中国地质调查局 中国地质科学院主办
科学出版社出版

碳同位素在土壤−植被−生态−环境中的研究现状与进展

耿文达, 季文兵, 刘冰权, 叶桂琦, 马旭东, 侯青叶, 余涛, 杨忠芳. 2025. 碳同位素在土壤−植被−生态−环境中的研究现状与进展[J]. 中国地质, 52(3): 867-889. doi: 10.12029/gc20240604001
引用本文: 耿文达, 季文兵, 刘冰权, 叶桂琦, 马旭东, 侯青叶, 余涛, 杨忠芳. 2025. 碳同位素在土壤−植被−生态−环境中的研究现状与进展[J]. 中国地质, 52(3): 867-889. doi: 10.12029/gc20240604001
GENG Wenda, JI Wenbing, LIU Bingquan, YE Guiqi, MA Xudong, HOU Qingye, YU Tao, YANG Zhongfang. 2025. Research status and progress of carbon isotope in soil−vegetation−ecology−environment[J]. Geology in China, 52(3): 867-889. doi: 10.12029/gc20240604001
Citation: GENG Wenda, JI Wenbing, LIU Bingquan, YE Guiqi, MA Xudong, HOU Qingye, YU Tao, YANG Zhongfang. 2025. Research status and progress of carbon isotope in soil−vegetation−ecology−environment[J]. Geology in China, 52(3): 867-889. doi: 10.12029/gc20240604001

碳同位素在土壤−植被−生态−环境中的研究现状与进展

  • 基金项目: 广东省地质勘查与城市地质调查项目(2023-25),宁夏回族自治区重点研发计划重大(重点)项目“宁夏中北部土壤碳汇源转化因素与碳库保育研究”(2022BBF02036),江西省地质勘查项目“江西省1:25万多目标区域地球化学调查成果集成研究”(20240084)联合资助。
详细信息
    作者简介: 耿文达,男,1998年生,硕士生,主要从事环境地球化学研究工作;E-mail:gengwd0911@163.com
    通讯作者: 季文兵,男,1991年生,助理研究员,主要从事生态地球化学和土壤污染治理与修复研究工作;E-mail:13121531228@163.com
  • 中图分类号: P597; X142

Research status and progress of carbon isotope in soil−vegetation−ecology−environment

  • Fund Project: Supported by the project of Guangdong Geological Exploration and Urban Geology (No.2023−25), “Research on the transformation factors of soil carbon sinks and carbon pool conservation in north-central Ningxia” of the Key R&D Program of Ningxia Hui Autonomous Region (No.2022BBF02036), Jiangxi Provincial Geological Survey Project “Integration Study of 1:250000 Multi-objective Regional Geochemical Survey Results in Jiangxi Province” (No.20240084).
More Information
    Author Bio: GENG Wenda, male, born in 1998, master candidate, engaged in environmental geochemistry research; E-mail: gengwd0911@163.com .
    Corresponding author: JI Wenbing, male, born in 1991, assistant researcher, engaged in research on ecological geochemistry and soil pollution treatment and remediation; E-mail: 13121531228@163.com.
  • 研究目的

    近几十年来,稳定碳同位素理论逐渐完善,并随着测试技术的进步和发展,碳同位素分析变得更加精确和高效。碳同位素示踪技术作为一种强大的工具,广泛应用于土壤−植被−生态−环境研究中,并发挥着重要作用。

    研究方法

    本文通过查阅大量碳同位素技术应用方面的文献,综述了国内外关于稳定碳同位素技术的原理及实践应用的最新研究进展。

    研究结果

    利用稳定碳同位素技术,可有效识别煤、石油、天然气等天然有机物的成因来源。通过洞穴石笋、黄土沉积物、湖泊沉积物、树轮、海洋有孔虫、海相碳酸盐岩和冰芯等不同地质体中的碳同位素组成的变化,可以有效地反演全球气候变化。此外,碳稳定同位素还被用于示踪土壤有机碳碳地球化学循环,解决干旱—半干旱地区无机碳汇源转化与碳库识别等问题。

    结论

    稳定碳同位素技术广泛应用于煤−石油−天然气领域、全球气候变化、表生系统有机碳循环和无机碳汇源等领域的研究中,取得了大量研究成果,未来随着仪器设备和测试技术的不断进步,相关理论和研究方法将日趋成熟与完善,碳同位素示踪必将发挥更大的作用。

  • 加载中
  • 图 1  一些重要地质体的碳同位素组成(据魏菊英等,1988修改

    Figure 1. 

    图 2  Mesopotamian盆地南部油田早白垩世碎屑岩海相石油Sofer图(据Al−Khafaji et al., 2021

    Figure 2. 

    图 3  西部凹陷高升雷家地区未熟油碳同位素类型曲线(据李美俊等,2000

    Figure 3. 

    图 4  油藏与烃源岩单体烃同位素对比(据杨易卓等,2022

    Figure 4. 

    图 5  中国大气田C1-4碳同位素箱线图(据戴金星等,2024

    Figure 5. 

    图 6  修正后的天然气成因类型鉴别图

    Figure 6. 

    图 7  川西坳陷侏罗系气藏连井剖面图(据叶素娟等,2017

    Figure 7. 

    图 8  川西坳陷须家河组四段天然气运移(据沈忠民等,2011

    Figure 8. 

    图 9  马达加斯加Anjohibe洞穴石笋AB2(橙色)和AB3(蓝色)的碳稳定同位素的时间序列(据Burns et al., 2016

    Figure 9. 

    图 10  黄土中碳同位素不同载体类型综合对比图(据徐向春等,2021

    Figure 10. 

    图 11  过去270年的树轮δ13C序列和过去130年的自校准Palmer干旱严重程度指数(scPDSI)序列

    Figure 11. 

    图 12  南海底栖有孔虫碳氧同位素

    Figure 12. 

    图 13  通过WAIS Divide冰芯中CO2重建的过去千年间大气CO2浓度及其δ13C值的变化情况(据Bauska et al., 2015

    Figure 13. 

    图 14  (a)全球甲烷浓度([CH4])和(b)全球甲烷稳定碳同位素比率(${{\delta }^{13}}{{\text{C}}_{\text{C}{{\text{H}}_{\text{4}}}}} $)的时间序列

    Figure 14. 

