Preliminary study on the “Point−surface Dual Control” mode for geological hazard risk in typical mountainous towns of Gansu Province
-
摘要:
研究目的 甘肃省是中国地质灾害高发地区之一,科学构建地质灾害风险“点面双控”模式是防灾减灾的关键。
研究方法 以陇南礼县龙林镇为例,在现场精细化勘查测绘、多期遥感数据建模、室内试验测试及数值模拟分析的基础上,阐述了以地质灾害风险识别、成灾模式研究、危险性分析、易损性评价、风险评价和风险防控对策建议等6大步骤的典型城镇地质灾害风险管控技术流程,介绍了城镇风险斜坡半定量风险评价过程,形成了基于动力过程的单体地质灾害定量风险评价方法和地质灾害风险双控模式。
研究结果 (1)研究区地质灾害类型主要为滑坡、泥石流2种,共发育地质灾害隐患点71处,其中有15处直接威胁人民生命财产安全,总结了3类滑坡成灾模式并建立了地质早期识别标志;(2)基于不同降水频率(5%、2%、1%)地质灾害风险区划表明,在不同降水频率下75.23%的区域始终保持低风险,24.38%的区域风险等级随降水频率的降低而增大,0.39%的区域始终保持极高风险;(3)基于风险评价结果,提出了可用于城镇和具体灾害点减灾的风险综合双控建议。
结论 本研究可为复杂山区城镇防灾减灾、国土空间规划管控与用途管制提供技术支撑。
Abstract:This paper is the result of geological hazard survey engineering.
Objective Gansu Province is among the regions in China with a high incidence of geological hazards. The scientific establishment of the "point−surface dual control" mode for geological hazard risks is crucial for hazard prevention and mitigation.
Method Taking Longlin Town as an example, this paper presents the technical process for managing and controlling geological hazard risks in typical urban areas based ondetailed on−site refined survey and mapping, multi−phase remote sensing data modelling, laboratory test, and numerical simulation analysis. The process includes six steps: geological hazard risk identification, disaster mode research, risk analysis, vulnerability assessment, risk assessment, risk prevention and control countermeasures. Additionally, it introduces the semi−quantitative risk assessment process of urban risk slope. A quantitative risk assessment method for single geological hazard based on dynamic process, as well as the "point−surface dual control" mode for geological hazard risk have also been established.
Results (1) The primarygeological hazards identified in the study area are landslide and debris flows, with a total of 71 hidden hazard points, 15 of which pose direct threats topublic safety and property. Three landslide hazard modes are summarized, and geological early identification signs are established. (2) Risk zoning based ondifferent precipitation frequencies (5%, 2%, 1%) reveals that 75.23% of the regions consistently maintain low risk levels, 24.38% exhibit increased risk levelsas precipitation frequency decreases, and 0.39% remain in high risk levels. (3) Based on the risk assessment results, a comprehensive dual control strategy for hazard risk reduction in towns and specific disaster hazardsis proposed.
Conclusions This research provides technical support for hazard prevention and mitigation, as well as for land use planning and management in complex mountain towns.
-
-
表 1 城镇地质灾害风险评价方法和模型
