5 0.0111±0.0003 57 2 D2146U 寺庙南北断层擦痕方解石脉 20±0 68730±1377 1.2±0.0 −492.1±8.9 0.2663±0.0088 3 D2212U 夏村古钙华 3248±11 88765±1806 35.2±0.7 90.0±2.4 0.0583±0.0003 6324±623 4 D2221U 扎龙沟南北断层处钙华 6686±25 1127±23 4056.4±84.0 284.4±2.7 0.0415±0.0002 3550±21 5 PM24-42U 夏村南北向断层新生方解石 575±1 1430818±28740 6.6±0.1 7.5±2.7 0.9899±0.0050 310726±222714 注:230Th年龄为校正值,BP代指Before Present, Present为2000A.D.。 表 3 吉隆沟温泉(钙华)与南北走向构造关系
Table 3. Relationship between hot spring (ancient travertine) and north-south trending structure of Jilong Valley
点号 地质单元 岩性 产状及规模 构造特征及成因 含水情况 时代 D2201 T1-3T 白云岩、灰岩 顺北向坡;高60 m 有东西向新断层 无水 Qp3 D2202 P2-3S 钙质砂岩 顺北向坡;高70 m,宽10 m;钙华呈层状 顺节理发育, 节理73°∠74° 无水 Qp3 D2203 P2-3S 钙质砂岩 顺东向坡;高60 m,宽60 m 顺节理发育,节理99°∠75° 含水 Qh D2204 P1j 长石石英砂岩 2处;顺东向坡;锥形,前缘宽30 m,高约15 m;见层状钙华条带 顺南北向断层发育 含少量水 Qh D2205 P2-3S 岩屑长石砂岩 顺西向坡;扇形,宽50 m,高50 m;钙华为砾石胶结物 顺南北向节理发育,265°∠67° 无水 Qp3 D2206 P2-3S 砂质灰岩,钙质砂岩 见多处,顺西向坡;平面状,高30 m,宽40 m;主体为砾石胶结物,可见条带状钙华 南北向节理发育 无水 Qp3 D2207 P2-3S 钙质砂岩 顺西向坡;见方解石纹层,也作为砾石胶结物 顺节理缝冒出,见小型断层134°∠83° 无水 Qh D2208 T1-3T、T3q 灰岩,钙质砂岩 顺东向坡;高100 m,宽10 m;坡沟多呈条带状,见生长条纹 附近有东西走向逆断层 含水 Qh D2209 P2-3S 砂岩,粉砂岩 顺西向坡;扇形,高60 m,宽30 m;砾石钙质胶结,局部条带状 为东西走向断层标志 无水 Qp D2210 D2-4b 钙质粉砂岩、砂岩 顺西向坡;高100 m,宽30 m;砾石钙质胶结 节理呈波纹状,含方解石,北侧100 m内见东西走向断层 少量水 Qh D2211 不确定 岩性不明 位于小型南向台地,杂草覆盖,见泉眼,有硫磺味 旁有古钙华锥 泉眼 Qh D2212 不确定 岩性不明 顺南向坡;呈长条状,高>100 m,宽约30 m;钙华呈层状,局部见角砾 最上一层方解石可能形成于全新世 无水 Qp3/Qh D2213 J3m 灰岩 顺南向坡;钙华极少 覆盖于坡积物及灰岩表面,推测为岩石溶蚀所致 无水 Qh D2214 S1s 粉砂质绢云板岩 见两处钙化;顺西向坡;规模小,1~3 m3 与南北向小型正断层相关,见断层泥 少量水 Qh D2216 O1-2j 钙质砂岩夹细砂岩 顺东向坡;从沟底冒出,形成小型钙化台地,现在泉水较之前变小,并经常变换泉眼出口;温度>50℃ 见南北向断层285°∠66°,东西走向地层不破碎 有水 Qh D2221 N2w 砂岩、砾岩 东西向沟;钙华台地长约200 m,宽50 m 泉水从南北走向断层破碎带附近流出 泉眼 Qh D2105 N2w 砾岩 见多处泉眼;无钙华 泉水从南北走向张节理缝流出 泉眼 Qh -
[1] Cottle J M, Searle M P, Jessup M J, Crowley J L, Law R D. 2015. Rongbuk re−visited: Geochronology of leucogranites in the footwall of the South Tibetan detachment system, Everest Region, Southern Tibet[J]. Lithos, 227: 94−106. doi: 10.1016/j.lithos.2015.03.019
[2] Du Yuansheng, Yu Wenchao. 2017. Earthquake−caused and non−earthquake−caused soft−sediment deformations[J]. Jouranl of Palaeogeography, 19(1): 65−72 (in Chinese with English abstract).
