Discusstion on the relationship between taro quality and eco−geological environment in Jibu, Ganzhou, Jiangxi Province
-
摘要:
研究目的 研究贡芋品质与生态地质环境的关系,探究生态地质环境造就贡芋特殊风味的生态地质学作用机理,可为芋头种植的生态地质环境选择或改良提供科学依据。
研究方法 本研究从地质建造控制、土壤母质溯源以及土壤物理、土壤地球化学和生物地球化学等多角度切入,在贡芋核心区和对照区岩、土、水、植系统采样,矿质元素和有机营养物质系统检测;对农田土壤物理主要指标检测分析;对检测数据用多种方法处理分析,综合研究。
研究结果 (1)体现贡芋独特风味的主要指标蛋白质、能量、碳水化合物、维生素B、淀粉、氨基酸等均高于对照区;(2)植物必需元素K、P、Zn、S等对贡芋风味物质的形成、提高起主要作用,其次为Fe、Mg、Cl、Ni、Mn、Ca、Cu和SOM等;(3)土壤平均粒径偏小,土壤容重、紧实度较低;土壤灼烧减量、pH值适中,土壤水分、土壤Eh值较高,土壤具备良好可耕性。
结论 吉埠贡芋的独特风味是独特的生态地质环境造就优良的土壤物理、土壤地球化学与生物地球化学特性叠加效应的产物。
Abstract:This paper is the result of eco−geological survey engineering.
Objective The research of relationship between the quality of taro and eco−geological environment, and the eco−geological mechanism of the eco−geological environment creating the special flavor of taro, can provide a scientific basis for the selection or improvement of the eco−geological environment for taro planting.
Methods The geological construction control, soil parent material traceability, soil physics, soil geochemistry, biogeochemistry were carried out. Systematic sampling of rocks, soil, water and plants was collected in the core area and the control area of the taro. The mineral elements, organic nutrients and main indexes of physical properties of farmland soil were detected. The test data were analyzed and processed by a variety of methods and studied comprehensively.
Results (1) The main indexes reflecting the unique flavor of taro were higher than those in the control area, such as protein, energy, carbohydrate, vitamin B, starch, amino acid, etc. (2) The essential elements K, P, Zn and S played a major role in the formation and improvement of taro flavor substances, followed by Fe, Mg, Cl, Ni, Mn, Ca, Cu and SOM. (3) The average soil particle size is small, the soil bulk density and soil compactness is low, the soil burning reduction and pH value is moderate, and the soil moisture and soil Eh value is higher, the soil is well cultivable.
Conclusions The unique flavor of Jibu taro is the product of the superposition effect of excellent soil physical, soil geochemical and biogeochemical characteristics caused by a unique eco−geological environment.
-
-
表 1 芋头种植区农用地土壤重金属含量
Table 1. Content of heavy metals in agricultural soil in taro planting area
调查区 Cd Hg As Pb Cr Cu Ni Zn pH 风险筛选值 0.30 0.50 30.00 80.00 250.00 150.00 60.00 200.00 — 贡芋核心区 0.09 0.08 6.65 27.28 50.00 22.52 14.62 68.92 5.40 拟拓展区 0.17 0.07 9.04 31.65 52.23 24.40 15.80 76.35 5.32 二级阶地 0.10 0.09 11.20 26.00 61.00 23.18 15.56 66.58 5.72 花岗岩区 0.07 0.05 6.41 19.50 13.20 14.20 3.74 65.40 4.93 白垩系碎屑岩区 0.16 0.12 6.89 34.27 57.73 28.60 16.13 82.70 5.28 变质岩地区 0.17 0.09 9.40 34.13 53.27 23.40 19.43 71.10 4.97 注:元素含量单位为mg/kg,pH无量纲。 表 2 不同成土母质区根系土壤主要营养素含量
