中国地质调查局 中国地质科学院主办
科学出版社出版

青藏高原东北缘岩浆型铜镍钴硫化物矿床勘查模型与研究进展

刘月高, 张江伟, 冯志兴, 杨顺龙, 王义忠, 李积清, 赵志逸, 王治安, 李树雷, 陈正国, 王厚方. 2025. 青藏高原东北缘岩浆型铜镍钴硫化物矿床勘查模型与研究进展[J]. 中国地质, 52(3): 972-1001. doi: 10.12029/gc20230128003
引用本文: 刘月高, 张江伟, 冯志兴, 杨顺龙, 王义忠, 李积清, 赵志逸, 王治安, 李树雷, 陈正国, 王厚方. 2025. 青藏高原东北缘岩浆型铜镍钴硫化物矿床勘查模型与研究进展[J]. 中国地质, 52(3): 972-1001. doi: 10.12029/gc20230128003
LIU Yuegao, ZHANG Jiangwei, FENG Zhixing, YANG Shunlong, WANG Yizhong, LI Jiqing, ZHAO Zhiyi, WANG Zhian, LI Shulei, CHEN Zhengguo, WANG Houfang. 2025. Exploration and research progress of magmatic copper−nickel−cobalt sulfide deposits in the north−eastern margin of the Qinghai−Tibetan Plateau[J]. Geology in China, 52(3): 972-1001. doi: 10.12029/gc20230128003
Citation: LIU Yuegao, ZHANG Jiangwei, FENG Zhixing, YANG Shunlong, WANG Yizhong, LI Jiqing, ZHAO Zhiyi, WANG Zhian, LI Shulei, CHEN Zhengguo, WANG Houfang. 2025. Exploration and research progress of magmatic copper−nickel−cobalt sulfide deposits in the north−eastern margin of the Qinghai−Tibetan Plateau[J]. Geology in China, 52(3): 972-1001. doi: 10.12029/gc20230128003

青藏高原东北缘岩浆型铜镍钴硫化物矿床勘查模型与研究进展

  • 基金项目: 海南省科技计划三亚崖州湾科技城联合项目(2021CXLH0027)和国家重点研发计划(2019YFC0605201)联合资助。
详细信息
    作者简介: 刘月高,男,1987年生,副研究员,从事实验岩石学、岩浆型铜镍钴铂族矿床定位预测、海陆矿产对比与预测工作;E−mail:liuyg@idsse.ac.cn
    通讯作者: 张江伟,男,1984年生,高级工程师,从事大地构造学、矿产地质调查工作;E−mail: 63290005@qq.com
  • 中图分类号: P618.2

Exploration and research progress of magmatic copper−nickel−cobalt sulfide deposits in the north−eastern margin of the Qinghai−Tibetan Plateau

  • Fund Project: Supported by the projects of Sanya Yazhou Bay Science and Technology City of Hainan Province (No.2021CXLH0027) and National Key Research and Development Project (No.2019YFC0605201).
More Information
    Author Bio: LIU Yuegao, male, born in 1987, associate researcher, mainly engaged in the study of the location prediction of ore deposit, high T−P experiments (experimental petrology), and comparison and prediction of sea and land minerals resources; E−mail: liuyg@idsse.ac.cn .
    Corresponding author: ZHANG Jiangwei, male, born in 1984, senior engineer, mainly engaged in the study of the location prediction of ore deposit; E−mail: 63290005@qq.com.
  • 研究目的

    为提升我国Cu−Ni−Co资源供应安全,有必要梳理青藏高原东北缘东昆仑造山带的岩浆型铜镍钴硫化物矿床的的成矿规律与找矿标志。

    研究方法

    为建立矿床勘查模型,本文剖析了代表性岩浆铜镍硫化物矿床的地质特征与成因,并系统总结了东昆仑地区晚奥陶世—早志留世、中晚志留世—早中泥盆世、早石炭世、中二叠世—早三叠世、中—晚三叠世5期基性−超基性侵入杂岩体的矿物学、岩石学、年代学、地球化学和地球物理特征。

    研究结果

    东昆仑在显生宙存在2期岛弧基性或基性—超基性岩体:(1)原特提斯洋向北俯冲背景下形成的晚奥陶世—早志留世的基性岩体;(2)中二叠世—早三叠世的古特提斯洋俯冲形成的基性—超基性岩体;与之对应,存在2期碰撞后伸展基性—超基性岩体,分别为中晚志留世—早中泥盆世和中晚三叠世。辉石岩地幔可能是东昆仑部分岩浆型镍矿床的源区,板块断离−折返模型可较好解释岩浆铜镍钴硫化物矿床成矿年龄与高压—超高压退变质年龄一致的现象。针对幔源岩浆硫化物饱和机制,大体识别了有利地壳混染与有害地壳混染的种类,并深入分析结晶分异对硫化物饱和影响,提出了矿体优选赋存的位置,对比了成矿岩体与非成矿岩体在构造、岩石类型、矿物学、时代、蚀变、围岩种类代表性差异。

    结论

    建立了东昆仑造山带岩浆铜镍钴硫化物矿床的地质−地球化学−地球物理综合信息勘查模型。

  • 加载中
  • 图 1  东昆仑显生宙主要岩浆岩和榴辉岩分布图(底图据校培喜等,2014Dong et al.,2018修改;年龄数据来源请详见表1表2

    Figure 1. 

    图 2  夏日哈木矿区(a)、Ⅰ号岩体地质图(b)及纵剖面图(c)

    Figure 2. 

    图 3  东昆仑石头坑德镁铁−超镁铁质岩地质图(a)和剖面图(b)

    Figure 3. 

    图 4  夏日哈木岩体氧逸度与岛弧阿拉斯加型岩体氧逸度的对比(Liu et al., 2018

    Figure 4. 

    图 5  结晶过程中SCSS变化情况的定量模拟(Liu et al., 2018

    Figure 5. 

    图 6  铜镍矿体优选位置总结

    Figure 6. 

    图 7  夏日哈木矿区地表的孔雀石化(a)和镍华(b)

    Figure 7. 

    图 8  石头坑德矿区ZK4001岩相、镍含量与εNd(t)、(87Sr/86Sr)i的对应关系(Zhang et al., 2018

    Figure 8. 

    图 9  夏日哈木矿区ZK3509超基性岩与白云质大理岩的接触关系

    Figure 9. 

    图 10  夏日哈木、冰沟南、开木琪基性—超基性岩的橄榄石和单斜辉石成分对比(Liu et al., 2019

    Figure 10. 