Table 1. Riskassessmentmethodsand modelsof geo-hazard in town
评价方法 评价模型 物理意义 可行性分析 斜坡稳定性评价模型
(Skempton and Delory, 1984;
Montogery and Dietrich, 1994)$ F_s=\dfrac{c^{\prime}+\left[\left(\rho_s g D-\rho_w g h\right) \cos \theta\right] \tan \varphi^{\prime}}{\rho_s g D \sin \theta}$ (1) $ {F}_{s} $ 为斜坡稳定性系数;$ {c}'$ 为斜坡有效内聚力(kPa);$ {\varphi }'$ 为斜坡有效内摩擦角(°);$ {\rho }_{s} $ 为岩土体天然重度(kg/m3);$ t $ 为潜在滑体厚度(m);$ \theta $ 为斜坡坡面倾角(°);$ h $ 为斜坡地下水高度(m);$ {\rho }_{w} $ 为水的重度(kg /m3);$ I $ 为等效降雨强度(m/d);$ A $ 为流域面积(m2);$ T $ 为饱和土体的导水率(m2/d);$ b $ 为考虑的水流横切面宽度(即栅格精度)(m)研究区斜坡失稳主要受降雨影响,而滑坡深度远小于斜坡的宽度与长度。因此采用该模型主要考虑雨水侵蚀坡表、侵润坡体和岩土体力学性质对斜坡在不同降雨频率下的响应,可实现斜坡定量稳定性评价。将其与斜坡水文模型相结合,可获得浅层滑坡或斜坡启动的临界降雨量 $ h=\dfrac{I A}{T b \sin \theta} $ (2) ${ I_{\text {临 }}=T\left(\dfrac{b}{A}\right) \sin \theta\left(\dfrac{\rho_s}{\rho_w}\right) \cdot\left[\left(1-\dfrac{\tan \theta}{\tan \varphi^{\prime}}\right)+\dfrac{c^{\prime}}{\rho_w g D \cos \theta \tan \varphi^{\prime}}\right]} $ (3) FLO−2D流体模型
(O'Brien et al., 1994;
王高峰等, 2020)$ \dfrac{\partial h}{\partial t}+\dfrac{\partial(u h)}{\partial x}+\dfrac{\partial(v h)}{\partial y}=I $ (4) t为泥石流演进时间(s),h是泥石流流深(m), $ I $ 是降雨强度(mm/h),u是泥石流x方向流速(m/s),v是泥石流y方向流速(m/s),$ {S_{ox}} $ 和$ {S_{oy}} $ 分别为x方向和y方向的河床坡降(%),$ {S_{fx}} $ 和$ {S_{fy}} $ 分别为x方向和y方向的摩擦坡降(%);$ {S_f} $ 是摩擦坡降(%),$ {S_y} $ 是屈服坡降(%),$ {S_v} $ 是粘性坡降(%),$ {S_{td}} $ 是紊流—分散坡降(%),$ {\tau _y} $ 是屈服应力(MPa),$ {\gamma _m} $ 是流体比重(t/m3),$ K $ 是层流阻力系数,$ \eta $ 是流体黏滞系数,n是曼宁系数,v是流速(m/s)。其中,$ {\tau _y} $ 和$ \eta $ 参数由式$ \eta = {\alpha _1}{e^{{\beta _1} \cdot {C_v}}} $ 式$ {\tau _y} = {\alpha _2}{e^{{\beta _2} \cdot {C_v}}} $ 计算所得,$ {\alpha _1} $ 、$ {\alpha _2} $ 、$ {\beta _{_1}} $ 和$ {\beta _2} $ 由流变试验所得或或查表设置FLO−2D模型于20世纪90年代初基于非牛顿流体模型和有限差分法来求解运动控制的程序提出可用于二维洪水灾害管理和泥石流运动的模型。研究区泥石流灾害多呈现降雨控制型特点,且少部分泥石流沟进行了工程防治措施,通过模拟可定量获取泥石流运动特征值,然后以每个栅格单元内泥石流泥位深度、流速等强度值的空间分布作为泥石流危险性表现形式 $\left(S_{o x}-S_{f x}\right) g=\dfrac{\partial h}{\partial x} g+u \dfrac{\partial(u h)}{\partial x}+v \dfrac{\partial(u h)}{\partial y}+\dfrac{\partial u}{\partial t} $ (5) $\left(S_{o y}-S_{f y}\right) g=\dfrac{\partial h}{\partial y} g+u \dfrac{\partial(v h)}{\partial x}+v \dfrac{\partial(v h)}{\partial y}+\dfrac{\partial v}{\partial t}$ (6) $S_f=S_y+S_v+S_{t d}=\dfrac{\tau_y}{\gamma_m h}+\dfrac{K \eta u}{8 \gamma_m h^2}+\dfrac{n^2 u^2}{h^{4 / 3}}$ (7) River−Flow2D
流变模型