    表 1  不同研究者提出的煤成气和油型气的δ13C2值界定范围

    Table 1.  Different researchers have proposed a range for defining the δ13C2 values of coal−formed gas and oil-based gas

    研究者 油型气 煤成气
    戴金星,1993 δ13C2<−28.8‰ δ13C2>−25.1‰
    王玲辉等,2008 δ13C2<−28‰ δ13C2>−28‰
    宋成鹏等,2009 δ13C2<−27.5‰ δ13C2>−27.5‰
    宋岩和徐永昌,2005 δ13C2<−29‰ δ13C2>−26‰
    胡国艺等,2007 δ13C2<−29‰ δ13C2>−27‰
    下载: 导出CSV

    表 2  不同研究者建立的天然气δ13C1与成熟度Ro关系式

    Table 2.  Relationship between δ13C1 and maturity Ro of natural gas established by different researchers

    研究者 δ13C1Ro关系式
    油型气 煤成气
    Stahl and Carey, 1975 δ13C1 = 17lgRo − 42 δ13C1 = 8.6lgRo − 28
    戴金星,1993 δ13C1 = 15.80lgRo − 42.21 δ13C1 = 14.13lgRo − 34.39
    陈安定等,1991 δ13C1 = 14.18lnRo − 43.5 δ13C1 = 5.41lnRo − 33.25
    陈建平等,2021 δ13C1 = 25lgRo − 37.5 δ13C1 = 25lgRo − 42.5
    下载: 导出CSV

    表 3  脉冲标记法和连续标记法的比较(据葛体达等,2020

    Table 3.  Comparison between pulse marking method and continuous marking method(after Ge Tida et al., 2020

    脉冲标记法 连续标记法
    标记持续时间 短(小时或天) 植物生长的全部时期
    CO2输入的同位素组成变化 时间短而丰度高 时间长(不一定需要高丰度),长期持续富集
    应用 简单 复杂
    成本 便宜 昂贵
    目的 不同生长阶段植物−土壤系统的碳流动力学 可以达到脉冲标记的所有目的
    地下碳分配 植物碳在CO2,微生物生物量碳,可溶性有机质和
    土壤有机质等中的分配
    净碳同化 植物碳分配的季节动态
    植物根系和土壤呼吸 根际激发效应
    新同化碳的命运(分配和运输)
    碳转移速度
    碳输入到土壤中 在特定的植物生长阶段 在植物生长的整个时期
    缺点 特定生长阶段不能代表整个生长时期,同位素丰
    度在植物整株中分布不均匀
    需要特殊设备长期标记植物
    同位素丰度随时间变化 为保证空气湿度,需要良好的温度控制和空气循环系统
    下载: 导出CSV

    表 4  基于δ13C值估算的不同地区土壤无机碳PC与LC占比

    Table 4.  Estimated percentage of soil inorganic carbon PC and LC in different regions based on δ13C values

    地点 PC占比/% PC含量/(g/kg) 文献来源
    塔里木盆地阿拉尔垦区 1.33~35.7 1.34~56.36 李杨梅等,2018
    俄罗斯 20~50 / Morgun et al., 2008
    俄罗斯 66.8~73.8 26.9~60.1 Ryskov et al., 2008
    美国德克萨斯州 2~11,9~20,60~70,17~100 / Nordt et al., 1998
    以色列 30~60 / Magaritz and Amiel, 1980
    下载: 导出CSV
  • [1]

    Agnihotri R, Gahlaud S K S, Patel N, Sharma R, Kumar P, Chopra S. 2020. Radiocarbon measurements using new automated graphite preparation laboratory coupled with stable isotope mass−spectrometry at Birbal Sahni Institute of Palaeosciences, Lucknow (India)[J]. Journal of Environmental Radioactivity, 213: 106156. doi: 10.1016/j.jenvrad.2019.106156

    [2]

    Aichner B, Feakins S J, Lee J E, Herzschuh U, Liu X. 2015. High−resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia[J]. Climate of the Past, 11(4): 619−633. doi: 10.5194/cp-11-619-2015

    [3]

    Al−Khafaji A J, Hakimi M H, Mohialdeen I M J, Idan R M, Afify W E, Lashin A A. 2021. Geochemical characteristics of crude oils and basin modelling of the probable source rocks in the Southern Mesopotamian Basin, South Iraq[J]. Journal of Petroleum Science and Engineering, 196: 107641. doi: 10.1016/j.petrol.2020.107641

    [4]

    Apostel C, Dippold M, Kuzyakov Y. 2015. Biochemistry of hexose and pentose transformations in soil analyzed by position−specific labeling and 13C−PLFA[J]. Soil Biology and Biochemistry, 80: 199−208. doi: 10.1016/j.soilbio.2014.09.005

    [5]

    Atere C T, Ge T, Zhu Z, Tong C, Jones D L, Shibistova O, Guggenberger G, Wu J. 2017. Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying−rewetting cycles and nitrogen fertilisation[J]. Biology and Fertility of Soils, 53(4): 407−417. doi: 10.1007/s00374-017-1190-4

    [6]

    Baniasad A, Littke R, Abeed Q. 2023. Petroleum systems analysis of the eastern arabian plate: Chemometrics based on a review of the geochemical characteristics of oils in Jurassic−Cenozoic reservoirs[J]. Journal of Petroleum Geology, 46(1): 3−45. doi: 10.1111/jpg.12829

    [7]

    Batjes N H. 1996. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 47(2): 151−163. doi: 10.1111/j.1365-2389.1996.tb01386.x

    [8]

    Bauska T K, Joos F, Mix A C, Roth R, Ahn J, Brook E J. 2015. Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium[J]. Nature Geoscience, 8(5): 383−387. doi: 10.1038/ngeo2422

    [9]

    Bayat O, Karimi A, Khademi H. 2017. Stable isotope geochemistry of pedogenic carbonates in loess−derived soils of northeastern Iran: Paleoenvironmental implications and correlation across Eurasia[J]. Quaternary International, 429: 52−61. doi: 10.1016/j.quaint.2016.01.040

    [10]

    Bernard B B, Brooks J M, Sackett W M. 1976. Natural gas seepage in the Gulf of Mexico[J]. Earth and Planetary Science Letters, 31(1): 48−54. doi: 10.1016/0012-821X(76)90095-9

    [11]

    Berry D, Stecher B, Schintlmeister A, Reichert J, Brugiroux S, Wild B, Wanek W, Richter A, Rauch I, Decker T, Loy A, Wagner M. 2013. Host−compound foraging by intestinal microbiota revealed by single−cell stable isotope probing[J]. Proceedings of the National Academy of Sciences, 110(12): 4720−4725. doi: 10.1073/pnas.1219247110

    [12]

    Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y. 2011. Turnover of soil organic matter and of microbial biomass under C3−C4 vegetation change: Consideration of 13C fractionation and preferential substrate utilization[J]. Soil Biology and Biochemistry, 43(1): 159−166. doi: 10.1016/j.soilbio.2010.09.028

    [13]

    Burns S J, Godfrey L R, Faina P, McGee D, Hardt B, Ranivoharimanana L, Randrianasy J. 2016. Rapid human−induced landscape transformation in Madagascar at the end of the first millennium of the Common Era[J]. Quaternary Science Reviews, 134: 92−99. doi: 10.1016/j.quascirev.2016.01.007

    [14]

    Butterly C R, Armstrong R, Chen D, Tang C. 2015. Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2[J]. Plant and Soil, 391(1−2): 367−382. doi: 10.1007/s11104-015-2441-5

    [15]

    Chen Anding, Liu Guixia, Lian Liwen, Qian Yibe, Zhang Hui. 1991. An experiment on the formation of biogenic methane and a discussion of the favorable geologic conditions of the accumulation of biogenic natural gas[J]. Acta Petrolei Sinica, 12(3): 7−16, 158 (in Chinese with English abstract).

    [16]

    Chen Jianping, Wang Xulong, Chen Jianfa, Ni Yunyan, Xiang Baoli, Liao Fengrong, He Wenjun, Yao Limiao, Li Erting. 2021. New equation to decipher the relationship between carbon isotopic composition of methane and maturity of gas source rocks[J]. Science China Earth Sciences, 51(4): 560−581 (in Chinese).

    [17]

    Chen Shiping, Bai Yongfei, Han Xingguo. 2002. Applications of stable carbon isotope techniques to ecological research[J]. Chinese Journal of Plant Ecology, 26(5): 549−560 (in Chinese with English abstract).

    [18]

    Chen Yilin, Qin Yong. 2017. Characterization and mechanism of exchange reaction through gas−water interface of gaseous inorganic CO2[J]. Journal of China Coal Society, 42(7): 1811−1817 (in Chinese with English abstract).

    [19]

    Conrad R, Klose M, Yuan Q, Lu Y, Chidthaisong A. 2012. Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter[J]. Soil Biology and Biochemistry, 49: 193−199. doi: 10.1016/j.soilbio.2012.02.030

    [20]

    Da J, Zhang Y G, Li G, Ji J. 2020. Aridity−driven decoupling of δ13C between pedogenic carbonate and soil organic matter[J]. Geology, 48(10): 981−985. doi: 10.1130/G47241.1

    [21]

    Dai Jinxing, Ni Yunyan, Gong Deyu, Huang Shipeng, Liu Quanyou, Hong Feng, Zhang Yanling. 2024. Characteristics of carbon isotopic composition of alkane gas in large gas fields in China[J]. Petroleum Exploration and Development, 51(2): 223−233.

    [22]

    Dai Jinxing. 1993. Hydrocarbon isotope characteristics of natural gas and identification of various types of natural gas[J]. Natural Gas Geoscience, (Z1): 1−40 (in Chinese).

    [23]

    Deng Y, Chen F, Guo Q, Hu Y, Chen D, Yang S, Cao J, Chen H, Wei R, Cheng S, Zhou J, Liu C, Jiang X, Zhu J. 2021. Possible links between methane seepages and glacial−interglacial transitions in the South China Sea[J]. Geophysical Research Letters, 48(8): e2020GL091429. doi: 10.1029/2020GL091429

    [24]

    Ding D, Liu G, Fu B, Wang W. 2018. New insights into the nitrogen isotope compositions in coals from the Huainan Coalfield, Anhui Province, China: Influence of the distribution of nitrogen forms[J]. Energy & Fuels, 32(9): 9380−9387.

    [25]

    Ding D, Liu G, Fu B. 2019. Influence of carbon type on carbon isotopic composition of coal from the perspective of solid−state 13C NMR[J]. Fuel, 245: 174−180. doi: 10.1016/j.fuel.2019.02.072

    [26]

    Eldridge D L, Turner A C, Bill M, Conrad M E, Stolper D A. 2023. Experimental determinations of carbon and hydrogen isotope fractionations and methane clumped isotope compositions associated with ethane pyrolysis from 550 to 600 °C[J]. Geochimica et Cosmochimica Acta, 355: 235−265. doi: 10.1016/j.gca.2023.06.006

    [27]

    Erbacher J, Bornemann A, Petrizzo M R, Huck S. 2020. Chemostratigraphy and stratigraphic distribution of keeled planktonic foraminifera in the Cenomanian of the North German Basin[J]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 171(2): 149−161.

    [28]

    Gao Y, Zhang P, Liu J. 2020. One third of the abiotically−absorbed atmospheric CO2 by the loess soil is conserved in the solid phase[J]. Geoderma, 374: 114448. doi: 10.1016/j.geoderma.2020.114448

    [29]

    Ge T, Li B, Zhu Z, Hu Y, Yuan H, Dorodnikov M, Jones D L, Wu J, Kuzyakov Y. 2017. Rice rhizodeposition and its utilization by microbial groups depends on N fertilization[J]. Biology and Fertility of Soils, 53(1): 37−48.

    [30]

    Ge T, Yuan H, Zhu H, Wu X, Nie S, Liu C, Tong C, Wu J, Brookes P. 2012. Biological carbon assimilation and dynamics in a flooded rice−soil system[J]. Soil Biology and Biochemistry, 48: 39−46. doi: 10.1016/j.soilbio.2012.01.009

    [31]

    Ge Tida, Wang Dongdong, Zhu Zhenke, Wei Liang, Wei Xiaomeng, Wu Jinshui. 2020. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem[J]. Chinese Journal of Plant Ecology, 44(4): 360−372 (in Chinese with English abstract). doi: 10.17521/cjpe.2019.0208

    [32]

    Gutsalo L K, Plotnikov A M. 1981. Carbon isotopic composition in the CH4−CO2 system as a criterion for the origin of methane and carbon dioxide in Earth natural gases (in Russian)[J]. Doklady Akademii Nauk SSSR, 259: 470−473.

    [33]

    He Cong, Ji Liming, Su Ao, Wu Yuandong, Zhang Mingzhen. 2016. Genesis analysis and geological application of gas component carbon isotope reversal[J]. Special Oil & Gas Reservoirs, 23(4): 14−19,151 (in Chinese with English abstract).