    图 11  开木棋岩体地面磁测数据化极图(a)和三维磁化率反演图(b)C1、C2和C3 为磁异常编号

    Figure 11. 

    图 12  夏日哈木7号线激电中梯和高频大地电磁测深异常图(宋梦馨, 2015

    Figure 12. 

    图 13  青海东昆仑地区岩浆硫化物矿床勘查模型

    Figure 13. 

    表 1  东昆仑造山带代表性基性—超基性岩体(不含岩墙)年龄

    Table 1.  Age of typical mafic−ultramafic complexes (excluding rock walls) in the Eastern Kunlun Orogenic Belt

    岩体 测试对象 时代/Ma 方法 来源
    夏日哈木I号 淡色辉长岩 447 ± 1 LA−MC−ICP−MS锆石U−Pb 王冠, 2014
    夏日哈木I号 0号勘探线探槽中的辉长岩 439 ± 3 LA−ICP−MS锆石U−Pb 姜常义等, 2015
    夏日哈木I号 ZK1905的 430 m处的辉长岩 431 ± 2 LA−ICP−MS锆石U−Pb Li et al., 2015
    胡晓钦 辉长岩 438 ± 2 LA−ICP−MS锆石U−Pb 刘彬等, 2013
    夏日哈木I号 岩体上部条带状辉长岩 394 ± 3 LA−ICP−MS锆石U−Pb 李世金等, 2012
    夏日哈木I号 0号勘探线北部辉长苏长岩 406 ± 3 SHRIMP锆石U−Pb Song et al., 2016
    夏日哈木I号 0线勘探线地表的二辉岩 408 ± 3 SHRIMP锆石U−Pb Song et al., 2016
    夏日哈木I号 ZK203的二辉岩 406 ± 3 SHRIMP锆石U−Pb Song et al., 2016
    夏日哈木I号 ZK5E07S−347 m+ ZK1501S−340 m的二辉岩 412 ± 2 LA−ICP−MS锆石U−Pb Li et al., 2015
    夏日哈木I号 ZK1309、ZK1307和ZK0E09块状硫化物 408 ± 11 Re−Os同位素等时年龄 Li et al., 2020
    夏日哈木I号 辉长岩 423 ± 2 LA−ICP−MS锆石U−Pb Li et al., 2020
    夏日哈木I号 超基性岩 423 ± 2 LA−ICP−MS锆石U−Pb Li et al., 2020
    夏日哈木I号 ZK5E07S的340~350 m非矿化橄辉岩 413 ± 4 LA−ICP−MS锆石U−Pb 张照伟等, 2015
    夏日哈木I号 ZK1109的辉长苏长岩 423 ± 1 LA−MC−ICP−MS锆石U−Pb 王冠等, 2014
    夏日哈木I号 ZK1501S的330~340 m非矿化橄辉岩 411 ± 3 LA−ICP−MS锆石U−Pb 张照伟等, 2015
    夏日哈木II号 辉长岩 423 ± 3 LA−ICP−MS锆石U−Pb Li et al., 2020
    夏日哈木II号 辉长岩 424 ± 1 LA−ICP−MS锆石U−Pb Peng et al., 2016
    夏日哈木II号 辉长岩 385 ± 4 LA−ICP−MS锆石U−Pb 段建华等, 2017
    夏日哈木II号 辉长岩 430 ± 5 LA−ICP−MS锆石U−Pb 段建华等, 2017
    夏日哈木II号 辉长岩 424 ± 5 SHRIMP锆石U−Pb 杜玮等, 2017
    夏日哈木IV号 辉长岩 423 ± 3 LA−ICP−MS锆石U−Pb Li et al., 2020
    希望沟 含矿辉石橄榄岩 407 ± 5 LA−ICP−MS锆石U−Pb 孔会磊等, 2019a
    冰沟南 辉长岩 427 ± 7 LA−MC−ICP−MS锆石U−Pb 何书跃等, 2017
    阿克楚克塞I号 辉长岩 422 ± 10 LA−ICP−MS锆石U−Pb Yan et al., 2020
    阿克楚克塞IV号 辉长岩 424 ± 3 LA−ICP−MS锆石U−Pb Yan et al., 2019b
    水仙南 辉长岩 420 ± 1 LA−ICP−MS锆石U−Pb Yan et al., 2019a
    德探沟 辉长岩 413 ± 1 LA−ICP−MS锆石U−Pb Yan et al., 2019a
    向阳沟西 辉长岩 399 ± 2 LA−ICP−MS锆石U−Pb Yan et al., 2019a
    玛兴大湾 辉长岩 397 ± 1 LA−ICP−MS锆石U−Pb Yan et al., 2019c
    尕牙河东沟 单辉橄榄岩 420 ± 1 LA−ICP−MS锆石U−Pb Norbu et al., 2020
    玉古萨依 角闪辉长岩 406 ± 3 LA−ICP−MS锆石U−Pb 孟杰等, 2019
    玉古萨依 角闪辉长岩 405 ± 3 LA−ICP−MS锆石U−Pb Hu et al., 2023
    浪木日4号 含矿橄榄辉石岩 439 ± 3 LA−ICP−MS锆石U−Pb 孟庆鹏, 2019
    浪木日2号 辉石橄榄岩 429 ± 2 LA−ICP−MS锆石U−Pb 田楠, 2022
    石头坑德 辉长岩 424 ± 3 LA−ICP−MS锆石U−Pb 周伟, 2016
    石头坑德 Zk7201的132 m辉长岩 425 ± 4 SHRIMP锆石U−Pb Zhang et al., 2018
    石头坑德 辉长苏长岩 421 ± 2 LA−ICP−MS锆石U−Pb Jia et al., 2021
    石头坑德 橄榄二辉岩 420 ± 6 LA−ICP−MS锆石U−Pb Jia et al., 2021
    石头坑德 橄榄二辉岩 424 ± 6 SIMS锆石U−Pb Jia et al., 2021
    石头坑德 ZK001橄榄二辉岩 422 ± 2 LA−ICP−MS锆石U−Pb Li et al., 2018
    石头坑德 ZK001辉长岩 426 ± 6 LA−ICP−MS锆石U−Pb Li et al., 2018
    石头坑德 ZK003的橄榄二辉岩 418 ± 9 LA−ICP−MS锆石U−Pb Li et al., 2021
    石头坑德 ZK4001的38 m橄榄二辉岩 334 ± 4 SHRIMP锆石U−Pb Zhang et al., 2018
    希望沟 橄榄辉长岩 266 ± 2 LA−ICP−MS锆石U−Pb 孔会磊等, 2021
    希望沟 橄榄辉石岩 262 ± 2 LA−ICP−MS锆石U−Pb 孔会磊等, 2019b
    希望沟 辉长岩 271 ± 1 LA−ICP−MS锆石U−Pb 李玉龙等, 2018
    加当 辉长岩 263 ± 3 LA−ICP−MS锆石U−Pb 孔会磊等, 2017
    加当 橄榄辉长岩 250 ± 3 LA−ICP−MS锆石U−Pb 孔会磊等, 2018
    白日其利 角闪辉长岩 249 ± 4 LA−ICP−MS锆石U−Pb 熊富浩等, 2011
    开木琪 二辉岩 221 ± 2 LA−ICP−MS锆石U−Pb Liu et al., 2019
    开木琪 辉长岩 222 ± 1 LA−ICP−MS锆石U−Pb Fan et al., 2023
    约格鲁 角闪辉长岩 239 ± 6 SHRIMP锆石U−Pb 刘成东等, 2004
    小尖山 辉长岩 228 ± 1 LA−MC−ICP−MS锆石U−Pb 奥琮等, 2015
    阿克楚克塞 辉长岩 219 ± 1 LA−ICP−MS锆石U−Pb 杨锡铭等, 2018
    拉陵高里2号 辉长岩 245 ± 2 LA−ICP−MS锆石U−Pb 王亚磊等, 2017
    拉陵高里3号 辉长岩 238 ± 4 LA−ICP−MS锆石U−Pb 王亚磊等, 2017
    达拉库岸 辉长岩 244 ± 2 LA−ICP−MS锆石U−Pb 夏明哲等, 2018
    石灰沟外滩 角闪辉长岩 219 ± 1 角闪石39Ar−40Ar坪年龄 罗照华等, 2002
    肯德可克 辉长岩 208 ± 2 斜长石39Ar−40Ar坪年龄 赵财胜等, 2006
    下载: 导出CSV