(Asier and Reinaldo, 2019)$ v=\dfrac{h}{6 \eta}\left(2 \tau-3 \tau^{\prime}+\dfrac{\tau^{\prime^3}}{\tau^2}\right)$ (8) $ \eta $ 为宾汉黏性系数;$ v $ 为滑速(m/s);根据库伦黏性理论$ {\tau }'$ 可由滑面正应力表示;$ \gamma $ 为滑体容重(kg/m3);$ \alpha $ 为滑面倾角(°);$ \varphi $ 为内摩擦角(°);$ {a}_{c}={v}_{i}^{2}/R $ 为曲线滑面的离心加速度;$ {r}_{u} $ 为空隙水压力系数,即空隙水压力与计算单元底部的法向应力的比值;$ \xi $ 为湍流系数(m2/s);$ {\tau }_{b} $ 为滑体应力(MPa),即$ {\tau }_{b}=g\rho hcos\theta tan{\theta }_{b} $ ;$ {\tau }_{y} $ 为屈服应力(MPa),即$ {\tau }_{y}=0.181\cdot $ $ \mathrm{e}\mathrm{x}\mathrm{p}\left(25.7{C}_{V}\right)/10 $ ;$ {\tau }_{\mu } $ 为黏性应力(MPa),即${\tau }_{\mu }=0.036\cdot $ $ \mathrm{e}\mathrm{x}\mathrm{p}\left(22.1{C}_{V}\right)/10 $ 。其中$ \rho = $ ${\rho }_{w}(1+1.65{C}_{V}) $ ;$ \theta $ 为滑坡坡度(°);$ {\theta }_{b} $ 为滑坡的内摩擦角(°);$ \rho $ 为滑坡碎屑流体密度(kg/m3);$ {\rho }_{w} $ 为水的重度(kg /m3);$ {C}_{V} $ 为体积浓度研究区滑坡多发育于由软弱浅变质区千枚岩、板岩等组成的松散堆积体斜坡,破坏过程通常呈不连续的碎屑流动,表现为高浓度非牛顿流体特性。River−Flow2D数值模型是采用有限体积法融合水力学、水文学弹性网格的多维仿真计算软件。在模拟滑坡−碎屑流运动过程中主要考虑滑体下表面摩擦阻力的变化情况,同时给出不同的滑动摩擦力计算模型,可合理模拟滑坡−碎屑流运动过程,能准确确定应力边界条件。最终可实现滑坡−碎屑流运动堆积特征(滑速、滑距及堆积体厚度)的二维或三维模拟与展示 $ \tau=\gamma \mathrm{h}\left(\cos \alpha+\dfrac{a_c}{g}\right) \tan \phi+\gamma \dfrac{v_i^2}{\xi}$ (9) $ \tau=\gamma \mathrm{h}\left(\cos \alpha+\dfrac{a_c}{g}\right)\left(1-r_u\right) \tan \phi$ (10) $f_1\left(\tau_0, \tau_1\right)=2 \tau_b^3-3\left(\tau_y+2 \tau_\mu\right) \tau_b^2+\tau_y^3=0$ (11) 表 2 数据类型及数据来源
Table 2. Type and source ofdata
基础数据 数据来源与制作 数据格式 地质灾害数据 “陇南西汉水流域灾害地质调查”(2019—2021年)项目数据库 1∶10000精度矢量数据 DEM 地理空间数据,用于提取坡度、沟壑密度及泥石流沟床比降等 国家地理信息中心:5 m×5 m栅格数据 DOM/DLG 土地利用类型数据 国家地理信息中心:5 m×5 m栅格和矢量数据 遥感数据 用于风险源识别、承灾体类型等解译及典型单体地质灾害模拟底图 P星和无人机数据,栅格数据 降雨资料 兰州中心气象台,陇南市地质灾害专业监测网络 矢量数据 地质数据 岩性分区、断裂构造 1∶200000区域地质图,矢量数据 勘查及测试数据 岩土体密度/容重、含水率/渗透系数及内摩擦角、内聚力、泥石流颗粒级配等物理力学指标,用于模型计算分析 文本数据格式 表 3 斜坡破坏概率评价参考
Table 3. Failure probability assessment of slope
分级 滑坡稳定性计算与地表宏观变形参考 滑坡发育率评价参考 地表宏观变形特征 稳定状态 稳定性系数参考值 发育状态 滑坡发育特点 发育率参考值 极高 地表能够明显观测到滑坡整体滑动迹象,滑体即可脱离滑床 滑坡启动 <0.9 发育完全成熟 滑坡已经启动,整体滑动可能性极大 0.9~1 高 地表局部出现破坏,滑坡即可启动,出现整体滑动前兆 不稳定 0.9~1.00 发育基本成熟 滑坡即可启动,整体滑动可能性很大 0.7~0.9 中 地表变形迹象开始加剧,滑坡向启动阶段迅速发展;或地表出现局部明显变形,但变形的速度较慢 临界状态或欠稳定 1.00~1.10 发育还未成熟或开始发育 滑坡加速变形,有整体滑动的可能性;或斜坡局部变形,有形成滑坡的可能性 0.3~0.7 低 地表仅有局部微小变形迹象,暂时没有发展趋势;或地表暂无观测到变形迹象 基本稳定或稳定 1.10~1.20 尚未发育或没有发育 斜坡变形范围很小,形成滑坡的可能性很小;或不存在滑坡 <0.3 表 4 全家湾泥石流基本特征及FLO−2D模拟参数
Table 4. Basic characteristics and FLO−2D simulation parameters of Quanjiawan debris flow
项目 暴雨频率 模拟参数 数值 P=5% P=2% P=1% 流域面积/ km2 1.26 计算网格/m 5×5 物源总量/104m3 242.38 曼宁粗糙系数 0.15/居民区 泥石流容重/( t/m3) 1.77 1.89 1.97 0.05/公路 泥石流洪峰流量/(m3/s) 6.49 10.38 12.97 0.22/耕地 泥沙修正系数 0.89 1.17 1.44 0.2/裸地 泥石流堵塞系数 3.5 0.8/林地 泥石流流量/(m3/s) 42.94 78.8 110.82 层流阻力系数K 2280 体积浓度 0.47 0.54 0.59 $ {\alpha _1} $ 0.811 泥石流放大系数 1.89 2.17 2.44 $ {\alpha _2} $ 0.00462 泥石流模拟流量/(m3/s) 81.21 170.93 270.45 $ {\beta _1} $ 13.72 模拟时间/h 0.3 0.8 1.5 $ {\beta _2} $ 11.24 模拟精度/% 81.38 75.53 86.74 泥沙比重/(t/m3) 2.65 表 5 典型地质灾害点危险性分区统计
Table 5. Hazard risk zoning statistics of typical geological hazard points