[3] Feng Yu, Ma Fengshan, Gong Chengcheng, Guo Jie, Wang Shanfei, Liu Ziceng. 2011. Data analysis method for optimized and dominant orientations of joints in rock mass[J]. Journal of Engineering Geology, 19(6): 887−892 (in Chinese with English abstract).
[4] Gao Lie, Zeng Lingsen, Hou Kejun, Guo Chunli, Tang Suohan, Xie Kejia, Hu Guyue. 2013. Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome, Southern Tibet[J]. Chinese Science Bulletin, 58(27): 2810−2822 (in Chinese with English abstract). doi: 10.1360/csb2013-58-27-2810
[5] Gao Yanchao, Gong Linfeng, Cao Jiawen, Tie Yongbo, Lu Jiayan. 2024. The distribution and risk assessment of geo−hazards in the border areas of Xizang[J]. Sedimentary Geology and Tethyan Geology, 44(3): 467−477.
[6] Guo Jing, Li Wenchang, Li Guangming, Jiao Yanjie, Liang Shengxian. 2019. Application of multi−scale integrated geophysical method in prospecting prediction of Zhaxikang Pb−Zn−Sb−Au polymetallic deposit[J]. Earth Science, 44(6): 2129−2142 (in Chinese with English abstract).
[7] Lei Qiyun, Chai Chizhang, Meng Guangkui, Du Peng. 2015. Study on active fault engineering avoidance based on tectonic activity history[J]. Journal of Engineering Geology, 23(1): 161−169 (in Chinese with English abstract).
[8] Leloup P H, Maheo G, Arnaud N, Kali E, Boutonnet, E., Liu, D Y, Liu X H, Li H B. 2010. The South Tibet Detachment shear zone in the Dinggye area: Time constraints on extrusion models of the Himalayas[J]. Earth and Planetary Science Letters, 292: 1−16. doi: 10.1016/j.jpgl.2009.12.035
[9] Liu Chunling, Qi Shengwen, Tong Liqiang, An Guoying, Li Xiaohui. 2010. Great landslides in Himalaya Mountain area and their occurrence with lithology[J]. Journal of Engineering Geology, 18(5): 669−676 (in Chinese with English abstract).
[10] Liu Chunling, Qi Shengwen, Tong Liqiang, Zhang Shishu, Zou Yu. 2016. Development characteristics of debris flows in Himalayas using remote sensing technology[J]. Journal of Engineering Geology, 24(3): 435−451 (in Chinese with English abstract).
[11] Liu Han, Li Fenqi, Zhou Fang, Li Jun, Gou Zhengbin, Yang Yang, Wang Baodi. 2018. Late Paleozoic earthquake events in the Nixiong area and its geological significance, western Lhasa block[J]. Earth Science, 43(8): 2767−2779 (in Chinese with English abstract).
[12] Liu Xiaobing, Liu Xiaohan, Leloup P H, Maheo G, Paquetie J L, Zhang Xingang, Zhou Xuejun. 2012. Ductile deformation within upper Himalaya crystalline sequence and geological implications, in Nyalam area, Southern Tibet.[J]. Chinese Science Bulletin, 57(17): 1562−1574 (in Chinese with English abstract). doi: 10.1360/csb2012-57-17-1562
[13] Marco S, Agnon A. 1995. Prehistoric earthquake deformations near Masada, Dead Sea graben[J]. Geology, 23(8): 695−698. doi: 10.1130/0091-7613(1995)023<0695:PEDNMD>2.3.CO;2
[14] Niu Xinsheng, Liu Xifang, Lü Yuanyuan, Wu Qian. 2023. Origin mechanism of thermal springs and their supply of minerals to the salt lake(Li−Rb−Cs) in the Tangqung Co watershed of Tibet. Geology in China, 50(4): 1163−1175 (in Chinese with English abstract).