Table 2. Contents of main nutrients in root-soil in different soil parent materials
取样位置 参考值 核心区均值 拟拓展区均值 二级阶地均值 花岗岩区均值 白垩系碎屑岩区均值 变质岩区均值 Si — 37.17 36.29 38.91 29.34 37.02 34.91 Fe 2.88 1.96 1.96 1.80 1.72 2.34 2.07 Mg 0.39 0.27 0.30 0.25 0.21 0.30 0.30 Ca 0.09 0.13 0.12 0.13 0.08 0.17 0.32 K 2.21 2.06 2.22 1.37 4.31 1.63 1.65 Na 0.24 0.24 0.27 0.16 0.64 0.15 0.12 P 0.05 0.08 0.09 0.06 0.10 0.07 0.08 TN 1.52 1.76 1.25 1.66 1.86 1.60 1.01 S 382 313 260 240 360 577 363 Cl 41.7 32.1 33.3 31.5 111 51.8 36.7 Mn 377 232 281 219 348 258 537 B 45.3 88.9 106 73.9 245 47.0 78.7 Zn 69.4 69.0 76.8 71.8 78.4 77.3 71.1 Cu 20.3 22.8 25.1 24.8 15.5 26.8 23.4 Ni 18.9 14.6 16.2 13.9 4.70 15.1 19.4 Mo 0.50 0.85 0.69 0.79 0.54 1.27 0.55 AN 119 167 125 168 179 176 106 AP 17.3 32.9 44.6 6.08 15.5 5.76 53.1 AK 109 328 239 207 369 293 482 SOM 25.8 32.1 21.5 31.1 34.1 29.5 19.1 pH 4.8 5.8 5.6 6.1 4.4 5.6 6.2 注:TN参考刘占军(2014),AN、AP、AK参考黄忠财(2014),SOM参考杨帆等(2017),S参考黄运湘等(2001),Cl参考江泽普等(1993),其余均参考魏复盛(1990)。TN单位为g/kg,pH、SOM无量纲,Si、Fe、Mg、Ca、K、Na、P元素含量单位为%,其余元素含量单位均为mg/kg。 表 3 不同成土母质区芋头部分矿质元素含量
Table 3. Contents of some mineral elements in taro in different soil parent materials
分区 Cu Zn Se P K Mn Ca Mg Fe Na 中国食物成分表 0.060 0.190 0.910 50.00 25.00 0.300 11.0 19.000 0.300 5.500 核心区 0.163 0.572 0.661 59.03 39.35 0.584 20.1 26.167 1.858 2.413 拟拓展区 0.164 0.587 0.627 68.75 45.72 0.504 22.0 27.45 1.890 2.398 二级阶地 0.190 0.630 0.482 57.60 35.10 0.407 21.6 28.900 1.550 1.150 花岗岩区 0.131 0.773 0.940 56.30 37.40 1.920 14.8 17.400 1.118 3.30 白垩系碎屑岩区 0.193 0.897 0.845 64.80 47.30 1.121 27.7 29.167 2.973 3.883 变质岩地区 0.135 0.483 0.852 49.533 45.60 0.898 19.5 25.267 1.940 2.410 注:按《中国食物成分表》Se含量单位为µg/100 g,其余元素含量单位为mg/100 g。 表 4 不同成土母质区芋头有机营养物质含量
Table 4. Contents of organic nutrients in taro in different soil parent materials
样区 能量 蛋白质 脂肪 碳水化合物 膳食纤维 维生素E 维生素B1 维生素B2 维生素C β-胡萝卜素 淀粉 烟酸 水分 中国食物成分表 56 1.30 0.20 12.70 1.000 — 0.050 0.020 1.50 — — 0.28 78.6 核心区 262 1.94 0.30 12.43 0.869 0.196 0.046 0.030 5.03 7.853 9.377 0.39 82.5 拟拓展区 244 1.80 0.28 11.55 0.865 0.215 0.044 0.034 4.86 8.692 9.150 0.35 82.6 二级阶地 239 1.37 0.20 11.80 0.925 0.053 0.040 0.026 4.70 5.120 9.210 0.46 81.0 花岗岩区 241 1.94 0.50 10.80 0.770 0.248 0.040 0.030 5.03 9.410 10.100 0.40 87.5 白垩系碎屑岩区 247 1.81 0.33 11.57 0.883 0.080 0.045 0.029 5.14 5.263 9.253 0.37 83.8 变质岩区 254 1.70 0.40 12.00 0.791 0.267 0.034 0.034 5.50 10.223 9.107 0.43 83.2 注:蛋白质、脂肪、碳水化合物、膳食纤维、淀粉、水分单位g/100 g,维生素B1、维生素B2、维生素C、烟酸单位为mg/100 g,β−胡萝卜素单位为μg/100 g,维生素E单位为mg α−TE/100 g,能量单位为kJ/100 g。 表 5 不同成土母质区芋艿氨基酸含量
Table 5. Amino acid contents of taro in different soil parent materials