    [34]

    Hoogakker B A A, Anderson C, Paoloni T, Stott A, Grant H, Keenan P, Mahaffey C, Blackbird S, McClymont E L, Rickaby R, Poulton A, Peck V L. 2022. Planktonic foraminifera organic carbon isotopes as archives of upper ocean carbon cycling[J]. Nature Communications, 13(1): 4841. doi: 10.1038/s41467-022-32480-0

    [35]

    Hu Guoyi, Li Jian, Li Jin, Li Zhisheng, Luo Xia, Sun Qingwu, Ma Chenghua. 2007. Discussion on light hydrocarbon index for identifying the origin of natural gas[J]. Science in China (Series D: Earth Sciences), 37(S2): 111−117 (in Chinese).

    [36]

    Hu X, Zhu L, Wang Y, Wang J, Peng P, Ma Q, Hu J, Lin X. 2014. Climatic significance of n−alkanes and their compound−specific δD values from lake surface sediments on the southwestern Tibetan Plateau[J]. Chinese Science Bulletin, 59(24): 3022−3033. doi: 10.1007/s11434-014-0227-4

    [37]

    Hungate B A, Mau R L, Schwartz E, Caporaso J G, Dijkstra P, Van Gestel N, Koch B J, Liu C M, McHugh T A, Marks J C, Morrissey E M, Price L B. 2015. Quantitative microbial ecology through stable isotope probing[J]. Applied and Environmental Microbiology, 81(21): 7570−7581. doi: 10.1128/AEM.02280-15

    [38]

    Jia G, Bai Y, Yang X, Xie L, Wei G, Ouyang T, Chu G, Liu Z, Peng P. 2015. Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in southern China[J]. Quaternary Science Reviews, 111: 51−61. doi: 10.1016/j.quascirev.2015.01.002

    [39]

    Kang S, Loader N J, Wang J, Qin C, Liu J, Song M. 2022. Tree−Ring Stable Carbon Isotope as a Proxy for hydroclimate Variations in Semi−Arid Regions of North−Central China[J]. Forests, 13(4): 492. doi: 10.3390/f13040492

    [40]

    Keeling C D. 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J]. Geochimica et Cosmochimica Acta, 13(4): 322−334. doi: 10.1016/0016-7037(58)90033-4

    [41]

    Kuzyakov Y. 2010. Priming effects: Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 42(9): 1363−1371. doi: 10.1016/j.soilbio.2010.04.003

    [42]

    Larsen T, Yokoyama Y, Fernandes R. 2018. Radiocarbon in ecology: Insights and perspectives from aquatic and terrestrial studies[J]. Methods in Ecology and Evolution, 9(1): 181−190. doi: 10.1111/2041-210X.12851

    [43]

    Li Chang, Yang Zhongfang, Yu Tao, Niu Rongchen, Guo Rucan, Yu Baocheng, Xia Xueqi, Yu Chaoyang, Cao Yuanyuan. 2023. Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction: A review[J]. Geology in China, 51(4): 1210−1242 (in Chinese with English abstract).

    [44]

    Li Fadong, Li Zhaoxin, Qiao Yunfeng, Liu Shanbao, Tian Chao, Zhu Nong, Hubert Hirwa, Simon Measho. 2023. Using soil organic carbon isotope composition analysis to elucidate the carbon cycle of agroecosystems[J]. Chinese Journal of Eco−Agriculture, 31(2): 194−205 (in Chinese with English abstract).

    [45]

    Li Jiangtao. 2018. Relationship between organic carbon isotope characteristics and maturity in Xishan coalfield[J]. Safety in Coal Mines, 49(11): 164−167 (in Chinese with English abstract).

    [46]

    Li Meijun, Ren Ping, Hu Liguo, Jiao Yunjing. 2000. Application of carbon isotope typical curve to oil source correlation in Liaohe basin[J]. Special Oil & Gas Reservoirs, 7(2): 11−12, 27−51 (in Chinese with English abstract).

    [47]

    Li Q, Azmy K, Yang S, Chen H, Xu S, Lin L, Su Z, Chen A, Yu Y, Sun F. 2022. Early−Middle Permian carbon−isotope stratigraphy of marine carbonates in the northern edge of the South China: Implications for global correlation[J]. Carbonates and Evaporites, 37(1): 1. doi: 10.1007/s13146-021-00743-4

    [48]

    Li Xiumei, Fan Baowei, Hou Juzhi, Wang Mingda, He Yue. 2022. Characteristics of compositions of organic matter δ13C in lake sediments from Dagze Co in Tibetan Plateau and its paleoclimatic and paleoenvironmental significance[J]. Earth Science, 47(6): 2275−2286 (in Chinese with English abstract).

    [49]

    Li Yangmei, Gong Lu, An Shenqun, Sun Li, Chen XinLi Yangmei, Gong Lu, An Shenqun, Sun Li, Chen Xin. 2018. Transfer of soil organic carbon to inorganic carbon in arid oasis based on stable carbon isotope technique[J]. Environmental Science, 39(8): 3867−3875 (in Chinese with English abstract).

    [50]

    Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2(8): 17105. doi: 10.1038/nmicrobiol.2017.105

    [51]

    Liu C G, Qi L X, Liu Y L, Luo M X, Shao X M, Luo P, Zhang Z L. 2016. Positive carbon isotope excursions: Global correlation and genesis in the Middle–Upper Ordovician in the northern Tarim Basin, Northwest China[J]. Petroleum Science, 13(2): 192−203. doi: 10.1007/s12182-016-0096-3

    [52]

    Liu J, Fa K, Zhang Y, Wu B, Qin S, Jia X. 2015a. Abiotic CO2 uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases[J]. Geophysical Research Letters, 42(14): 5779−5785. doi: 10.1002/2015GL064689

    [53]

    Liu Lizhen, Pang Danbo, Wang Xinyun, Chen Lin, Li Xuebin, Wu Mengyao, Liu Bo, Zhu Zhongyou, Li Jingyao, Wang Jifei. 2021. Application of stable carbon isotope technique in soil organic carbon research: A literature review[J]. Arid Zone Research, 38(1): 123−132 (in Chinese with English abstract).