    表 2  东昆仑榴辉岩、榴闪岩锆石同位素年龄

    Table 2.  Zircon isotopic age of eclogite in the Eastern Kunlun

    位置 岩石 原岩年龄/Ma 榴辉岩相
    变质年龄/Ma
    退变质
    年龄/Ma
    测定方法 资料来源
    温泉 细粒榴辉岩 934     SHRIMP Meng et al., 2013
    温泉 粗粒榴辉岩 428 ± 2 LA−MC−ICP−MS Meng et al., 2013
    温泉 榴辉岩 451 ± 2 LA−ICP−MS 贾丽辉等, 2014
    温泉 榴辉岩中
    石英脉
    450 ± 2 LA−ICP−MS 贾丽辉等, 2014
    苏海图 榴辉岩 411 ± 2 LA−ICP−MS 祁生胜等, 2014
    夏日哈木III号 榴辉岩 436 409 LA−MC−ICP−MS 张照伟等, 2017
    夏日哈木II号岩体西 榴辉岩 777~773 415 ± 6 LA-ICP-MS 潘彤和张勇, 2020
    夏日哈木PM4剖面 退变榴辉岩 414 ± 7 SIMS 郭峰等, 2020
    五龙沟西 榴辉岩 650~520 451 ± 4 LA−ICP−MS 熊富浩和马昌前, 2016
    加当 榴闪岩 934 ± 15 440 ± 13 LA−ICP−MS 国显正等, 2018
    浪木日上游 榴辉岩 432 ± 2 LA−ICP−MS 祁晓鹏等, 2016
    浪木日 榴闪岩 445 415 LA−ICP−MS 田楠, 2022
    大格勒 榴辉岩 433 ± 5 LA−ICP−MS Du et al., 2017
    柯克特 榴辉岩   427 ± 1 410.5 ± 2 SIMS Song et al., 2018
    艾日克汗森 榴辉岩 435 ± 4 LA−ICP−MS 王启蒙, 2020
    下载: 导出CSV