分区 Asp Thr Ser Glu Pro Gly Ala Val Mrt Ile Leu Tyr Phe Lys His Arg Cys Trp TAA 核心区均值 0.208 0.063 0.076 0.168 0.084 0.073 0.083 0.083 0.017 0.050 0.115 0.060 0.085 0.070 0.033 0.095 0.027 0.074 1.464 拟拓展区 0.200 0.060 0.073 0.153 0.081 0.069 0.081 0.077 0.014 0.046 0.106 0.056 0.080 0.065 0.031 0.089 0.026 0.024 1.328 二级阶地 0.210 0.060 0.077 0.150 0.090 0.066 0.079 0.080 0.013 0.044 0.100 0.050 0.076 0.060 0.028 0.087 0.030 0.035 1.335 花岗岩区 0.190 0.059 0.068 0.150 0.082 0.069 0.083 0.078 0.016 0.046 0.110 0.052 0.076 0.065 0.031 0.083 0.026 0.020 1.304 白垩系碎屑岩区 0.210 0.064 0.079 0.160 0.085 0.072 0.083 0.082 0.016 0.049 0.110 0.057 0.084 0.072 0.032 0.092 0.027 0.025 1.399 变质岩地区 0.197 0.064 0.073 0.160 0.081 0.074 0.089 0.083 0.019 0.052 0.120 0.060 0.084 0.071 0.033 0.094 0.029 0.020 1.402 注:氨基酸含量单位为g/100 g。 表 6 根系土壤矿质元素及有机质对芋艿有机营养物质含量贡献值较高的相关系数及主成分一览
Table 6. Correlation coefficients and principal components with high contribution of mineral elements and organic matter in root soil to taro organic nutrient content
元素 能量 蛋白质 脂肪 碳水化合物 膳食纤维 维生素E 维生素B1 维生素B2 维生素C β-胡萝卜素 淀粉 烟酸 水分 N ○ ○● ○● ○● ○ ○ P ○● ○● k ○ ○ ○ Ca ○● ○● Mg ○ ○ ○ S ○ ○ ○● ○ ○ Si ○● ○ ○ ○● Cl ○ ○● ○● ○ Fe ○● ○● ○ ○ ○● Mn ○ ○● B ○ ○● ○● Na ○ Zn ○● ○● Cu ○● ○ ○● Ni ○ ○ ○● ○ ○ ○● Mo ○● ○ ○● ○● ○● ○● AN ○ ○● ○● ○ ○ AP ○● ○● ○● AK ○ ○● ○● ○ ○ ○● SOM ○ ○● ○● ○ ○ 注:○—相关系数,●—主成分。 表 7 芋艿氨基酸含量与植物必需元素和有机质相关系数及贡献度较大的主成分一览
Table 7. The correlation coefficient and principal components with a larger contribution within amino acid content of taro and essential elements and organic matter
元素 Asp Thr Ser Glu Pro Gly Ala Val Mrt Ile Leu Tyr Phe Lys His Arg Cys Trp TAA N ○ ○ ○ P ○● ○● ○● ○ ○● ○● ○● ○● ○● ○● k ○ ○ ○ ○ ○ ○ ○● ○ ○ ○ ○ Ca ○● ○● ○● ○● ○● ○● Mg ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○● ○ ○ ○ S ○● ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● Si ○● Cl ○ ○ ○ ○ ○ ○● ○● ○ ○ ○ ○ ○ ○ Fe ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● Mn ○● ○● ○● ○● ○● ○● B ○● Na ○● ○● ○● ○ Zn ○● ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● Cu ○ ○ ○● ○● ○● ○● Ni ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Mo ○● AN ○ ○ ○ AP AK ○● ○● ○● ○● ○● ○ ○ ○● SOM ○ ○ 注:○—相关系数,●—主成分。 表 8 元素相关系数与主成分较高贡献值出现频度统计
Table 8. Frequency of higher contribution values of element correlation coefficient and principal component
元素 K P Zn S Fe Mg Cl Ni Ca Mn Cu N Na Mo SOM Si B 总频度 101 96 88 85 77 59 59 55 46 43 39 31 29 19 19 14 11 表 9 部分必需元素在不同成土母质区岩-土系统含量排序
Table 9. Content ordering of some essential elements in rock-soil systems in different soil parent materials
元素 母岩 岩石 自然土壤 水系沉积物 农田土壤 根系土壤 P 花岗岩区 1 1 1 1 1 碎屑岩区 3 3 2 3 3 变质岩区 2 2 3 2 2 K 花岗岩区 1 1 1 1 1 碎屑岩区 3 3 2 3 3 变质岩区 2 2 3 2 2 Cl 花岗岩区 3 3 3 3 3 碎屑岩区 1 2 1 2 1 变质岩区 2 1 2 1 2 Mn 花岗岩区 1 2 1 1 1 碎屑岩区 3 3 3 3 3 变质岩区 2 1 2 2 2 B 花岗岩区 1 1 1 1 1 碎屑岩区 2 2 2 3 3 变质岩区 3 3 3 2 2 Cu 花岗岩区 3 3 3 3 3 碎屑岩区 2 2 2 2 1 变质岩区 1 1 1 1 2 Ni 花岗岩区 3 3 3 3 3 碎屑岩区 2 2 2 2 2 变质岩区 1 1 1 1 1 表 10 不同成土母质区农田土壤物理性质差异