项目 降雨条件 危险性分区(×104 m2) 低危险区 中危险区 高危险区 极高危险区 全家湾泥石流 20年一遇(5%) 2.04 0.98 0.42 1.79 50年一遇(2%) 2.95 1.96 1.10 2.80 100年一遇(1%) 4.35 3.26 1.36 4.45 潘坪村滑坡 20年一遇(5%) 1.83 1.07 1.11 0.54 50年一遇(2%) 1.42 1.17 1.24 1.36 100年一遇(1%) 1.02 1.79 1.62 1.94 表 6 不同降水条件下模型计算参数
Table 6. Model calculation parameters under different precipitation conditions
项目 P=5% P=2% P=1% 内摩擦角 $ {\theta }_{b} $ /°14.4 12.96 11.6 滑体密度 $ \rho $ /(kg/m3)20.2 23.23 25.05 体积浓度 $ {C}_{V} $ 0.618 0.802 0.912 滑体屈服应力 $ {\tau }_{y} $ /MPa0.886 1.422 1.886 滑体黏性应力 $ {\tau }_{\mu } $ /MPa0.141 0.212 0.270 表 7 不同降水条件下地质灾害风险具体综合防控工程措施建议一览
Table 7. List of suggestions for specific comprehensive prevention and control engineering measures of geological disaster risk under different precipitation conditions
防控措施 防控原则 20年一遇降雨条件下 50年一遇降雨条件下 100年一遇降雨条件下 工程治理 危险性值为极高或高,其影响范围内风险值为极高或高,且严重威胁人民生命财产安全,或影响重大工程建设的地质灾害 涉及区域面积0.123 km2,主要包括胡家窑2号滑坡、全家湾泥石流等2处地质灾害及隐患点 涉及区域面积0.408 km2,主要包括胡家窑2号滑坡、胡家窑3号滑坡、榆坪村西滑坡、吴家沟泥石流、土沟泥石流、全家湾泥石流及生地坡滑坡等7处地质灾害及隐患点 涉及区域面积0.785 km2,主要包括2号及3号滑坡、清水沟对岸滑坡、榆坪村西滑坡、生地坡滑坡、吴家沟泥石流、土沟泥石流、全家湾泥石流及万家沟泥石流等9处地质灾害及隐患点 监测预警 主要为工程治理困难,无法搬迁避让,且崩滑地质灾害危险性极高或高,其影响范围内风险值为极高或高,而泥石流灾害危险性值为中高,其影响范围内风险值为高,对人民生命财产安全威胁程度轻微,但对重大工程建设或主河道有一定影响的地质灾害 涉及区域面积0.182 km2,主要包括胡家窑1 3号滑坡等1处地质灾害及隐患点 涉及区域面积0.152 km2,主要包括胡家窑1号滑坡、万家沟泥石流及石沟泥石流等3处地质灾害及隐患点 涉及区域面积0.867 km2,主要包括赵家山2号、3号、4号、5号滑坡群、胡家窑1号滑坡、史家山滑坡、黑峪村滑坡、石沟泥石流等8处地质灾害及隐患点 排危除险 危险性值高,其影响范围内风险值为中等,且对行人有潜在危险的,并影响主要交通要道或河道的崩滑地质灾害隐患点 无 涉及区域面积0.012 km2,共1处地质灾害及隐患点。主要为胡家窑崩塌 涉及区域面积0.085 km2,共3处地质灾害及隐患点。主要为胡家窑崩塌、小坪山西滑坡及清水沟沟口右岸滑坡 立警示牌 危险性值为中高,其影响范围内风险值为中低,且对行人有潜在危险的,并影响乡村交通要道的地质灾害及隐患点 涉及区域面积0.032 km2,主要包括榆坪村西滑坡等1处地质灾害及隐患点 涉及区域面积0.097 km2,主要包括万家村滑坡、土家山1号滑坡、土家山2号滑坡及小坪山西滑坡等4处地质灾害及隐患点 涉及区域面积0.367 km2,主要包括龙林村南滑坡、皮草坡崩塌、牟子山滑坡、万家村滑坡、土家山1号滑坡、土家山2号滑坡等6处地质灾害及隐患点 建议避险搬迁 即未进行工程治理或工程治理无法实现,其影响范围内风险值为极高的区段(带) 无 涉及集镇区人口聚居区的龙林村西侧等少数居民,区域面积0.001 km2 涉及集镇区人口聚居区的龙林村西侧大部分居民区和铨杜村南侧等少数居民,区域面积0.041 km2 生态工程 主要位于中低风险区内,其土地利用类型为草地、荒草地及裸地的区域,或位于高危险以下区域,其影响范围内风险值为高及以下,或位于极高危险以下区域,其影响范围内风险值为中等及以下,且无威胁人民生命财产,或对重大工程建设影响轻微的地质灾害区内 涉及区域面积5.358 km2,共67处地质灾害及隐患点。主要分布在胡家窑斜坡南北两侧、史家山斜坡、赵家山斜坡一带及泥石流流域下游地质灾害发育和植被覆盖度较低的区域 涉及区域面积9.764 km2,共55处地质灾害及隐患点。主要分布在胡家窑斜坡、史家山斜坡西部大部分区域、赵家山斜坡中上部一带及泥石流流域中下游地质灾害发育和植被覆盖度较低的区域 涉及区域面积16.723 km2,共43处地质灾害及隐患点。主要分布在龙林村南滑坡、皮草坡滑坡及史家山2号滑坡一带及泥石流流域地质灾害发育和植被覆盖度较低的区域 自然修复区 除上述综合防控措施建议区外,主要位于中低风险区内,土地利用类型主要为农田、成林等区域内 风险区 沿西汉水和韩家河两岸面积约3.55 km2,采取科普宣贯、应急预案、应急避险等措施,建立多层级多部门的县、镇、社区(居民点)协调联动机制,提升建筑结构及工程灾害综合设防等级,加强人类工程活动管控和关键时段管控等 -
[1] AGS. 2007. Commentary on guideline for landslide susceptibility, hazard and risk zoning for land use management[R]. Australian: Australian Geomechanics Society Landslide Task force Landslide Zoning Working Group, 42(1): 37–62.
[2] Asier L, Reinaldo G. 2019. Riverflow 2D Two–dimensional Flood and River Dynamics Model[R]. Pembroke Pines, FL. USA.