    表 3  东昆仑代表性基性−超基性岩体特征

    Table 3.  The geological feature of typical mafic−ultramafic intrusions

    岩体 面积/km2 形状 岩相 含矿岩相 矿石特征 围岩 m/f 来源
    夏日哈木I号 1.2 向西倾伏的岩床 辉长岩、斜方辉石岩、二辉岩、方辉橄榄岩、二辉橄榄岩、单辉橄榄岩、纯橄岩 辉石岩、纯橄岩 块状、海绵陨铁状矿石、稠密浸染状、稀疏浸染状、星点状、脉状矿石 金水口岩群片麻状花岗岩(含星点状硫化物)和大理岩(含星点状硫化物) 2.06~6.3 Li et al., 2015;
    Song et al., 2016;
    Liu et al., 2018;
    Wang et al., 2019
    夏日哈木II号 0.15 长方形 辉长岩、辉石岩 辉长岩、辉石岩 浸染状硫化物 古元古界金水
    口群白沙河岩组
    2.32~4.08 Peng et al., 2016;
    杜玮等, 2017;
    段建华等, 2017
    阿克楚克塞I号 0.008 椭圆状 单斜辉石岩、角闪单斜辉石岩、辉长岩 角闪单斜辉石岩、单斜辉石岩 浸染状硫化物 滩间山群大理岩 0.36~2.96 Yan et al., 2020
    阿克楚克塞IV号 0.1 圆形 橄榄辉石岩、辉石岩、辉长岩 辉石岩 海绵陨铁状硫化物、脉状硫化物、浸染状硫化物 滩间山群大理岩 0.87~0.92 Yan et al., 2019b;
    赵拓飞, 2021
    冰沟南镍矿化点 4 近正方形 辉石岩、辉长岩 辉石岩 浸染状硫化物 中元古代狼牙山组片岩夹大理岩 2.5~2.9 王冠, 2014;
    张照伟等, 2017
    水仙南 0.32 椭圆形 角闪辉石岩、角闪苏长岩、辉石角闪石岩,角闪辉长岩 角闪辉长岩 浸染状硫化物 金水口岩群白沙河岩组 0.8~3.8 Yan et al., 2019a
    玉古萨依 0.6 呈岩席−岩
    床状产出
    方辉橄榄岩、橄榄斜方辉石岩, 角闪斜方辉石岩, 角闪辉长岩 角闪斜方辉石岩 斑状或浸染状硫化物 祁漫塔格岩群变砂岩 1.1~3.7 孟杰等, 2019Hu et al., 2023
    浪木日IV
    号岩体
    0.2~0.8 椭圆状 辉石橄榄岩、橄榄辉石岩、辉石岩、辉长岩 辉石橄榄岩、辉石岩 浸染状硫化物、块状硫化物 白沙河岩组片麻岩 1.0~5.3 孟庆鹏, 2019
    希望沟 2.1 近正方形 辉长岩、橄榄辉长岩、橄榄辉石岩、辉石橄榄岩 辉石橄榄岩 稀疏浸染状矿石 古元古界白沙河组片麻岩 孔会磊等, 2019a
    尕牙河东沟 0.2 呈岩席−岩
    床状产出
    辉长岩、单辉橄榄岩 单辉橄榄岩 稀疏浸染状矿石 古元古界白沙河组片麻岩和大理岩 2.84~3.75 Norbu et al., 2020
    石头坑德 4 岩床状 辉长岩相岩石包括辉长岩、暗色橄榄辉长岩;辉石岩相岩石包括单斜辉石岩、二辉岩和斜方辉石岩;橄榄岩相岩石包括单辉橄榄岩、方辉橄榄岩和纯橄岩。 二辉岩 星点状构造、稀疏浸染状构造、稠密浸染状构造、团块状构造、准块状构造、脉状构造 主要为金水口岩群白沙河岩组的黑云斜长片麻岩(含星点状硫化物, 局部与中−新元古代万宝沟群大理岩接触(未见硫化物) 1.93~5.96 周伟, 2016;
    Li et al., 2018;
    Zhang et al., 2018;
    Wang et al., 2020
    达拉库岸 0.1 长条状 二辉橄榄岩、单辉橄榄
    岩、橄榄二辉岩、单斜辉石岩和辉长岩
    二辉橄榄岩 星点状构造、稠密浸染状构造 华力西中期的花岗
    岩、二长花岗岩
    3.1~5.1 夏明哲等, 2018
    开木琪镍矿化点 2.01 近圆形 二辉岩、辉长岩、少量辉石橄榄岩 辉石岩 星点状构造 晚三叠世黑云母二长花岗岩、花岗闪长岩、闪长岩 Liu et al., 2019;
    Fan et al., 2023
    小尖山基性−超基性岩体 1.5 正方形 中心为橄榄辉长岩, 边部为辉长岩 晚三叠世中细粒二长花岗岩、晚三叠世中粒石英闪长岩 1.5~2.9 奥琮等, 2015
    拉陵高里沟
    脑2号岩体
    0.045 粗粒辉长岩、小范围出露的 细粒辉石岩 辉石岩 辉石岩中见零星磁黄铁矿化 古元古代金水口岩群 王亚磊等, 2017
    拉陵高里沟
    脑3号岩体
    0.004 橄榄二辉岩、辉长岩 古元古代金水口岩群 王亚磊等, 2017
    下载: 导出CSV
  • [1]

    Ao Cong, Sun Fengyue, Li Bile, Wang Guan, Li Liang, Li Shijin, Zhao Junwei. 2015. U−Pb dating, geochemistry and tectonic implications of Xiaojianshan gabbro in Qimantage Mountain, Eastern Kunlun Orogenic Belt[J]. Geotectonica et Metallogenia, 39(6): 1176−1184 (in Chinese with English abstract).

    [2]

    Ballhaus C, Berry R F, Green D H. 1991. High pressure experimental calibration of the olivine−orthopyroxene−spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle[J]. Contributions to Mineralogy and Petrology, 107(1): 27−40. doi: 10.1007/BF00311183

    [3]

    Barnes S J, Godel B, Gürer D, Brenan J M, Robertson J, Paterson D. 2013. Sulfide−Olivine Fe−Ni exchange and the origin of anomalously Ni rich magmatic sulfides[J]. Economic Geology, 108(8): 1971−1982. doi: 10.2113/econgeo.108.8.1971

    [4]

    Bi H Z, Song S G, Dong J L, Yang L M, Qi S S, Allen M B. 2018. First discovery of coesite in eclogite from East Kunlun, northwest China[J]. Science Bulletin, 63(23): 1536−1538. doi: 10.1016/j.scib.2018.11.011

    [5]

    Bian Qiantao, Luo Xiaoquan, Li Hongshen, Chen Haihong, Zhao Dasheng, Li Dihui. 1999. Discovery of Early Paleozoic and Early Carboniferous−Early Permian ophiolites in the A'nyemaqen, Qinghai province, China[J]. Scientia Geologica Sinica, 34(4): 523−524 (in Chinese with English abstract).

    [6]

    Chen Jing, Xie Zhiyong, Li Bin, Tan Shengxiang, Ren Hua, Zhang Qimei, Li Yan. 2013. Petrogenesis of Devonian intrusive rocks in Lalingzaohuo area, Eastern Kunlun, and its geological significance[J]. Journal of Mineralogy & Petrology, 33(3): 26−34 (in Chinese with English abstract).

    [7]

    Chen L, Song X, Hu R, Yu S, Yi J, Kang J, Huang K. 2021. Mg–Sr–Nd isotopic insights into petrogenesis of the Xiarihamu mafic–ultramafic intrusion, northern Tibetan plateau, China[J]. Journal of Petrology, 62(2): egaa113. doi: 10.1093/petrology/egaa113

    [8]

    Dong Y, He D, Sun S, Liu X, Zhou X, Zhang F, Yang Z, Cheng B, Zhao G, Li J. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth−Science Reviews, 186: 231−261. doi: 10.1016/j.earscirev.2017.12.006

    [9]

    Du W, Jiang C, Tang Z, Xia M, Xia Z, Ling J, Zhou W, Wang B. 2017. Discovery of the Dagele eclogite in East Kunlun, Western China and its zircon SHRIMP U−Pb ages: New constrains on the Central Kunlun Suture Zone[J]. Acta Geologica Sinica (English Edition), 91(3): 1153−1154. doi: 10.1111/1755-6724.13339

    [10]

    Du Wei, Jiang Changyi, Ling Jinlan, Zhou Wei, Xia Mingzhe, Xia Zhaode. 2017. Zircon SHRIMP U−Pb geochronology, geochemistry and implications of No. II intrusion in Xiarihamu Cu−Ni deposit, East Kunlun Mountains[J]. Mineral Deposits, 36(05): 1185−1196 (in Chinese with English abstract).