Table 10. Differences of physical properties of farmland soil within different soil parent materials
土壤分区 土壤平均粒径D50/mm 土壤容重/(g/cm3) 土壤紧实度/(kg/cm2) 土壤水分/% Eh/mV pH LOI/% 一级阶地 0.18 1.12 13.18 52.36 495.56 5.36 4.96 二级阶地 0.19 1.21 13.95 46.97 453.52 5.39 4.76 花岗岩区 0.45 1.08 20.47 35.40 429.80 4.85 7.34 白垩系碎屑岩区 0.31 1.27 20.49 42.49 421.26 5.16 3.84 变质岩区 0.13 1.40 23.77 41.87 413.18 4.65 4.83 注:贡芋核心区在一级阶地。 表 11 硼过高影响植物对铁的吸收(mg/kg)
Table 11. Excessive B affects the absorption of Fe by plants
取样位置 根系土壤B 根系土壤Fe 芋艿Fe 核心区 88.88 19594.86 18.58 花岗岩区 245 17228.55 11.18 白垩系碎屑岩区 46.93 23453.21 29.73 变质岩区 78.7 20678.93 19.40 罗汾 94.2 20632.3 32.6 左龙寨 465 13498.42 6.78 塘尾 37.5 18324.28 41.3 孟坑 51.7 16016.26 18.2 注:罗汾(核心区)、左龙寨(花岗岩区)、塘尾(白垩系碎屑岩区)、孟坑(变质岩区)。 -
[1] Abd El–Aal M, El–Anany A, Rizk S M. 2019. Rationalization of water consumption for taro plant through the rationing of irrigation and expand the plant ability to resist stress conditions[J]. International Journal of Plant & Soil Science, 29(4): 1−23.
[2] Bai Youlu. 2015. Review on research in plant nutrition and fertilizers[J]. Scientia Agricultura Sinica, 48(17): 3477−3492 (in Chinese with English abstract).
[3] Cheng Zhizhong, Xie Xuejin, Pan Hanjiang, Yang Rong, Shang Yuntao. 2011. Abundance of elements in stream sediment in South China[J]. Earth Science Frontiers, 18(5): 289−295 (in Chinese with English abstract).
[4] Dai Yanli, Wu Hulong, Yang Xianghong, Liu Lecheng. 2018. Research progress of taro cultivation techniques in China[J]. Journal of Yangtze University (Natural Science Edition), 15(22): 9−12 (in Chinese).
[5] Deng Yingyi, He Jianan, Hu Guorui, Wu Yu, Peng Jiechun, Huang Junhao, Qu Xiao, Liu Tiao, Zhao Rongmei, Huang Xuan, Jiang Sisi. 2020. Comparison of fruit quality and amino acid composition of different red pitaya varieties[J]. South China Fruits, 49(2): 61−70 (in Chinese).
[6] Deo P C, Tyagi A P, Taylor M, Becker D K, Harding R M. 2009. Improving taro (Colocasia esculenta var. esculenta) production using biotechnological approaches[J]. The South Pacific Journal of Natural Science, 27(1): 6−13. doi: 10.1071/SP09002
[7] Dong Renrui. 1985. Present situation and development of plant mineral nutrition (V): Interaction of elements in plant mineral nutrition[J]. Hunan Agricultural Sciences, (5): 38−42 (in Chinese).
[8] Gao Lin, Chen Xiaoyuan, Lin Changhua, Wang Wei, Zhang Yupeng. 2018. Characteristics of soil profile and nutrient change of fragrant taro typical region in Shaoguan[J]. Southwest China Journal of Agricultural Sciences, 31(9): 1864−1869 (in Chinese with English abstract).
[9] Gao Lin, Lu Wenting, Lin Changhua, Feng Huimin. 2022. Development characteristics of typical soil profile of fragrant taro region in northern Guangdong[J]. Chinese Agricultural Science Bulletin, 38(10): 85−91 (in Chinese with English abstract).