[3] Chen Xiaoqing, Cui Peng, You Yong, Yang Zongjie, Kong Yingde. 2013. Secondary mountain disasters induced by the 4.20 Lushan earthquake and disaster mitigation[J]. Earth Science Frontiers, 20(3): 29−34 (in Chinese with English abstract).
[4] Cui Peng, Zou Qiang. 2016. Theory and method of risk assessment and risk management ofdebris flows and flash floods[J]. Progress in Geography, 35(2): 137−147 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2016.02.001
[5] Du Juan, Yin Kunlong, Wang Jiajia. 2015. Simulation of three–dimensional movement of landslide–debris flow based on finite volume method[J]. Chinese Journal of Rock Mechanics and Engineering, 34(3): 480−488 (in Chinese with English abstract).
[6] Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W Z. 2008. Guidelines for landslide susceptibility, hazard and risk–zoning for land use planning[J]. Engineering Geology, 102(3/4): 85−98. doi: 10.1016/j.enggeo.2008.03.022
[7] Feng Wei, Tang Yaming, Jia Jun, Ma Hongna, Li Yane, Hong Bo, Xue Qiang, Tang Zhuo. 2023. A method for optimizing territorial space planning of mountain towns based on geological hazard risk assessment[J]. Northwestern Geology, 56(3): 232−238 (in Chinese with English abstract).
[8] Ge Daqing, Dai Keren, Guo Zhaocheng, Li Zhenhong. 2019. Early identification of serious geological hazards with integrated remote sensing technologies: Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 44(7): 949−956 (in Chinese with English abstract).
[9] Guo Fuyun, Meng Xingmin, Zhang Yongjun, Li Song, Xie Zhengtuan, Xiong Muqi, Guo Peng. 2014. Geological disaster risk assessment methods for mountainous citiesand towns in Gansu Province[J]. Journal of Lanzhou University (Natural Sciences), 50(5): 604−610 (in Chinese with English abstract).
[10] Huang Bolin, Yin Yueping. 2018. Risk assessment research on impulse wave generated by landslide in reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 37(3): 621−629 (in Chinese with English abstract).
[11] Huang Bolin, Yin Yueping, Li Bin, Feng Wanli, Qin Zhen, Zhang Peng. 2021. Study of risk assessment and mitigation for landslide–induced impulse wave near towns in reservoir areas[J]. Acta Geologica Sinica, 95(6): 1949−1961 (in Chinese with English abstract).
[12] Huang Xun, Tang Chuan. 2016. Quantiative risk assessment of catastrophic debris flows through numerical simulation[J]. Advances in Earth Science, 31(10): 1047−1055 (in Chinese with English abstract).
[13] Meng Xingmin, Chen Guan, Guo Peng, Xiong Muqi, Janusz Wasowski. 2013. Research of landslides and debris flows in Bailong river basin: Progrss and prospect[J]. Marine Geology & Quaternary Geology, 33(4): 1−15 (in Chinese with English abstract).