    [11]

    Duan Jianhua, Zhang Zhaowei, Qi Changwei, Wang Yalei, Qian Bing, Zhang Jiangwei, Mi Jiaru, You Minxin, Liu Yuegao. 2017. Formation age of the gabbro in No. II intrusion at the Xiarihamu magmatic Ni−Cu sulfide deposit in the East Kunlun orogenic belt and its prospecting potential[J]. Geology and Exploration, 53(05): 880−888 (in Chinese with English abstract).

    [12]

    Duan Xuepeng, Meng Fancong, Fan Yazhou. 2019. The constraints of kaersutite and pargasite on metallogeny in Xiarihamu mafic−ultramafic intrusion, East Kunlun[J]. Acta Petrologica Sinica, 35(6): 1819−1832 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.11

    [13]

    Enami M. 1990. Quartz pseudomorph after coesite in eclogites from Shandong Province, east China[J]. American Mineralogist, 75(3): 381−386.

    [14]

    Fan D, Tan S, Wang X, Qin Z, Zhao J, Yang L, Zhang W, Li X, Yan Z, Yang G, Li L. 2023. Geochronology, petrogenesis and geodynamic setting of the Kaimuqi mafic–ultramafic and dioritic intrusions in the Eastern Kunlun Orogen, NW China[J]. Minerals, 13(1): 73. doi: 10.3390/min13010073

    [15]

    Feng Cengyou, Wang Song, Li Guochen, Ma Shengchao, Li Dongsheng. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665−678 (in Chinese with English abstract).

    [16]

    Fu Piaoer. 2012. Ore Genesis of Late−Paleozoic Cu−Ni Sulfide Deposit in North Xinjiang, China: Constraints from Geochemical Data and Volatile Compositions[D]. Lanzhou: Lanzhou University, 87 (in Chinese with English abstract).

    [17]

    Fu Y Z, Peng Z M, Wang G Z, Hu J F, Guan J L, Zhang J, Zhang Z, Liu Y H, Hao Z. 2021. Petrology and metamorphism of glaucophane eclogites in Changning−Menglian suture zone, Bangbing area, southeast Tibetan Plateau: An evidence for Paleo−Tethyan subduction[J]. China Geology, 49(1): 111−125.

    [18]

    Gan Caihong. 2014. Petrology, Geochemistry, U−Pb Dating and Hf Isotopic Composition of Zircons in Igneous Rocks from East Kunlun orogen, Qinghai[D]. Beijing: China University of Geosciences, 1−83 (in Chinese with English abstract).

    [19]

    Gao X, Thiemens M H. 1993. Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites[J]. Geochimica et Cosmochimica Acta, 57(13): 3171−3176. doi: 10.1016/0016-7037(93)90301-C

    [20]

    Guo Xianzheng, Jia Qunzi, Li Jinchao, Kong Huilei, Yao Xuegang, Mi Jiaru, Qian Bing, Wang Yu. 2018. Zircon U−Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High−Pressure Metamorphic Belt[J]. Earth Science, 43(12): 4300−4318 (in Chinese with English abstract).

    [21]

    Guo Feng, Wang Panxi, Wang Zhenning, Feng Naiqi. 2020. Geochemical and geochronology characteristics of retrograde eclogite in Xiarihamu area, East Kunlun Mountains, and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 40(4): 45−55 (in Chinese with English abstract).

    [22]

    He Shuyue, Sun Feifei, Li Yunping, Li Dongsheng, Yu Miao, Qian Ye, Liu Yongle, Bai Guolong, Zhao Mengqi, Zhang Peng, Zhang Aikui, Ma Shenglong, Liu Guoyan, Liu Zhigang. 2017. Geochemical and geochronological significance of the Binggounan garbbro in the Qiman Tage Region, Qinghai Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 582−592 (in Chinese with English abstract).

    [23]

    Hou Zengqian, Zheng Yuanchuan, Lu Zhanwu, Xu Bo, Wang Changming, Zhang Hongrui. 2020. Growth, thickening and evolution of the thickened crust of the Tibet Plateau[J]. Acta Geologica Sinica, 94(10): 2797−2815 (in Chinese with English abstract).

    [24]

    Hu C, Li M, Feng C, Zha X, Meng J. 2023. Petrogenesis and metallogenic potential of the early devonian Yugusayi mafic−ultramafic complex in Qimantagh, East Kunlun orogeic belt[J]. International Geology Review, 65(7): 1056−1076.

    [25]

    Huang Jiqing. 1984. New researches on the tectonic characteristics of China[J]. Bulletin of the Chinese Academy of Geological Sciences, (9): 5−18 (in Chinese with English abstract).

    [26]

    Huang Xuzhao, Fan Zhengguo, He Jingzi, Ge Tengfei, Wang Sixun, Man Yi, Wang Peng, Li Jun, Wang Heng. 2022. A collaborative airborne, ground, and borehole exploration technology system for concealed magmatic copper−nickel deposits[J]. Geophysical and Geochemical Exploration, 46(3): 597−607 (in Chinese with English abstract).

    [27]

    Jia L, Chen Y, Su B, Mao Q, Zhang D. 2022a. Oxygen−fugacity evolution of magmatic Ni−Cu sulfide deposits in East Kunlun: Insights from Cr−spinel composition[J]. American Mineralogist, 107(10): 1968−1981. doi: 10.2138/am-2022-8050

    [28]

    Jia L, Chen Y, Mao Q, Zhang D, Yuan J, Li X, Wu S, Zhang D. 2022b. Simultaneous in−situ determination of major, trace elements and Fe3+/∑ Fe in spinel using EPMA[J]. Atomic Spectroscopy, 43(1): 42−52.

    [29]

    Jia L, Meng F, Feng H. 2018. The Wenquan ultramafic rocks in the Central East Kunlun Fault zone, Qinghai−Tibet Plateau—crustal relics of the Paleo−Tethys ocean[J]. Mineralogy and Petrology, 112(3): 317−339. doi: 10.1007/s00710-017-0544-9

    [30]

    Jia L H, Mao J W, Li B L, Zhang D Y, Sun T T. 2021. Geochronology and petrogenesis of the Late Silurian Shitoukengde mafic–ultramafic intrusion, NW China: Implications for the tectonic setting and magmatic Ni−Cu mineralization in the East Kunlun Orogenic Belt[J]. International Geology Review, 63(5): 549−570. doi: 10.1080/00206814.2020.1722969

    [31]

    Jia Lihui, Meng Fancong, Feng Huibin. 2014. Fluid activity during eclogite−facies peak metamorphism: Evidence from a quartz vein in eclogite in the East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(8): 2339−2350 (in Chinese with English abstract).