[10] Gao W, Wang Y, Wang R, Wang Y, Xu J, He X. 2022. Antiproliferative piperidine alkaloids from giant taro (Alocasia macrorrhiza)[J]. Chinese Journal of Natural Medicines, 20(7): 541−550. doi: 10.1016/S1875-5364(22)60165-1
[11] Goenaga R, Chardon U. 1995. Growth, yield and nutrient uptake of taro grown under upland conditions[J]. Journal of Plant Nutrition, 18(5): 1037−1048. doi: 10.1080/01904169509364959
[12] Han Xiao, Zhang Dongxu, Wang Lei, Li Qi. 2018. Research progress on the nutrition components and processing and utilization[J]. China Fruit & Vegetable, 38(3): 9−13 (in Chinese with English abstract).
[13] Hudeer Chaonu, Yang Limin, Lu Sha. 2016. Analysis and evaluation of amino acids in potato from three different producing areas[J]. World Latest Medicine Information, 16(93): 112−113 (in Chinese).
[14] Hu Shiyuan, Tian Jianchun. 2002. Ginger taro paste for arthritis[J]. Chinese Community Doctors, (16): 36 (in Chinese).
[15] Hu Z Y, Herfried R, Gerd S, Ewald S. 2004. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review[J]. Journal of Plant Nutrition, 27(1): 183−220. doi: 10.1081/PLN-120027555
[16] Huang Yunxiang, Zhang Yangzhu, Liu Peng, Ma Yuehua, Zhou Qing. 2001. Effects of rice–based cropping system, organic manure and ground water level on Sulphur status in paddy soil[J]. Journal of Hunan Agricultural University (Natural Sciences), 27(3): 205−208 (in Chinese with English abstract).
[17] Huang Zhongcai. 2014. Preliminary study on abundance and deficiency index of nitrogen, phosphorus and potassium in rice soil in Taining County[J]. South China Agriculture, 8(24): 146−148 (in Chinese).
[18] Hiroki Y, Kanae T, Nobuyuki M, Kazuhiro I, Michio O, Yuji M, Katsuko K. 2022. Effects of flooding cultivation on the composition and quality of taro (Colocasia esculenta cv. Daikichi)[J]. Journal of the Science of Food and Agriculture, 102(4): 1372−1380. doi: 10.1002/jsfa.11469
[19] Jiang Dongming. 2012. Occurrence cause and control measures of taro blight in 2012[J]. Fujian Agricultural Science and Technology, (12): 50−51 (in Chinese with English abstract).
[20] Jiang Gaosong, Ramsd L. 1998. Application of taro in food processing[J]. China Food Industry, (12): 14 (in Chinese).
[21] Jiang Yin, Xu Ying, Zhu Gengbo. 2002. Human taste and amino acid taste[J]. Biotic Resources, 24(4): 1−3 (in Chinese with English abstract).
[22] Jiang Zepu, Huang Yuyi, Lei Yibao, Deng Jun. 1993. Analysis and evaluation of soil chlorine content in cultivated land in Guangxi[J]. Journal of Southern Agriculture, (6): 269−272 (in Chinese).
[23] Jing Lin, Guan Yunna, Wang Chengrong. 2015. Optimization of composite enzymatic processing technology on taro (Colocasia esculenta) wine[J]. Journal of Food Safety & Quality, 6(6): 2100−2108 (in Chinese with English abstract).
[24] Li Tong, Ni Shoubin. 1997. Element abundances of the continental lithosphere in China[J]. Geology and Exploration, 33(1): 31−37 (in Chinese with English abstract).
[25] Liu Zhanjun. 2014. Nutrient Characteristics and Quality Assessment of Low–yield Paddy Soil in South China[D]. Beijing: China Agricultural University, 1–95 (in Chinese).
[26] Lu Jingling. 2003. Plant Nutrition (Second Edition)[M]. Beijing: China Agricultural University Press (in Chinese).
[27] Luo Qin, Li Dongmei, Zhong Maosheng, Zhu Pingling, Huang Minmin, Rao Qiuhua, Liu Yang, Pan Wei, Luo Tuyan. 2020. Nutritional compositions of female and male murray cod filets[J]. Fujian Journal of Agricultural Sciences, 35(1): 51−58 (in Chinese with English abstract).
[28] Mohd S, Mohd F, Noraini T, Syarul N, Hamidun B. 2019. A review on viruses infecting taro (Colocasia esculenta (L.) Schott)[J]. Pathogens, 8(56): 1−13.
[29] Osorio N W, Shuai X, Miyasaka S, Wang B, Shirey R L, Wigmore W J. 2003. Nitrogen level and form affect taro growth and nutrition[J]. HortScience, 38(1): 36−40. doi: 10.21273/HORTSCI.38.1.36
[30] Pan Ruizhi. 2008. Plant Physiology (Sixth Edition)[M]. Beijing: Higher Education Press (in Chinese).