[14] Montogery D R, Dietrich W E. 1994. A physically based model for the topographic control on shallow landsliding[J]. Water Resources Research, 30: 1153−1171. doi: 10.1029/93WR02979
[15] O’Brien J S, Julien P Y, Fullerton W T. 1994. Two–dimensional water flood and mudflow simulation[J]. Journal of Hydraulic Engineering, 119(2): 244−261.
[16] Pradhan B. 2010. Remote sensing and GIS–based landslide hazard analysis and cross–validation using multivariate logistic regression model on three test areas in Malaysia[J]. Advances in Space Research, 45(10): 1244−1256. doi: 10.1016/j.asr.2010.01.006
[17] Qiao Jianping, Yang Zongjie. 2013. The K–P method based failure probability calculation on landslides[J]. The Chinese Journal of Geological Hazard and Control, 24(4): 1−5 (in Chinese with English abstract).
[18] Qiao Jianping, Huang Dong, Wang Meng, Wu Caiyan. 2017. The optimal value model for the benefit form mitigation measures reducing landslide and debris flow[J]. The Chinese Journal of Geological Hazard and Control, 28(3): 80−86 (in Chinese with English abstract).
[19] Shi Jusong, Zhang Yongshuang, Dong Chen, Wu Shuren. 2005. GIS–based landslides hazard zonation of the New Badong County site[J]. Acta Geoscientica Sinica, 26(3): 275−282 (in Chinese with English abstract).
[20] Shi Lili, Huang Dong, Qiao Jianping, Zhang Jing, He Yuqiong, Li Hu. 2017. Risk assessment comparison between Tazhiping landslide before and after treatent[J]. Journal of Catastrophology, 32(2): 124−128 (in Chinese with English abstract).
[21] Shu Heping, Sun Shuang, Ma Jinzhu, Liu Dongfei, Zhang Peng. 2016. Risk assessment of single debris flow gully in south Gansu province, China[J]. Mountain Research, 34(3): 337−345 (in Chinese with English abstract).
[22] Skempton A W, Delory F A. 1984. Stability of Natural Slopes in London Clay[M]. Selected Papers on Soil Mechanics. London: Thomas Telford Publishing, 70–73.
[23] Sun Pingping, Zhang Maosheng, Dong Ying, Zhu Lifeng, Bi Junbo. 2013. Measures of risk mitigation for landslides induced by irrigation[J]. Geological Bulletin of China, 32(6): 899−903 (in Chinese with English abstract).
[24] Tang Yaming, Zhang Maosheng, Li Lin, Xue Qiang. 2011. Discrimination to the landslide susceptibility, hazard and risk assessmennt[J]. Hydrogeology & Engineering Geology, 38(2): 125−129 (in Chinese with English abstract).
[25] Tie Yongbo, Xu Wei, Xiang Binglin, Lu Jiayan, Gong Lingfeng, Gao Yanchao, Tian Kai. 2022. The thoughts on constructions of “double–control of point and zone” system of geological hazard risk in southwest[J]. The Chinese Journal of Geological Hazard and Control, 33(3): 106−113 (in Chinese with English abstract).
[26] UN/ISDR(The United Nations Office for Disaster Risk Reduction). 2015. Sendai Framework for Action 2015–2030: Building the Resilience of Nations And Communities to Disasters[R]. Sendai, Japan: Third UN World Conference on Disaster Risk Reduction.
[27] UNDP(United Nations Development Program). 2004. A Global Report Reducing Disaster Risk: A Challenge for Development[R]. New York: UNDP, 1–14.
[28] Wang Gaofeng, Tian Yuntao, Gao Youlong, Le Qilang, Yang Qiang, Li Ruidong, Ye Zhennan, Deng Bing, Guo Ning, Sun Xiujuan. 2020. Relationship between characteristics of non–homogeneous debris flow and peak flow[J]. Journal of Engineering Geology, 28(5): 1028−1038 (in Chinese with English abstract).
[29] Wang Gaofeng, Ye Zhennan, Li Gang, Tian Yuntao, Deng Bing, Guo Ning, Chen Zongliang. 2019. Geological hazard risk assessment of Zhouqu county in Bailong river basin[J]. Journal of Catastrophology, 34(3): 128−133 (in Chinese with English abstract).
[30] Wang Meng, Jiang Yuanjun, Huang Dong, Li Qianqian. 2015. Hazard assessment on rainfall–triggered landslide and debris flow in the seismic disturbance area at Watershed level[J]. Journal of Jilin University (Earth Science Edition), 45(6): 1781−1788 (in Chinese with English abstract).
[31] Wu Shuren, Shi Jusong, Zhang Chunshan, Wang Tao. 2009. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China, 28(8): 995−1005 (in Chinese with English abstract).