    [32]

    Jiang Changyi, Ling Jinlan, Zhou Wei, Du Wei, Wang Zixi, Fan Yazhou, Song Yanfang, Song Zhongbao. 2015. Petrogenesis of the Xiarihamu Nibearing layered mafic−ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment[J]. Acta Petrological Sinica, 31(4): 1117−1136 (in Chinese with English abstract).

    [33]

    Jiang Chunfa. 2004. An introduction to opening−closing tectonics[J]. Geological Bulletin of China, 23(3): 200−207 (in Chinese with English abstract).

    [34]

    Jiang J, Zhu Y. 2017. Geology and geochemistry of the Jianchaling hydrothermal nickel deposit: T–pH–fO2fS2 conditions and nickel precipitation mechanism[J]. Ore Geology Reviews, 91: 216−235. doi: 10.1016/j.oregeorev.2017.10.005

    [35]

    Jugo P J. 2009. Sulfur content at sulfide saturation in oxidized magmas[J]. Geology, 37(5): 415−418. doi: 10.1130/G25527A.1

    [36]

    Kong Huilei, Li Jinchao, Guo Xianzheng, Yao Xuegang, Jia Qunzi. 2019a. The discovery of Early Devonian pyroxene peridotite from the Xiwangmu magmatic Ni−Cu sulfide ore spot in East Kunlun Mountains[J]. Geology in China, 46(1): 205−206 (in Chinese with English abstract).

    [37]

    Kong Huilei, Li Jinchao, Li Yazhi, Jia QunZi, Guo Xianzheng. 2017. Zircon LA−ICP−MS U−Pb dating and its geological significance of the Jiadang gabbro in the eastern section of East Kunlun, Qinghai Province[J]. Geology and Exploration, 53(5): 889−902 (in Chinese with English abstract).

    [38]

    Kong Huilei, Li Jinchao, Li Yazhi, Jia Qunzi, Guo Xianzheng, Zhang Bin. 2018. Zircon U−Pb dating and geochemistry of the Jiadang olivine gabbro in the eastern section of East Kunlun, Qinghai Province and their geological significance[J]. Acta Geologica Sinica, 92(5): 964−979 (in Chinese with English abstract).

    [39]

    Kong Huilei, Li Jinchao, Jia Qunzi, Guo Xianzheng, Wang Yu, Yao Xuegang, Li Yazhi. 2021. Petrogenesis of Xiwanggou olivine gabbro in East Kunlun: Constraints from geochemistry, zircon U−Pb dating and Hf isotopes[J]. Geology in China, 48(1): 173−188 (in Chinese with English abstract).

    [40]

    Kong Huilei, Li Yazhi, Li Jinchao, Jia Qunzi, Guo Xianzheng, Zhang Bin. 2019b. LA−ICP−MS zircon U−Pb daing and geochemical characteristics of the Xiwanggou olivine pyroxenolite in East Kunlun[J]. Journal of Geomechanics, 25(3): 440−452 (in Chinese with English abstract).

    [41]

    Labidi J, Cartigny P, Moreira M. 2013. Non−chondritic sulphur isotope composition of the terrestrial mantle[J]. Nature, 501(7466): 208−211. doi: 10.1038/nature12490

    [42]

    Lacono−Marziano G, Ferraina C, Gaillard F, Carlo I, Arndt N. 2017. Assimilation of sulfate and carbonaceous rocks: Experimental study, thermodynamic modeling and application to the Noril’sk−Talnakh region (Russia)[J]. Ore Geology Reviews, 90: 399−413. doi: 10.1016/j.oregeorev.2017.04.027

    [43]

    Li C, Ripley E M. 2009. Sulfur contents at sulfide−liquid or anhydrite saturation in silicate melts: Empirical equations and example applications[J]. Economic Geology, 104(3): 405−412. doi: 10.2113/gsecongeo.104.3.405

    [44]

    Li C, Ripley E M, Naldrett A J, Schmitt A K, Moore C H. 2009. Magmatic anhydrite−sulfide assemblages in the plumbing system of the Siberian Traps[J]. Geology, 37(3): 259−262. doi: 10.1130/G25355A.1

    [45]

    Li C S, Zhang Z W, Li W Y, Wang Y L, Sun T, Ripley E M. 2015. Geochronology, petrology and Hf–S isotope geochemistry of the newly−discovered Xiarihamu magmatic Ni–Cu sulfide deposit in the Qinghai–Tibet plateau, western China[J]. Lithos, 216: 224−240.

    [46]

    Li H R, Qian Y, Sun F Y, Sun J L, Wang G. 2020. Zircon U−Pb dating and sulfide Re−Os isotopes of the Xiarihamu Cu−Ni sulfide deposit in Qinghai Province, Northwestern China[J]. Canadian Journal of Earth Sciences, 57(8): 885−902. doi: 10.1139/cjes-2019-0107

    [47]

    Li Jianping. 2016. The Ore−forming Magmatism of Xiarihamu Ni−Cu Sulfide Deposit in Eastern Kunlun Orogenic Belt, China: Constraints from Petrochemistry and Volatile Geochemistry[D]. Lanzhou: Lanzhou University, 1−64 (in Chinese with English abstract).

    [48]

    Li L, Sun F Y, Li B L, Li S J, Chen G J, Wang W, Yan J M, Zhao T F, Dong J, Zhang D X. 2018. Geochronology, geochemistry and Sr−Nd−Pb−Hf isotopes of No.I Complex from the Shitoukengde Ni–Cu sulfide deposit in the Eastern Kunlun Orogen, Western China: Implications for the magmatic source, geodynamic setting and genesis[J]. Acta Geologica Sinica (English Edition), 92(1): 106−126. doi: 10.1111/1755-6724.13497

    [49]

    Li L, Zhang D, Tan S, Sun F, Wang C, Zhao T, Li S, Yang Y. 2021. The parental magma composition, crustal contamination process, and metallogenesis of the Shitoukengde Ni−Cu sulfide deposit in the Eastern Kunlun Orogenic Belt, NW China[J]. Resource Geology, 71: 339−62. doi: 10.1111/rge.12267

    [50]

    Li R B, Pei X Z, Li Z C, Pei L, Chen G C, Liu Z Q, Chen Y X, Liu C J, Wang M, Zhang M. 2022. Paleo−tethyan ocean evolution and indosinian orogenesis in the East Kunlun Orogen, Northern Tibetan Plateau[J]. Minerals, 12: 1590.