    [54]

    Liu Y, Ge T, Ye J, Liu S, Shibistova O, Wang P, Wang J, Li Y, Guggenberger G, Kuzyakov Y, Wu J. 2019a. Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects[J]. Geoderma, 338: 30−39. doi: 10.1016/j.geoderma.2018.11.040

    [55]

    Liu Y, Ge T, Zhu Z, Liu S, Luo Y, Li Y, Wang P, Gavrichkova O, Xu X, Wang J, Wu J, Guggenberger G, Kuzyakov Y. 2019b. Carbon input and allocation by rice into paddy soils: A review[J]. Soil Biology and Biochemistry, 133: 97−107. doi: 10.1016/j.soilbio.2019.02.019

    [56]

    Magaritz M, Amiel A J. 1980. Calcium Carbonate in a Calcareous Soil from the Jordan Valley, Israel: Its Origin as Revealed by the Stable Carbon Isotope Method[J]. Soil Science Society of America Journal, 44(5): 1059−1062. doi: 10.2136/sssaj1980.03615995004400050037x

    [57]

    Marion G M, Introne D S, Van Cleve K. 1991. The stable isotope geochemistry of CaCO3 on the Tanana River floodplain of interior Alaska, U. S. A. : Composition and mechanisms of formation[J]. Chemical Geology: Isotope Geoscience section, 86(2): 97−110. doi: 10.1016/0168-9622(91)90056-3

    [58]

    Miao Xiaoming, Feng Xiuli, Li Jingrui, Xiao Qianwen, Dan Xiaopeng, Wei Jiangong. 2022. Research progress on methane seepage and its implications for site selection for scientific drilling in the South China Sea[J]. Acta Geologica Sinica, 96(8): 2877−2895 (in Chinese with English abstract).

    [59]

    Milkov A V, Etiope G. 2018. Revised genetic diagrams for natural gases based on a global dataset of >20, 000 samples[J]. Organic Geochemistry, 125: 109−120. doi: 10.1016/j.orggeochem.2018.09.002

    [60]

    Morgun E G, Kovda I V, Ryskov Ya G, Oleinik S A. 2008. Prospects and problems of using the methods of geochemistry of stable carbon isotopes in soil studies[J]. Eurasian Soil Science, 41(3): 265−275. doi: 10.1134/S1064229308030046

    [61]

    Morrissey E M, Mau R L, Schwartz E, McHugh T A, Dijkstra P, Koch B J, Marks J C, Hungate B A. 2017. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter[J]. The ISME Journal, 11(8): 1890−1899. doi: 10.1038/ismej.2017.43

    [62]

    Musat N, Musat F, Weber P K, Pett−Ridge J. 2016. Tracking microbial interactions with NanoSIMS[J]. Current Opinion in Biotechnology, 41: 114−121. doi: 10.1016/j.copbio.2016.06.007

    [63]

    Ono S, Rhim J H, Gruen D S, Taubner H, Kölling M, Wegener G. 2021. Clumped isotopologue fractionation by microbial cultures performing the anaerobic oxidation of methane[J]. Geochimica et Cosmochimica Acta, 293: 70−85. doi: 10.1016/j.gca.2020.10.015

    [64]

    Ortiz J E, Torres T, Delgado A, Valle M, Soler V, Araujo R, Rivas M R, Julià R, Sánchez−Palencia Y, Vega−Panizo R. 2021. Bulk and compound−specific δ13C and n−alkane indices in a palustrine intermontane record for assessing environmental changes over the past 320 ka: the Padul Basin (Southwestern Mediterranean realm)[J]. Journal of Iberian Geology, 47(4): 625−639. doi: 10.1007/s41513-021-00175-y

    [65]

    Pötter S, Schmitz A, Lücke A, Schulte P, Obreht I, Zech M, Wissel H, Marković S B, Lehmkuhl F. 2021. Middle to Late Pleistocene environments based on stable organic carbon and nitrogen isotopes of loess‐palaeosol sequences from the Carpathian Basin[J]. Boreas, 50(1): 184−204. doi: 10.1111/bor.12470

    [66]

    Reitner J, Thiel V. 2011. Encyclopedia of Geobiology[M]. Berlin: Springer Netherlands.

    [67]

    Rochette P, Flanagan L B, Gregorich E G. 1999. Separating Soil Respiration into Plant and Soil Components Using Analyses of the Natural Abundance of Carbon−13[J]. Soil Science Society of America Journal, 63(5): 1207−1213. doi: 10.2136/sssaj1999.6351207x

    [68]

    Rosenzweig S T, Schipanski M E, Kaye J P. 2017. Rhizosphere priming and plant−mediated cover crop decomposition[J]. Plant and Soil, 417(1−2): 127−139. doi: 10.1007/s11104-017-3246-5

    [69]

    Rumpel C, Baumann K, Remusat L, Dignac M F, Barré P, Deldicque D, Glasser G, Lieberwirth I, Chabbi A. 2015. Nanoscale evidence of contrasted processes for root−derived organic matter stabilization by mineral interactions depending on soil depth[J]. Soil Biology and Biochemistry, 85: 82−88. doi: 10.1016/j.soilbio.2015.02.017

    [70]

    Ryskov Y, Demkin V, Oleynik S, Ryskova E. 2008. Dynamics of pedogenic carbonate for the last 5000 years and its role as a buffer reservoir for atmospheric carbon dioxide in soils of Russia[J]. Global and Planetary Change, 61(1−2): 63−69. doi: 10.1016/j.gloplacha.2007.08.006

    [71]

    Schaefer H, Fletcher S E M, Veidt C, Lassey K R, Brailsford G W, Bromley T M, Dlugokencky E J, Michel S E, Miller J B, Levin I, Lowe D C, Martin R J, Vaughn B H, White J W C. 2016. A 21st−century shift from fossil−fuel to biogenic methane emissions indicated by 13 CH 4[J]. Science, 352(6281): 80−84. doi: 10.1126/science.aad2705

    [72]

    Schäfer I K, Bliedtner M, Wolf D, Kolb T, Zech J, Faust D, Zech R. 2018. A δ13C and δ2H leaf wax record from the Late Quaternary loess−paleosoil sequence El Paraíso, Central Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 507: 52−59.

    [73]

    Schoell M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta, 44(5): 649−661. doi: 10.1016/0016-7037(80)90155-6

    [74]

    Schoell M. 1983. Genetic Characterization of Natural Gases[J]. AAPG Bulletin, 67: 2225−2238.

    [75]

    Schwarzbauer J, Littke R, Meier R, Strauss H. 2013. Stable carbon isotope ratios of aliphatic biomarkers in Late Palaeozoic coals[J]. International Journal of Coal Geology, 107: 127−140. doi: 10.1016/j.coal.2012.10.001

    [76]

    Shen Zhongmin, Wang Peng, Liu Sibing, Lv Zhengxiang, Feng Jierui. 2011. Carbon isotopes of Xujiahe Formation nature gas in middle part of western Sichuan depression[J]. Natural Gas Geoscience, 22(5): 834−839 (in Chinese with English abstract).