[32] Xu Qiang, Dong Xiujun, Li Weili. 2019. Early identification of serious geological hazards with integrated remote sensing technologies: Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 44(7): 957−966 (in Chinese with English abstract).
[33] Xu Qiang, Zhang Yifan, Chen Wei. 2010. Vulnerability assessment of geohazards in south–west mountainous area Danba County, Sichuan, China as an example[J]. Geological Bulletin of China, 29(5): 729−738 (in Chinese with English abstract).
[34] Xue Qiang, Zhang Maosheng, Dong Ying, Meng Xiaojie, Guo Xiaopeng, Feng Wei, Hong Bo, Wang Tao, Liu Wenhui, Tian Zhongying, Zhang Ge, Lu Na. 2023. Refinement risk identification of loess geo–hazards based on DEM and remote sensing: Taking Mizhi County in the Loess Plateau of Northern Shaanxi as an example[J]. Geology in China, 50(3): 926−942 (in Chinese with English abstract).
[35] Zhang Chenghang, Wang Jiayun, Gao Bo, Feng Wei. 2015. Risk quantitative evaluation for Xujia village loess landslide, Xian, Shanxi Province[J]. Geological Bulletin of China, 34(11): 2138−2142 (in Chinese with English abstract).
[36] Zhang Chunshan, He Shujun, Xin Peng, Sun Weifeng, Tan Chengxuan, Wu Shuren, Wang Tao, Liu Xin. 2009. Risk evaluation of geological hazard in Weibin District, Baoji City, Shanxi Province, China[J]. Geological Bulletin of China, 28(8): 1054−1063 (in Chinese with English abstract).
[37] Zhang Maosheng, Xue Qiang, Jia Jun, Xu Jiwei, Gao Bo, Wang Jiayun. 2019. Methods and practices for the investigation and risk assessmengt of geo–hazards in mountainous towns[J]. Northwestern Geology, 52(2): 125−135 (in Chinese with English abstract).
[38] Zhang Mingzhi, Yang Fei, Ma Juan, Fu Zheng, Huang Zhe, Li Junfeng. 2023. Exploration of block chain technology application in the construction of national risk warning system on landslides[J]. Hydrogeology & Engineering Geology, 50(6): 168−174 (in Chinese with English abstract).
[39] Zhou Chao, Chang Ming, Xu Lu, Che Hongxiao. 2020. Risk assessment of typical urban mine geological disasters in Guizhou Province[J]. Geomatics and Information Science of Wuhan University, 45(11): 1782−1791 (in Chinese with English abstract).
[40] Zhu Jianjun, Li Zhiwei, Hu Jun. 2017. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 46(10): 1717−1733 (in Chinese with English abstract).
[41] 陈晓清, 崔鹏, 游勇, 杨宗洁, 孔应德. 2013. 4.20芦山地震次生山地灾害与减灾对策[J]. 地学前缘, 20(3): 29−34.
[42] 崔鹏, 邹强. 2016. 山洪泥石流风险评估与风险管理理论与方法[J]. 地理科学进展, 35(2): 137−147.
[43] 杜鹃, 殷坤龙, 王佳. 2015. 基于有限体积法的滑坡–碎屑流三维运动过程模拟分析[J]. 岩石力学与工程学报, 34(3): 480−488.
[44] 冯卫, 唐亚明, 贾俊, 马红娜, 李彦娥, 洪勃, 薛强, 唐卓. 2023. 一种基于地质灾害风险评价的山区城镇国土空间规划优化方法[J]. 西北地质, 56(3): 232−238.
[45] 葛大庆, 戴可人, 郭兆成, 李振洪. 2019. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版), 44(7): 949−956.
[46] 郭富赟, 孟兴民, 张永军, 李松, 谢正团, 熊木齐, 郭鹏. 2014. 甘肃山区城镇地质灾害风险区划技术方法探讨[J]. 兰州大学学报(自然科学版), 50(5): 604−610.
[47] 黄波林, 殷跃平. 2018. 水库区滑坡涌浪风险评估技术研究[J]. 岩石力学与工程学报, 37(3): 621−629.
[48] 黄波林, 殷跃平, 李滨, 冯万里, 秦臻, 张鹏. 2021. 库区城镇滑坡涌浪风险评价与减灾研究[J]. 地质学报, 95(6): 1949−1961. doi: 10.3969/j.issn.0001-5717.2021.06.019
[49] 黄勋, 唐川. 2016. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 31(10): 1047−1055. doi: 10.11867/j.issn.1001-8166.2016.10.1047
[50] 孟兴民, 陈冠, 郭鹏, 熊木齐, Janusz Wasowski. 2013. 白龙江流域滑坡泥石流灾害研究进展与展望[J]. 海洋地质与第四纪地质, 33(4): 1−15.
[51] 乔建平, 杨宗佶. 2013. 基于KP模型的滑坡破坏概率[J]. 中国地质灾害与防治学报, 24(4): 1−5.