[15] Pan G T, Wang L Q, Li R S, Yuan S H, Ji W H, Yin F G, Zhang W P, Wang B D. 2012. Tectonic evolution of the Qinghai−Tibet Plateau[J]. Journal of Asian Earth Sciences, 53: 3−14. doi: 10.1016/j.jseaes.2011.12.018
[16] Pan Guitang, Wang Liquan, Li Xxingzhen, Wang Jiemin, Xu Qiang. 2001. The tectonic framework and spatial allocation of the archipelagic arc−basin systems on the Qinghai−Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology, 21(3): 1−26 (in Chinese with English abstract).
[17] Peng Jianbing, Ma Ruiyong, Shao Tiequan. 2004. Basic relation between structural geology and engineering geology[J]. Earth Science Frontiers, 11(4): 535−549 (in Chinese with English abstract).
[18] Qiao Xiufu, Jiang Mei, Li Haibing, Guo Xianpu, Su Dechen, Xu Lehong. 2016. Soft−sediment defomation stuctures and their implication for tectonic evolution from Mesozoic to Cenozoic in the Longmen Shen[J]. Earth Science Frontiers, 23(6): 80−106 (in Chinese with English abstract).
[19] Shen T Y, Wang G C, Leloup P H, Van der Beek P, Bernet M, Cao K, Wang A, Liu C, Zhang K X. 2016. Controls on Cenozoic exhumation of the Tethyan Himalaya from fission−track thermochronology and detrital zircon U−Pb geochronology in the Gyirong basin area, southern Tibet [J]. Tectonics. 35(7): 1713−1734.
[20] Wang Chaode. 2008. Tectonic and Environmental Evolution of the Gyirong Basin, and its Relationship to the Uplift of Tibetan Plateau [D]. Beijing: Peking University, 1−69 (in Chinese with English abstract).
[21] Wang Peng, Chen Xiaohong, Shen Licheng, Xiao Qiong, Wu Xiaoqing. 2016. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China, 43(4): 1429−1438 (in Chinese with English abstract).
[22] Wu Z H, Ye P S, Barosh P J, Wu Z H. 2011. The October 6, 2008 Mw 6.3 magnitude Damxung earthquake, Yadong−Gulu rift, Tibet, and implications for present−day crustal deformation within Tibet[J]. Journal of Asian Earth Sciences, 40(4): 943−957. doi: 10.1016/j.jseaes.2010.05.003
[23] Wu Zhenhan, Zhao Liguo, Ye Peisheng, Hu Daogong, Zhou Chunjing. 2011. Oligocene thrust systems in central Tibetan Plateau[J]. Geology in China, 38(3): 522−536 (in Chinese with English abstract).
[24] Wu Zhonghai, Ha Guanghao, Zhao Genmo, He Lin. 2018. Tectonic analysis on abnormal dried up of Duoqing Co Lake of southern section of Yadong−Gulu rift in South Tibet during April, 2016[J]. Earth Science, 43(S2): 243−255 (in Chinese with English abstract).
[25] Xu Yadong, Zhang Kexin, Wang Guocan, Xiang Shuyuan, Jiang Shangsong Chen Fenning. 2010. Geological significance of Miocene−Early Pleistocene palynological zones in the Gyirong Basin, Southern Tibet [J]. Earth Science (Journal of China University of Geosciences), 35(5): 759−773 (in Chinese with English abstract).
[26] Yang Xiongying, Zhang Jinjiang, Qi Guowei, Wang Chaode, Guo Lei, Li Pengyuan, Liu Jiang. 2009. Structure and deformation around the Gyirong basin, northern Himalaya, and onset of the South Tibetan detachment system[J]. Science China: Earth Science, 52(8): 1046−1058 (in Chinese with English abstract). doi: 10.1007/s11430-009-0111-2
[27] Yao Zhiyong, Meng Xianglian, Li Xiang, Miao Xiaoqi, Zhao Wen. 2019. Research on engineering geological environment characteristics and engineering geological problems of China−Nepal cross−border railway[J]. Railway Standard Design, 63(7): 28−34 (in Chinese with English abstract).
[28] Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogeny as constrained by along−strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth−Science Review, 76(1−2): 1−131. doi: 10.1016/j.earscirev.2005.05.004
[29] Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y, Zhang B. 2012. Tectonics of the northern Himalaya since the India−Asia collision[J]. Gondwana Research, 21(4): 939−960. doi: 10.1016/j.gr.2011.11.004
[30] Zhang Jinjiang. 2007. A review on the extensional structures in the northern Himalaya and southern Tibet[J]. Geological Bulletin of China, 26(6): 639−649 (in Chinese with English abstract).