[31] Rainer R F, Aimee C, Chavez C. 2016. Development and physicochemical evaluation of wine from taro corms (Colocasia esculenta)[J]. International Journal of Science and Research, 5(9): 146−151.
[32] Rashmi D, Raghu N, Gopenath T, Pradeep P, Pugazhandhi B, Murugesan K, Ashok G, Ranjith M, Chandrashekrappa G, Kanthesh M. 2018. Taro (Colocasia esculenta): An overview[J]. Journal of Medicinal Plants Studies, 6(4): 156−161.
[33] Suja G, Byju G, Jyothi A N. 2017. Yield quality and soil health under organic vs conventional farming in taro[J]. Scientia Horticulturae, 218: 334−343. doi: 10.1016/j.scienta.2017.02.006
[34] Sun Fuzeng. 1985. Present situation and development of plant mineral nutrition (Ⅳ): Mechanism of mineral absorption by plants[J]. Hunan Agricultural Sciences, (8): 38−43 (in Chinese).
[35] Sun Qianqian, Zhao Huan, Lü Huifeng, Wang Zhengyin, Cai Guoxue, Han Zhunan, Wang Yang. 2010. Effect of balanced fertilization on yield, quality and economic benefit in taro[J]. Journal of Changjiang Vegetables, (2): 55−60 (in Chinese with English abstract).
[36] Teng Wei, Liu Qi, Li Jian, Lu Shaochun. 1992. Analysis of amino acid content in taro[J]. Acta Nutrimenta Sinica, (3): 336−338 (in Chinese).
[37] Vieira G, Peterle G, Loss J, Peterle G, Magno P. 2018. Strategies for taro (Colocasia esculenta) irrigation[J]. Journal of Experimental Agriculture International, 24(1): 1−9.
[38] Wang Fufang, Li Lu, Liu Shangyi, Gao Zhi, Wang Dinghuai. 1994. Essential trace elements for crops and their physiological functions[J]. Crops, (4): 34−36 (in Chinese).
[39] Wang Jiaofei, Huang Youru, Qian Yaping, Zhao Lin, Chen Yin. 2015. Rheological properties of taro protein isolate[J]. Food Science, 36(9): 17−21 (in Chinese with English abstract).
[40] Wang Wei. 1985. Present situation and development of plant mineral nutrition (Ⅲ): Physiological functions of trace elements and rational application of trace fertilizers[J]. Hunan Agricultural Sciences, (6): 40−42 (in Chinese).
[41] Wang Qinghua. 2004. An overview of agrogeological environmental surveys in Zhejiang[J]. Geology in China, 31(S1): 30−39 (in Chinese with English abstract).
[42] Wang Zhenli, Deng Tongde, Wang Ruimin, Shao Wenjun, Xu Ming, Liao Wanqi. 2009a. Characteristics of migration and accumulation of rare earth elements in the rock–soil–navel orange system[J]. Geology in China, 36(6): 1382−1394 (in Chinese with English abstract).
[43] Wang Zhenli, Xu Ming, Deng Tongde, He Xiaoxiong, Chen Shuimu, Ouyang Jinsheng, Xing Qingming. 2009b. Accumulation features of rare elements in navel orange plant and nature soil environment[J]. Journal of The Chinese Rare Earth Society, 27(5): 704−710 (in Chinese with English abstract).
[44] Wang Zhenli, Deng Tongde, Hu Zhengyi, Xu Ming, Hu Kandong, Xing Qingming. 2010. Correlation analysis between navel orange quality and REE in natural soil[J]. Soils, 42(3): 459−466 (in Chinese with English abstract).
[45] Wei Fusheng. 1990. Background Values of Soil Elements in China[M]. Beijing: China Environmental Publishing (in Chinese).
[46] Wei Qiuyu, Zhang Zhongyuan, Li Dajing, Jiang Ning, Jin Bangquan, Liu Chuanqiu. 2016. Quality changes in different varieties of taro treated by microwave vacuum drying[J]. Modern Food Science and Technology, 32(1): 235−241 (in Chinese with English abstract).
[47] Wu Yanwen, Ouyang Jie. 2001. Taste–producing effect of amino acid and peptides in food[J]. China Condiment, (1): 21−24 (in Chinese).
[48] Wu Zhenqiu. 1985. Present situation and development of plant mineral nutrition (II): Physiological and biochemical functions of essential mineral elements in plants[J]. Hunan Agricultural Sciences, (5): 41−45 (in Chinese).