    [77]

    Shi Yuanbao, Cao Bing, Song Lihua, Wang Guibin. 2016. Effect of doubled CO2 concentration on accumulation of photosynthate in Lycium barbarum by 13C isotope tracer technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 32(10): 201−206 (in Chinese with English abstract).

    [78]

    Sleen P V D, Groenendijk P, Vlam M, Anten N P R, Boom A, Bongers F, Pons T L, Terburg G, Zuidema P A. 2015. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water−use efficiency increased[J]. Nature Geoscience, 8(1): 24−28. doi: 10.1038/ngeo2313

    [79]

    Song Chengpeng, Zhang Xiaobao, Wang Liqun, Xu Ziyuan, Ma Lixie. 2009. A study on genetic types and source discrimination of natural gas in the north margin of the Qaidam Basin[J]. Oil & Gas Geology, 30(1): 90−96 (in Chinese with English abstract).

    [80]

    Song Yan, Xu Yongchang. 2005. Origin and identification of natural gases[J]. Petroleum Exploration and Development, 32(4): 24−29 (in Chinese with English abstract).

    [81]

    Stahl W J, Carey B D. 1975. Source−rock identification by isotope analyses of natural gases from fields in the Val Verde and Delaware basins, west Texas[J]. Chemical Geology, 16(4): 257−267. doi: 10.1016/0009-2541(75)90065-0

    [82]

    Stahl W J. 1978. Source rock−crude oil correlation by isotopic type−curves[J]. Geochimica et Cosmochimica Acta, 42(10): 1573−1577. doi: 10.1016/0016-7037(78)90027-3

    [83]

    Suto N, Kawashima H. 2016. Global mapping of carbon isotope ratios in coal[J]. Journal of Geochemical Exploration, 167: 12−19. doi: 10.1016/j.gexplo.2016.05.001

    [84]

    Tao Y, Gao D, He Y, Ngia N R, Wang M, Sun C, Huang X, Wu J. 2023. Carbon and oxygen isotopes of the Lianglitage Formation in the Tazhong area, Tarim Basin: Implications for sea−level changes and palaeomarine conditions[J]. Geological Journal, 58(3): 967−980. doi: 10.1002/gj.4637

    [85]

    Wang J, Chapman S J, Yao H. 2016. Incorporation of 13 C−labelled rice rhizodeposition into soil microbial communities under different fertilizer applications[J]. Applied Soil Ecology, 101: 11−19. doi: 10.1016/j.apsoil.2016.01.010

    [86]

    Wang Linghui, Shen Zhongmin, Zhao Hu. 2008. Carbon isotope features and genetic type of natural gas in the middle section of western Sichuan Depression[J]. Computing Techniques for Geophysical and Geochemical Exploration, 30(4): 326−330, 265 (in Chinese with English abstract).

    [87]

    Wang X, Cui L, Yang S, Zhai J, Ding Z. 2018. Stable carbon isotope records of black carbon on Chinese Loess Plateau since last glacial maximum: An evaluation on their usefulness for paleorainfall and paleovegetation reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 509: 98−104.

    [88]

    Warwick P D, Ruppert L F. 2016. Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion: A preliminary study[J]. International Journal of Coal Geology, 166: 128−135. doi: 10.1016/j.coal.2016.06.009

    [89]

    Wei Juying, Wang Yuguan. 1988. Isotope Geochemistry[M]. Beijing: Geological Publishing House (in Chinese).

    [90]

    Whitman T, Lehmann J. 2015. A dual−isotope approach to allow conclusive partitioning between three sources[J]. Nature Communications, 6(1): 8708. doi: 10.1038/ncomms9708

    [91]

    Wiesheu A C, Brejcha R, Mueller C W, Kögel−Knabner I, Elsner M, Niessner R, Ivleva N P. 2018. Stable−isotope Raman microspectroscopy for the analysis of soil organic matter[J]. Analytical and Bioanalytical Chemistry, 410(3): 923−931. doi: 10.1007/s00216-017-0543-z

    [92]

    Xia X, Tang Y. 2012. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta, 77: 489−503. doi: 10.1016/j.gca.2011.10.014

    [93]

    Xu Xiangchun, Zhou Bin, Zhou Xuehang, Wang Zhe. 2021. A review for the stable carbon isotope proxies in the paleovegetation researches in the loess−paleosol deposits on the Chinese loess Plateau[J]. Quaternary Sciences, 41(4): 931−947 (in Chinese with English abstract).

    [94]

    Yan Y, Bender M L, Brook E J, Clifford H M, Kemeny P C, Kurbatov A V, Mackay S, Mayewski P A, Ng J, Severinghaus J P, Higgins J A. 2019. Two−million−year−old snapshots of atmospheric gases from Antarctic ice[J]. Nature, 574(7780): 663−666. doi: 10.1038/s41586-019-1692-3

    [95]

    Yang Ping, Tan Fuwen, Shi Meifeng, Wang Zhenghe, Li Zhongxiong, Zhan Wangzhong, Sudhir Rajaure, Ganesh N. Tripathi. 2021. Oil−source correlation and hydrocarbon accumulation in the Lesser Himalayan belt of Nepal[J]. Acta Geologica Sinica, 95(11): 3426−3441 (in Chinese with English abstract).

    [96]

    Yang Yizhuo, Huang Zhilong, Zhao Zhen, Tang Youjun. 2022. Geochemical characteristics and oil source correlation of paleo−reservoirs in Biluocuo Area, Qiangtang Basin[J]. Earth Science, 47(5): 1834−1848 (in Chinese with English abstract).

    [97]

    Ye Sujuan, Zhu Hongquan, Li Rong, Yang Yingtao, Li Qing. 2017. Tracing natural gas migration by integrating organic and inorganic geochemical data: A case study of the Jurassic gas fields in western Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 44(4): 549−560 (in Chinese with English abstract).

    [98]

    Ye Xiaoxian. 2022. The Evolution of the Paleo−Ocean Environment Revealed by Planktonic Foraminifera Since 70 Ka in the Mid−Latitude North Atlantic[D]. Shanghai: Shanghai Ocean University, 1−95 (in Chinese with English abstract).

    [99]

    Yin Qianqian. 2020. Study on Origin of Deep Natural Gas And Gas and Source Rocks Correlation of Gudian Depression in Songliao Basin[D]. Beijing: China University of Petroleum, Beijing, 1−80 (in Chinese with English abstract).