[31] Zhang Yongshuang, Guo Changbao, Yao Xin, Yang Zhihua, Wu Ruian, Du Guangliang. 2016. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 37(3): 277−286 (in Chinese with English abstract).
[32] Zhang Yongshuang, Wu Ruian, Guo Changbao, Li Xiangquan, Li Xue, Ren Sanshao, Li Jinqiu. 2022. Geological safety evaluation of railway engineering construction in plateau mountainous region: Ideas and methods[J]. Acta Geologica Sinica, 96(5): 1736−1751 (in Chinese with English abstract).
[33] Zhang Zhenli, Sun Xiao, Li Guangdong, Zhang Jidong, Liu Hongzhang, Zhuan Shaopeng, Wei Wentong. 2006. New explanation of detachment structures in the Burang and Gyironggou regions, southern Xizang [J]. Sedimentary Geology and Tethyan Geology, 26(2): 1−6 (in Chinese with English abstract).
[34] Zhong Yan, Liu Qiao, Liao Haijun, Liu Shiyin. 2020. Glaciers and glacial lakes status and their related geo−hazards along three main China−Nepal corridors[J]. Mountain Reserrch, 38(2): 314−327 (in Chinese with English abstract).
[35] Zhou Bengang, Ran Hongliu. 2002. Discussion on the time criterion for identifying engineering active faults[J]. Journal of Engineering Geology, 10(3): 274−278 (in Chinese with English abstract).
[36] Zhu Jian, Wu Zhenlin, Lei Shuhui. 2017. Formation process and mechanism analysis of the super large−scale landslide at K81km of the national highway G216 in Tibet Jilong port[J]. Geotechnical Investigation & Surveying, 45(7): 20−24 (in Chinese with English abstract).
[37] 杜远生, 余文超. 2017. 地震和非地震引发的软沉积物变形[J]. 古地理学报, 19(1): 65−72. doi: 10.7605/gdlxb.2017.01.005
[38] 冯羽, 马凤山, 巩城城, 郭捷, 王善飞, 刘自成. 2011. 节理岩体结构面优势产状确定方法研究[J]. 工程地质学报, 19(6): 887−892. doi: 10.3969/j.issn.1004-9665.2011.06.014
[39] 高利娥, 曾令森, 侯可军, 郭春丽, 唐索寒, 谢克家, 胡古月, 王莉. 2013. 藏南马拉山穹窿佩枯错复合淡色花岗岩体的多期深熔作用[J]. 科学通报, 58(27): 2810−2822.
[40] 高延超, 龚凌枫, 曹佳文, 铁永波, 卢佳燕. 2024. 西藏边境地区地质灾害分布规律与危险性分析[J]. 沉积与特提斯地质, 44(3): 467−477.
[41] 郭镜, 李文昌, 李光明, 焦彦杰, 梁生贤. 2019. 多尺度综合地球物理方法在扎西康铅锌锑金多金属矿找矿预测中的应用[J]. 地球科学, 44(6): 2129−2142.
[42] 雷启云, 柴炽章, 孟广魁, 杜鹏. 2015. 基于构造活动历史的活断层工程避让研究[J]. 工程地质学报, 23(1): 161−169.
[43] 刘春玲, 祁生文, 童立强, 安国英, 李小慧. 2010. 喜马拉雅山地区重大滑坡灾害及其与地层岩性的关系研究[J]. 工程地质学报, 18(5): 669−676. doi: 10.3969/j.issn.1004-9665.2010.05.010
[44] 刘春玲, 祁生文, 童立强, 张世殊, 邹宇. 2016. 喜马拉雅山地区泥石流发育特征研究[J]. 工程地质学报, 24(3): 435−451.
[45] 刘函, 李奋其, 周放, 李俊, 苟正彬, 杨洋, 王保弟. 2018. 拉萨地块西段尼雄地区晚古生代地震事件及其地质意义[J]. 地球科学. 43(8): 2767−2779.