[52] 乔建平, 黄栋, 王萌, 吴彩燕. 2017. 滑坡泥石流风险防御工程效益评估的最优值距模型[J]. 中国地质灾害与防治学报, 28(3): 80−86.
[53] 石菊松, 张永双, 董诚, 吴树仁. 2005. 基于GIS计算的巴东新城区滑坡灾害危险性区划[J]. 地球学报, 26(3): 275−282.
[54] 石莉莉, 黄栋, 乔建平, 张晶, 何宇琼, 李虎. 2017. 塔之坪滑坡治理前后危险性对比[J]. 灾害学, 32(2): 124−128.
[55] 舒和平, 孙爽, 马金珠, 刘东飞, 张鹏. 2016. 甘肃省南部单沟泥石流灾害风险评估[J]. 山地学报, 34(3): 337−345.
[56] 孙萍萍, 张茂省, 董英, 朱立峰, 毕俊擘. 2013. 灌溉诱发型滑坡风险控制关键技术[J]. 地质通报, 32(6): 899−903. doi: 10.12097/gbc.20130612
[57] 唐亚明, 张茂省, 李林, 薛强. 2011. 滑坡易发性危险性风险性评价例析[J]. 水文地质工程地质, 38(2): 125−129.
[58] 铁永波, 徐伟, 向炳霖, 卢佳燕, 龚凌枫, 高延超, 田凯. 2022. 西南地区地质灾害风险“点面双控”体系构建与思考[J]. 中国地质灾害与防治学报, 33(3): 106−113.
[59] 王高峰, 田运涛, 高幼龙, 乐琪浪, 杨强, 李瑞冬, 叶振南, 邓兵, 郭宁, 孙秀娟. 2020. 非匀质泥石流运动特征与峰值流量关系研究[J]. 工程地质学报, 28(5): 1028−1038.
[60] 王高峰, 叶振南, 李刚, 田运涛, 邓兵, 郭宁, 陈宗良. 2019. 白龙江流域舟曲县城区地质灾害危险性评价[J]. 灾害学, 34(3): 128−133. doi: 10.3969/j.issn.1000-811X.2019.03.024
[61] 王萌, 姜元俊, 黄栋, 李倩倩. 2015. 基于小流域的地震扰动区降雨型滑坡泥石流危险性评价方法[J]. 吉林大学学报(地球科学版), 45(6): 1781−1788.
[62] 吴树仁, 石菊松, 张春山, 王涛. 2009. 地质灾害风险评估技术指南初论[J]. 地质通报, 28(8): 995−1005. doi: 10.3969/j.issn.1671-2552.2009.08.001
[63] 许强, 董秀军, 李为乐. 2019. 基于天–空–地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 44(7): 957−966.
[64] 许强, 张一凡, 陈伟. 2010. 西南山区城镇地质灾害易损性评价方法–以四川省丹巴县城为例[J]. 地质通报, 29(5): 729−738. doi: 10.3969/j.issn.1671-2552.2010.05.013
[65] 薛强, 张茂省, 董英, 孟晓捷, 郭小鹏, 冯卫, 洪勃, 王涛, 刘文辉, 田中英, 张戈, 卢娜. 2023. 基于DEM和遥感的黄土地质灾害精细化风险识别——以陕北黄土高原区米脂县为例[J]. 中国地质, 50(3): 926−942. doi: 10.12029/gc20220801001
[66] 张成航, 王佳运, 高波, 冯卫. 2015. 陕西胥家村黄土滑坡风险定量分析[J]. 地质通报, 34(11): 2138−2142. doi: 10.3969/j.issn.1671-2552.2015.11.021
[67] 张春山, 何淑军, 辛鹏, 孙炜锋, 谭成轩, 吴树仁, 王涛, 刘鑫. 2009. 陕西省宝鸡市渭滨区地质灾害风险评价[J]. 地质通报, 28(8): 1054−1063. doi: 10.3969/j.issn.1671-2552.2009.08.007
[68] 张茂省, 薛强, 贾俊, 徐继维, 高波, 王佳运. 2019. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质, 52(2): 125−135.
[69] 张鸣之, 杨飞, 马娟, 付正, 黄喆, 李俊峰. 2023. 区块链技术在全国地质灾害风险预警系统建设中的应用探索[J]. 水文地质工程地质, 50(6): 168−174.
[70] 周超, 常鸣, 徐璐, 车宏晓. 2020. 贵州省典型城镇矿山地质灾害风险评价[J]. 武汉大学学报(信息科学版), 45(11): 1782−1791.
[71] 朱建军, 李志伟, 胡俊. 2017. InSAR变形监测方法与研究进展[J]. 测绘学报, 46(10): 1717−1733. doi: 10.11947/j.AGCS.2017.20170350
-