    [51]

    Li Shijin., Sun Fengyue, Gao Yongwei, Zhao Junwei, Li Liansong, Yang Qian. 2012. The theoretical guidance and the practice of small intrusions forming large deposits: The enlightenment and significance for searching breakthrough of Cu−Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai[J]. Northwestern Geology, 45(4): 185−191 (in Chinese with English abstract).

    [52]

    Li Wenyuan. 2015. Metallogenic geological characteristics and newly discovered orebodies in Northwest China[J]. Geology in China, 42(3): 365−380 (in Chinese with English abstract).

    [53]

    Li Wenyuan. 2022. Study of ore−forming theoretical innovation and prospecting breakthrough of magmatic copper–nickel–cobalt sulfide deposits in China[J]. Journal of Geomechanics, 28(5): 793−820 (in Chinese with English abstract).

    [54]

    Li Wenyuan, Wang Yalei, Qian Bing, Liu Yuegao, Han Yixiao. 2020. Discussion on the formation of magmatic Cu−Ni−Co sulfide deposits in margin of Tarim Block[J]. Earth Science Frontiers, 27(2): 276−293 (in Chinese with English abstract).

    [55]

    Li X H, Su L, Chung S L, Li Z X, Liu Y, Song B, Liu D Y, 2005. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni−Cu sulfide deposit: Associated with the 825 Ma south China mantle plume? [J]. Geochemistry, Geophysics, Geosystems, 6(11): 1−16.

    [56]

    Li Yulong, Cai Shengshun, Chang Tao, Hu Jichun, Chen Jian, Shu Shulan. 2018. The new evidence of Permian ocean-continent subduction in the east section of East Kunlun: Constraint from U–Pb age dating of Xiwanggou gabbro[J]. Journal of Mineralogy and Petrology, 38(1): 91−98 (in Chinese with English abstract).

    [57]

    Liou J G, Ernst W G, Song S G, Jahn B M. 2009. Tectonics and HP–UHP metamorphism of northern Tibet – preface[J]. Journal of Asian Earth Sciences, 35(3): 191−198.

    [58]

    Liu Bin, Ma Changqian, Jiang Hongan, Guo Pan, Zhang Jinyang, Xiong Fuhao. 2013. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region: Evidence from Huxiaoqin mafic rocks[J]. Acta Petrologica Sinica, 29(6): 2093−2106 (in Chinese with English abstract).

    [59]

    Liu Bin, Ma Changqian, Zhang Jinyang, Xiong Fuhao, Huang Jian, Jiang Hongan. 2012. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes[J]. Acta Petrologica Sinica, 28(6): 1785−1807 (in Chinese with English abstract).

    [60]

    Liu Chendong, Mo Xuexue, Luo Zhaohua, Yu Xuehui, Chen Hongwei, Li Shuwei, Zhao Xin. 2004. Crust−mantle magma mixing in East Kunlun: Evidence from zircon SHRIMP chronology[J]. Chinese Science Bulletin, 49(6): 596−602 (in Chinese with English abstract). doi: 10.1360/csb2004-47-6-596

    [61]

    Liu S, Fedi M, Hu X, Ou Y, Baniamerian J, Zuo B, Liu Y, Zhu R. 2018. 3D inversion of magnetic data in the simultaneous presence of significant remanent magnetization and self−demagnetization: Example from Daye iron−ore deposit, Hubei Province, China[J]. Geophysical Journal International, 215: 614−634. doi: 10.1093/gji/ggy299

    [62]

    Liu Y, Samaha N T, Baker D R. 2007. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts[J]. Geochimica et Cosmochimica Acta, 71(7): 1783−1799. doi: 10.1016/j.gca.2007.01.004

    [63]

    Liu Y, Chou I M, Chen J, Wu N, Li W, Bagas L, Ren M, Liu Z, Mei S, Wang L, 2023. Oldhamite: A new link in upper mantle for C−O−S−Ca cycles and an indicator for planetary habitability[J]. National Science Review 10: nwad159.

    [64]

    Liu Y G, Chen Z G, Li W Y, Xu X H, Kou X, Jia Q Z, Zhang Z W, Liu F, Wang Y L, You M X. 2019. The Cu−Ni mineralization potential of the Kaimuqi mafic−ultramafic complex and the indicators for the magmatic Cu−Ni sulfide deposit exploration in the East Kunlun Orogenic Belt, Northern Qinghai−Tibet Plateau, China[J]. Journal of Geochemical Exploration, 198: 41−53. doi: 10.1016/j.gexplo.2018.12.002

    [65]

    Liu Y G, Li W Y, Jia Q Z, Zhang Z W, Wang Z A, Zhang Z B, Zhang J W, Qian B. 2018. The dynamic sulfide saturation process and a possible slab break−off model for the Giant Xiarihamu magmatic nickel ore deposit in the East Kunlun Orogenic Belt, Northern Qinghai−Tibet Plateau, China[J]. Economic Geology, 113(6): 1383−1417. doi: 10.5382/econgeo.2018.4596

    [66]

    Liu Y G, Li W Y, Lü X B, Liu Y R, Ruan B X, Liu X. 2017. Sulfide saturation mechanism of the Poyi magmatic Cu−Ni sulfide deposit in Beishan, Xinjiang, Northwest China[J]. Ore Geology Reviews, 91: 419−431. doi: 10.1016/j.oregeorev.2017.09.013

    [67]

    Liu Y G, Lü X B, Yang L S, Wang H F, Meng Y F, Yi Q, Zhang B, Wu J L, Ma J. 2015. Metallogeny of the Poyi magmatic Cu−Ni deposit: Revelation from the contrast of PGE and olivine composition with other Cu−Ni sulfide deposits in the Early Permian, Xinjiang, China[J]. Geosciences Journal, 19(4): 613−620. doi: 10.1007/s12303-015-0008-3

    [68]

    Liu Yuegao, Lü Xinbiao, Ruan Banxiao, Liu Xiao, Liu Shuang, Feng Jing, Deng Gang, Wang Heng, Zeng Huadong, Wang Peng, Wang Wei, Lu Qiang. 2019. A comprehensive information exploration model for magmatic Cu−Ni sulfide deposits in Beishan, Xinjiang[J]. Mineral Deposits, 38(3): 644−666 (in Chinese with English abstract).