[49] Yang Fan, Xu Yang, Cui Yong, Meng Yuanduo, Dong Yan, Li Rong, Ma Yibing. 2017. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 54(5): 1047−1056 (in Chinese with English abstract).
[50] Yang Fei. 2017. The Study of Soil Conditions on the Quality of Steudnera Henryana[D]. Hohhot: Inner Mongolia Agricultural University, 1–41 (in Chinese).
[51] Yang Yuexin. 2018. China Food Composition Tables (Standard Edition)[M]. Beijing: Peking University Medical Press (in Chinese).
[52] Zeng Fankui, Xu Dan, Liu Gang. 2015. Potato nutrition: A critical review[J]. Chinese Potato Journal, 29(4): 233−243 (in Chinese with English abstract).
[53] Zhu Miao, Li Gangfeng, Zhan Lufei, Liu Qingqing. 2018. Determination and analysis of nutrient composition of edible parts from Colocasia esculenta (L). Schott[J]. Journal of Tongren University, 20(3): 20−23 (in Chinese with English abstract).
[54] 白由路. 2015. 植物营养与肥料研究的回顾与展望[J]. 中国农业科学, 48(17): 3477−3492. doi: 10.3864/j.issn.0578-1752.2015.17.014
[55] 程志中, 谢学锦, 潘含江, 杨榕, 商云涛. 2011. 中国南方地区水系沉积物中元素丰度[J]. 地学前缘, 18(5): 289−295.
[56] 戴艳丽, 吴湖龙, 杨柳依, 杨湘虹, 刘乐承. 2018. 我国芋头栽培技术研究进展[J]. 长江大学学报(自科版), 15(22): 9−12.
[57] 邓英毅, 何嘉楠, 胡国瑞, 吴玉, 彭杰椿, 黄俊豪, 屈啸, 刘涛, 赵蓉梅, 黄萱, 蒋丝丝. 2020. 不同红肉火龙果品种的果实品质和氨基酸组成比较[J]. 中国南方果树, 49(2): 61−70.
[58] 董任瑞. 1985. 植物矿质营养的现状与发展(五)—植物矿质营养中元素间的相互作用[J]. 湖南农业科学, (5): 38−42.
[59] 高琳, 陈晓远, 林昌华, 王卫, 张宇鹏. 2018. 韶关市典型香芋产区土壤剖面特征及其养分变化研究[J]. 西南农业学报, 31(9): 1864−1869.
[60] 高琳, 卢文婷, 林昌华, 冯慧敏. 2022. 粤北香芋种植区典型土壤剖面发育特征[J]. 中国农学通报, 38(10): 85−91. doi: 10.11924/j.issn.1000-6850.casb2021-0457
[61] 韩笑, 张东旭, 王磊, 李琪. 2018. 芋头的营养成分及加工利用研究进展[J]. 中国果菜, 38(3): 9−13.
[62] 呼德尔朝鲁, 杨丽敏, 卢莎. 2016. 三种不同产地马铃薯氨基酸分析与评价[J]. 世界最新医学信息文摘, 16(93): 112−113.
[63] 胡士元, 田建春. 2002. 姜汁芋头糊治疗关节炎[J]. 中国社区医师, (16): 36.
[64] 黄运湘, 张杨珠, 刘鹏, 冯跃华, 周清. 2001. 稻作制与有机肥及地下水位对水稻土硫素状况的影响Ⅰ. 全硫和有效硫含量[J]. 湖南农业大学学报(自然科学版), 27(3): 205−208.
[65] 黄忠财. 2014. 泰宁县水稻土壤氮、磷、钾丰缺指标初步研究[J]. 南方农业, 8(24): 146−148.
[66] 姜东明. 2012. 2012年芋头疫病大发生原因分析及防治对策[J]. 福建农业科技, (12): 50−51. doi: 10.3969/j.issn.0253-2301.2012.12.021
[67] 蒋高松, Ramsd L. 1998. 芋头在加工食品中的应用[J]. 中国食品工业, (12): 14.
[68] 蒋滢, 徐颖, 朱庚伯. 2002. 人类味觉与氨基酸味道[J]. 氨基酸和生物资源, 24(4): 1−3.
[69] 江泽普, 黄玉溢, 雷一宝, 邓军. 1993. 广西耕地土壤氯含量分析与评价[J]. 广西农业科学, (6): 269−272.
[70] 荆琳, 贯云娜, 王成荣. 2015. 复合酶法生产芋头酒工艺条件优化[J]. 食品安全质量检测学报, 6(6): 2100−2108.