    [100]

    Yuan Hongzhao, Li Chunyong, Jian Yan, Geng Meimei, Xu Liwei, Wang Jiurong. 2014. Stable isotope technique in the soil carbon cycling research of agricultural ecosystems[J]. Journal of Isotopes, 27(3): 170−178 (in Chinese with English abstract).

    [101]

    Zang H, Xiao M, Wang Y, Ling N, Wu J, Ge T, Kuzyakov Y. 2019. Allocation of assimilated carbon in paddies depending on rice age, chase period and N fertilization: Experiment with 13CO2 labelling and literature synthesis[J]. Plant and Soil, 445(1−2): 113−123. doi: 10.1007/s11104-019-03995-1

    [102]

    Zhang H, Cai Y, Tan L, Cheng H, Qin S, An Z, Edwards R L, Ma L. 2015. Large variations of δ13C values in stalagmites from southeastern China during historical times: implications for anthropogenic deforestation[J]. Boreas, 44(3): 511−525. doi: 10.1111/bor.12112

    [103]

    Zhang Ke, Su Jin, Chen Yongquan, Ma Sihong, Zhang Haizu, Yang Chunlong, Fang Yu. 2023. The biogeochemical features of the Cambrian−Ordovician source rocks and origin of ultra−deep hydrocarbons in the Tarim basin[J]. Acta Geologica Sinica, 97(6): 2026−2041 (in Chinese with English abstract).

    [104]

    Zhang Mai, Song Daofu, Wang Tieguan, He Faqi, Zhang Wei, An Chuan, Liu Yue, Lu Zhengang. 2024. Geochemical characteristics and sources of natural gas in Hangjinqi area of Ordos Basin[J]. Petroleum Geology & Experiment, 46(1): 124−135 (in Chinese with English abstract).

    [105]

    Zhang Yuying, He Zhiliang, Gao Bo, Liu Zhongbao. 2017. Sedimentary environment of the Lower Cambrian organic−rich shale and its influence on organic content in the Upper Yangtze[J]. Petroleum Geology & Experiment, 39(2): 154−161 (in Chinese with English abstract).

    [106]

    Zhou B, Bird M, Zheng H, Zhang E, Wurster C M, Xie L, Taylor D. 2017. New sedimentary evidence reveals a unique history of C4 biomass in continental East Asia since the early Miocene[J]. Scientific Reports, 7(1): 170. doi: 10.1038/s41598-017-00285-7

    [107]

    Zhu Shufa, Liu Congqiang, Tao Faxiang. 2005. Use of δ13C method in studying soil organic matter[J]. Acta Pedologica Sinica, 42(3): 495−503 (in Chinese with English abstract).

    [108]

    Zhu X, Chen J, Wu J, Wang Y, Zhang B, Zhang K, He L. 2017a. Carbon isotopic compositions and origin of Paleozoic crude oil in the platform region of Tarim Basin, NW China[J]. Petroleum Exploration and Development, 44(6): 1053−1060. doi: 10.1016/S1876-3804(17)30119-2

    [109]

    Zhu Z, Ge T, Hu Y, Zhou P, Wang T, Shibistova O, Guggenberger G, Su Y, Wu J. 2017b. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil − part 2: Turnover and microbial utilization[J]. Plant and Soil, 416(1/2): 243−257. doi: 10.1007/s11104-017-3210-4

    [110]

    Zhu Z, Ge T, Liu S, Hu Y, Ye R, Xiao M, Tong C, Kuzyakov Y, Wu J. 2018. Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions[J]. Soil Biology and Biochemistry, 116: 369−377. doi: 10.1016/j.soilbio.2017.11.001

    [111]

    Zhu Z, Ge T, Xiao M, Yuan H, Wang T, Liu S, Atere C T, Wu J, Kuzyakov Y. 2017c. Belowground carbon allocation and dynamics under rice cultivation depends on soil organic matter content[J]. Plant and Soil, 410(1−2): 247−258. doi: 10.1007/s11104-016-3005-z

    [112]

    Zhu Z, Zeng G, Ge T, Hu Y, Tong C, Shibistova O, He X, Wang J, Guggenberger G, Wu J. 2016. Fate of rice shoot and root residues, rhizodeposits, and microbe−assimilatedcarbon in paddy soil−Part 1: Decomposition and priming effect[J]. Biogeosciences, 13(15): 4481−4489. doi: 10.5194/bg-13-4481-2016

    [113]

    Zvi S. 1984. Stable carbon isotope compositions of crude oils: Application to source depositional environments and petroleum alteration[J]. AAPG Bulletin, 68: 31−49.

    [114]

    陈安定, 刘桂霞, 连莉文, 钱贻伯, 张辉. 1991. 生物甲烷形成试验与生物气聚集的有利地质条件探讨[J]. 石油学报,12(3): 7−16, 158.

    [115]

    陈建平, 王绪龙, 陈践发, 倪云燕, 向宝力, 廖凤蓉, 何文军, 姚立邈, 李二庭. 2021. 甲烷碳同位素判识天然气及其源岩成熟度新公式[J]. 中国科学: 地球科学, 51(4): 560−581.

    [116]

    陈世苹, 白永飞, 韩兴国. 2002. 稳定性碳同位素技术在生态学研究中的应用[J]. 植物生态学报,26(5): 549−560.

    [117]

    陈义林, 秦勇. 2017. 无机成因二氧化碳气−水界面交换反应表征与机制[J]. 煤炭学报, 42(7): 1811−1817.

    [118]

    戴金星, 倪云燕, 龚德瑜, 黄士鹏, 刘全有, 洪峰, 张延玲. 2024. 中国大气田烷烃气碳同位素组成的若干特征[J]. 石油勘探与开发, 51(2): 223−233. doi: 10.11698/PED.20230669

    [119]

    戴金星. 1993. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学,(Z1): 1−40.

    [120]

    葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 2020. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 44(4): 360−372.

    [121]

    贺聪, 吉利明, 苏奥, 吴远东, 张明震. 2016. 天然气组分碳同位素倒转成因分析及地质应用[J]. 特种油气藏, 23(4): 14−19,151.

    [122]

    胡国艺, 李剑, 李谨, 李志生, 罗霞, 孙庆伍, 马成华. 2007. 判识天然气成因的轻烃指标探讨[J]. 中国科学(D辑: 地球科学), 37(S2): 111−117.