[46] 刘小兵, 刘小汉, Leloup P H, Maheo G, Paquette J L, 张鑫刚, 周学君. 2012. 藏南聂拉木高喜马拉雅结晶岩系上部韧性变形年代学及地质意义[J]. 科学通报, 57(17): 1562−1574.
[47] 牛新生, 刘喜方, 吕苑苑, 伍倩. 2023. 西藏当雄错流域热泉成因机制及其对盐湖成矿物质(Li−Rb−Cs)的供给[J]. 中国地质, 50(4): 1163−1175. doi: 10.12029/gc20220527001
[48] 潘桂棠, 王立全, 李兴振, 王洁民, 徐强. 2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置[J]. 沉积与特提斯地质, 21(3): 1−26. doi: 10.3969/j.issn.1009-3850.2001.03.001
[49] 彭建兵, 马润勇, 邵铁全. 2004. 构造地质与工程地质的基本关系[J]. 地学前缘, 11(4): 535−549. doi: 10.3321/j.issn:1005-2321.2004.04.020
[50] 乔秀夫, 姜枚, 李海兵, 郭宪璞, 苏德辰, 许乐红. 2016. 龙门山中、新生界软沉积物变形及构造演化[J]. 地学前缘, 23(6): 80−106.
[51] 王朝德. 2008. 吉隆盆地构造、环境演化与青藏高原隆升[D]. 北京: 北京大学, 1−69.
[52] 王鹏, 陈晓宏, 沈立成, 肖琼, 吴孝情. 2016. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质, 43(4): 1429−1438. doi: 10.12029/gc20160426
[53] 吴珍汉, 赵立国, 叶培盛, 胡道功, 周春景. 2011. 青藏高原中段渐新世逆冲推覆构造[J]. 中国地质, 38(3): 522−536. doi: 10.3969/j.issn.1000-3657.2011.03.002
[54] 吴中海, 哈广浩, 赵根模, 何林. 2018. 西藏亚东−谷露裂谷南段多庆错2016年4月异常干涸的构造成因[J]. 地球科学, 43(S2): 243−255.
[55] 徐亚东, 张克信, 王国灿, 向树元, 江尚松, 陈奋宁. 2010. 西藏南部吉隆盆地中新世−早更新世孢粉组合带及其地质意义[J]. 地球科学(中国地质大学学报), 35(5): 759−773.
[56] 杨雄英, 张进江, 戚国伟, 王德朝, 郭磊, 李鹏远, 刘江. 2009. 吉隆盆地周缘构造变形特征及藏南拆离系启动年龄[J]. 中国科学: 地球科学, 52(8): 1046−1058.
[57] 姚志勇, 孟祥连, 李响, 苗晓岐, 赵文. 2019. 中尼跨境铁路工程地质环境特征及主要工程地质问题研究[J]. 铁道标准设计, 63(7): 28−34.
[58] 张进江. 2007. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 26(6): 639−649. doi: 10.3969/j.issn.1671-2552.2007.06.003
[59] 张永双, 郭长宝, 姚鑫, 杨志华, 吴瑞安, 杜国梁. 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277−286. doi: 10.3975/cagsb.2016.03.03
[60] 张永双, 吴瑞安, 郭长宝, 李向全, 李雪, 任三绍, 李金秋. 2022. 高原山区铁路工程建设地质安全评价: 思路与方法[J]. 地质学报, 96(5): 1736−1751. doi: 10.3969/j.issn.0001-5717.2022.05.014
[61] 张振利, 孙肖, 李广栋, 张计东 刘洪章, 专少鹏, 魏文通. 2006. 西藏普兰、吉隆沟一带藏南拆离构造新认识[J]. 沉积与特提斯地质, 26(2): 1−6. doi: 10.3969/j.issn.1009-3850.2006.02.001
[62] 钟妍, 刘巧, 廖海军, 刘时银. 2020. 中喜马拉雅山中—尼通道沿线冰川/冰湖变化及其相关灾害初步调查[J]. 山地学报, 38(2): 314−327.
[63] 周本刚, 冉洪流. 2002. 工程活动断裂鉴定的时限标准讨论[J]. 工程地质学报, 10(3): 274−278. doi: 10.3969/j.issn.1004-9665.2002.03.009
[64] 祝建, 吴臻林, 雷曙辉. 2017. 西藏吉隆口岸G216国道K81特大型滑坡形成过程和机理分析[J]. 工程勘察, 45(7): 20−24.
-