[71] 黎彤, 倪守斌. 1997. 中国大陆岩石圈的化学元素丰度[J]. 地质与勘探, 33(1): 31−37.
[72] 刘占军. 2014. 我国南方低产水稻土养分特征与质量评价[D]. 北京: 中国农业大学, 1–95.
[73] 陆景陵. 2003. 植物营养学(第二版)[M]. 北京: 中国农业大学出版社.
[74] 罗钦, 李冬梅, 钟茂生, 朱品玲, 黄敏敏, 饶秋华, 刘洋, 潘葳, 罗土炎. 2020. 澳洲龙纹斑雌、雄亲鱼营养组成比较分析[J]. 福建农业学报, 35(1): 51−58.
[75] 潘瑞炽. 2008. 植物生理学(第六版)[M]. 北京: 高等教育出版社.
[76] 孙福增. 1985. 植物矿质营养的现状与发展(四)—植物对矿质吸收的机理[J]. 湖南农业科学, (8): 38−43.
[77] 孙倩倩, 赵欢, 吕慧峰, 王正银, 蔡国学, 韩准安, 王洋. 2010. 平衡施肥对芋头产量、品质和经济效益的影响[J]. 长江蔬菜(学术版), (2): 55−60.
[78] 滕葳, 柳琪, 李坚, 陆绍椿. 1992. 芋头中氨基酸含量的分析[J]. 营养学报. (3): 336–338.
[79] 王富芳, 李路, 刘尚义, 高质, 汪定淮. 1994. 作物必需微量元素及其生理功能[J]. 作物杂志, (4): 34−36.
[80] 王教飞, 黄友如, 钱雅萍, 赵琳, 陈茵. 2015. 芋艿分离蛋白质的流变特性[J]. 食品科学, 36(9): 17−21. doi: 10.7506/spkx1002-6630-201509004
[81] 王纬. 1985. 植物矿质营养的现状与发展(三)—微量元素的生理作用及微肥的合理应用[J]. 湖南农业科学, (6): 40−42.
[82] 汪庆华. 2004. 浙江省农业地质环境调查项目工作进展综述[J]. 中国地质, 31(S1): 30−39. doi: 10.3969/j.issn.1000-3657.2004.z1.006
[83] 汪振立, 邓通德, 王瑞敏, 邵文军, 徐明, 廖万琪. 2009a. 岩石–土壤–脐橙系统中稀土元素迁聚特征[J]. 中国地质, 36(6): 1382−1394.
[84] 汪振立, 徐明, 邓通德, 贺小雄, 陈水木, 欧阳锦盛, 幸青明. 2009b. 自然土壤环境下脐橙植物体稀土累积特征[J]. 中国稀土学报, 27(5): 704−710.
[85] 汪振立, 邓通德, 胡正义, 徐明, 胡堪东, 幸清明. 2010. 脐橙品质与自然土壤中稀土元素相关性分析[J]. 土壤, 42(3): 459−466.
[86] 魏复盛. 1990. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社.
[87] 魏秋羽, 张钟元, 李大婧, 江宁, 金邦荃, 刘春泉. 2016. 不同芋头品种真空微波干燥品质变化的比较[J]. 现代食品科技, 32(1): 235−241.
[88] 武彦文, 欧阳杰. 2001. 氨基酸和肽在食品中的呈味作用[J]. 中国调味品, (1): 21−24. doi: 10.3969/j.issn.1000-9973.2001.01.007
[89] 吴振球. 1985. 植物矿质营养的现状与发展(二)—植物必需的矿质元素的生理生化作用[J]. 湖南农业科学, (5): 41−45.
[90] 杨帆, 徐洋, 崔勇, 孟远夺, 董燕, 李荣, 马义兵. 2017. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 54(5): 1047−1056.
[91] 杨飞. 2011. 土壤条件对香芋品质影响的研究[D]. 呼和浩特: 内蒙古农业大学, 1–41.
[92] 杨月欣. 2018. 中国食物成分表(标准版)[M]. 北京: 北京大学医学出版社.
[93] 曾凡逵, 许丹, 刘刚. 2015. 马铃薯营养综述[J]. 中国马铃薯, 29(4): 233−243. doi: 10.3969/j.issn.1672-3635.2015.04.013
[94] 朱苗, 李刚凤, 詹露菲, 刘庆庆. 2018. 铜仁芋食用部位营养成分测定与分析[J]. 铜仁学院学报, 20(3): 20−23. doi: 10.3969/j.issn.1673-9639.2018.03.004
-