    [123]

    李畅, 杨忠芳, 余涛, 牛荣琛, 郭茹璨, 余保成, 夏学齐, 于朝阳, 曹圆圆. 2023. 干旱区土壤无机碳碳汇作用及其对固碳减排贡献研究进展[J]. 中国地质, 51(4): 1210−1242.

    [124]

    李发东, 栗照鑫, 乔云峰, 刘山宝, 田超, 朱农, Hubert Hirwa, Simon Measho. 2023. 土壤有机碳同位素组成在农田生态系统碳循环中的应用进展[J]. 中国生态农业学报(中英文), 31(2): 194−205.

    [125]

    李江涛. 2018. 西山矿区煤中有机碳同位素特征与其成熟度之间的联系[J]. 煤矿安全, 49(11): 164−167.

    [126]

    李美俊, 任平, 胡礼国, 焦运景. 2000. 碳同位素类型曲线在辽河盆地油源对比中的应用[J]. 特种油气藏,7(2): 11−12, 27−51.

    [127]

    李秀美, 范宝伟, 侯居峙, 王明达, 贺跃. 2022. 青藏高原达则错沉积物有机碳同位素特征及古气候环境意义[J]. 地球科学, 47(6): 2275−2286. doi: 10.3321/j.issn.1000-2383.2022.6.dqkx202206027

    [128]

    李杨梅, 贡璐, 安申群, 孙力, 陈新. 2018. 基于稳定碳同位素技术的干旱区绿洲土壤有机碳向无机碳的转移[J]. 环境科学, 39(8): 3867−3875.

    [129]

    刘丽贞, 庞丹波, 王新云, 陈林, 李学斌, 吴梦瑶, 刘波, 祝忠有, 李静尧, 王继飞. 2021. 稳定碳同位素技术在土壤有机碳研究中的应用进展[J]. 干旱区研究, 38(1): 123−132.

    [130]

    苗晓明, 冯秀丽, 李景瑞, 肖倩文, 但孝鹏, 尉建功. 2022. 南海甲烷渗漏研究进展及其对我国南海科学钻探选址的启示[J]. 地质学报, 96(8): 2877−2895.

    [131]

    沈忠民, 王鹏, 刘四兵, 吕正祥, 冯杰瑞. 2011. 川西坳陷中段须家河组天然气碳同位素特征[J]. 天然气地球科学, 22(5): 834−839. doi: 10.11764/j.issn.1672-1926.2011.05.834

    [132]

    石元豹, 曹兵, 宋丽华, 汪贵斌. 2016. 用13C示踪研究CO2浓度倍增对枸杞光合产物积累的影响[J]. 农业工程学报, 32(10): 201−206. doi: 10.11975/j.issn.1002-6819.2016.10.028

    [133]

    宋成鹏, 张晓宝, 汪立群, 徐子远, 马立协. 2009. 柴达木盆地北缘天然气成因类型及气源判识[J]. 石油与天然气地质, 30(1): 90−96. doi: 10.3321/j.issn:0253-9985.2009.01.013

    [134]

    宋岩, 徐永昌. 2005. 天然气成因类型及其鉴别[J]. 石油勘探与开发, 32(4): 24−29. doi: 10.3321/j.issn:1000-0747.2005.04.004

    [135]

    王玲辉, 沈忠民, 赵虎. 2008. 川西坳陷中段天然气碳同位素特征及其成因类型[J]. 物探化探计算技术,30(4): 326−330, 265.

    [136]

    魏菊英, 王关玉. 1988. 同位素地球化学[M]. 北京: 地质出版社.

    [137]

    徐向春, 周斌, 周雪航, 王者. 2021. 中国黄土高原沉积物稳定碳同位素指标在古植被环境研究中的进展[J]. 第四纪研究, 41(4): 931−947. doi: 10.11928/j.issn.1001-7410.2021.04.05

    [138]

    杨平, 谭富文, 施美凤, 王正和, 李忠雄, 占王忠, Sudhir Rajaure, Ganesh N. Tripathi. 2021. 尼泊尔低喜马拉雅推覆带油源对比及油气成藏[J]. 地质学报, 95(11): 3426−3441. doi: 10.3969/j.issn.0001-5717.2021.11.018

    [139]

    杨易卓, 黄志龙, 赵珍, 唐友军. 2022. 羌塘盆地毕洛错地区古油藏地球化学特征与油源对比[J]. 地球科学, 47(5): 1834−1848. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205021

    [140]

    叶素娟, 朱宏权, 李嵘, 杨映涛, 黎青. 2017. 天然气运移有机-无机地球化学示踪指标——以四川盆地川西坳陷侏罗系气藏为例[J]. 石油勘探与开发, 44(4): 549−560. doi: 10.11698/PED.2017.04.08

    [141]

    叶孝贤. 2022. 北大西洋中纬度海域浮游有孔虫揭示的70ka以来古海洋环境演化[D]. 上海: 上海海洋大学, 1−95.

    [142]

    尹倩倩. 2020. 松辽盆地孤店断陷深层天然气成因研究及气源对比[D]. 北京: 中国石油大学(北京), 1−80.

    [143]

    袁红朝, 李春勇, 简燕, 耿梅梅, 许丽卫, 王久荣. 2014. 稳定同位素分析技术在农田生态系统土壤碳循环中的应用[J]. 同位素, 27(3): 170−178. doi: 10.7538/tws.2014.27.03.0170

    [144]

    张科, 苏劲, 陈永权, 马巳翃, 张海祖, 杨春龙, 方玙. 2023. 塔里木盆地寒武系—奥陶系烃源岩油源特征与超深层油气来源[J]. 地质学报, 97(6): 2026−2041.

    [145]

    张迈, 宋到福, 王铁冠, 何发岐, 张威, 安川, 刘悦, 陆振港. 2024. 鄂尔多斯盆地杭锦旗地区天然气地球化学特征及气源探讨[J]. 石油实验地质, 46(1): 124−135. doi: 10.11781/sysydz202401124

    [146]

    张钰莹, 何治亮, 高波, 刘忠宝. 2017. 上扬子区下寒武统富有机质页岩沉积环境及其对有机质含量的影响[J]. 石油实验地质, 39(2): 154−161. doi: 10.11781/sysydz201702154

    [147]

    朱书法, 刘丛强, 陶发祥. 2005. δ13C方法在土壤有机质研究中的应用[J]. 土壤学报, 42(3):495−503. doi: 10.11766/trxb200406220322

  • 加载中

(14)

(4)

计量
  • 文章访问数:  126
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2024-06-04
修回日期:  2024-07-17
刊出日期:  2025-05-25

目录