    [69]

    Liu Zhanqing, Pei Xianzhi, Li Ruibao, Li Zuochen, Zhang Xiaofei, Liu Zhigang, Chen Guochao, Chen Youxin, Ding Saping, Guo Junfeng. 2011. LA−ICP−MS zircon U−Pb geochronology of the two suites of ophiolites at the Buqingshan area of the A'nyemaqen Orogenic Belt in the southern margin of East Kunlun and its tectonic implication[J]. Acta Geologica Sinica, 85(2): 185−194 (in Chinese with English abstract).

    [70]

    Luo Mingfei, Mo Xuanxue, Yu Xuehui, Li Xiaowei, Huang Xiongfei, Yu Junchuan. 2014. Zircon LA−ICP−MS U−Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun[J]. Acta Petrologica Sinica, 30(11): 3229−3241 (in Chinese with English abstract).

    [71]

    Luo Zhaohua, Ke Shan, Cao Yongqing, Deng Jinfu, Chen Hongwei. 2002. Late Indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 21(6): 292−297 (in Chinese with English abstract).

    [72]

    Mavrogenes J A, O’Neill H S C. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas[J]. Geochimica et Cosmochimica Acta, 63(7): 1173−1180.

    [73]

    Meng F C, Zhang J X, Cui M H. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance[J]. Gondwana Research, 23(2): 825−836. doi: 10.1016/j.gr.2012.06.007

    [74]

    Meng Jie, Hu Chaobin, Xiao Peixi. 2019. Genesis and tectonic significance of the Yugusayi basic−ultrabasic complex in Qimantage area of East Kunlun[J]. Geology and Mineral Resources of South China, 35(2): 171−185 (in Chinese with English abstract).

    [75]

    Meng Qingpeng. 2019. Study on Geological Characteristics and Genesis of Langmuri Copper−Nickel Deposit in Eastern Kunlun, Qinghai[D]. Changchun: Jilin University, 1−86 (in Chinese with English abstract).

    [76]

    Mo Xuanxue, Luo Zhaohua, Deng Jinfu, Yu Xuehui, Liu Chengdong, Yuan Wanming, Liu Yunhua. 2007. Granitoids and crustal growth in the East- Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403−414 (in Chinese with English abstract).

    [77]

    Norbu N, Li J, Liu Y, Jia Q, Kong H. 2020. Tectonomagmatic setting and Cu−Ni mineralization potential of the Gayahedonggou Complex, Northern Qinghai, Tibetan Plateau, China[J]. Minerals, 10(11): 950. doi: 10.3390/min10110950

    [78]

    Pan Tong, Zhang Yong. 2020. Geochemical characteristics and metallogenic response of the eclogite from Xiarihamu magmatic Ni−Cu sulfide deposit in eastern Kunlun orogenic belt[J]. Geotectonica et Metallogenia, 44(3): 447−464 (in Chinese with English abstract).

    [79]

    Pei Xianzhi, Li Ruibao, Li Zuochen, Liu Chengjun, Chen Youxin, Pei Lei, Liu Zhanqing, Chen Guochao, Li Xiaobing, Wang Meng. 2018. Composition feature and formation process of Buqingshan composite accretionary mélange belt in southern margin of East Kunlun orogen[J]. Earth Science, 43(12): 4498−4520 (in Chinese with English abstract).

    [80]

    Peng B, Sun F Y, Li B L, Wang G, Li S J, Zhao T F, Li L, Zhi Y B. 2016. The geochemistry and geochronology of the Xiarihamu II mafic–ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni–Cu sulfide deposits[J]. Ore Geology Reviews, 73: 13−28. doi: 10.1016/j.oregeorev.2015.10.014

    [81]

    Qi Shengsheng, Song Shuguang, Shi Lianchang, Cai Hangjia, Hu Jichun. 2014. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu−Suhaitu area, western part of the East Kunlun[J]. Acta Petrologica Sinica, 30(11): 3345−3356 (in Chinese with English abstract).

    [82]

    Qi Xiaopeng, Fan Xiangang, Yang Jie, Cui Jiantang, Wang Bangyao, Fan Yazhou, Yang Gaoxue, Li Zhen, Chao Wendi. 2016. The discovery of Early Paleozoic eclogite in the upper reaches of Langmuri in eastern East Kunlun Mountains and its significance[J]. Geological Bulletin of China, 35(11): 1771−1783 (in Chinese with English abstract).

    [83]

    Qin Kezhang, Tang Dongmei, Su Benxun, Mao Yajing, Xue Shengchao, Tian Ye, Sun He, San Jinzhu, Xiao Qinghua, Deng Gang. 2012. The tectonic setting, style, basic feature, relative erosion deee, ore−bearing evacuation sign, potential analysis of mineralization of Cu−Ni−bearing Permian mafic−ultramafic complexes, Northern Xinjiang[J]. Northwestern Geology, 45(4): 83−116 (in Chinese with English abstract).

    [84]

    Ripley E M, Li C. 2013. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni−Cu−(PGE) ore genesis?[J]. Economic Geology, 108(1): 45−58. doi: 10.2113/econgeo.108.1.45

    [85]

    Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M, Teklay M. 2007. The amount of recycled crust in sources of mantle−derived melts[J]. Science, 316(5823): 412−417. doi: 10.1126/science.1138113

    [86]

    Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivine−free mantle source of Hawaiian shield basalts[J]. Nature, 434(7033): 590. doi: 10.1038/nature03411

    [87]

    Song Mengxin. 2015. Xiarihamu Cu−Ni Deposit Comprehensive Interpretation of Electromagnetic Data Research[D]. Beijing: China University of Geosciences, 1− 58 (in Chinese with English abstract).

    [88]

    Song S, Bi H, Qi S, Yang L, Allen M B, Niu Y, Su L, Li W. 2018. HP–UHP metamorphic belt in the East Kunlun Orogen: Final closure of the Proto−Tethys Ocean and formation of the Pan−North−China Continent[J]. Journal of Petrology, 59(11): 2043−2060. doi: 10.1093/petrology/egy089

    [89]

    Song S, Niu Y, Su L, Zhang C, Zhang L. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China[J]. Earth−Science Reviews, 129: 59−84. doi: 10.1016/j.earscirev.2013.11.010

    [90]

    Song X Y, Yi J N, Chen L M, She Y W, Liu C Z, Dang X Y, Yang Q A, Wu S K. 2016. The Giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China[J]. Economic Geology, 111(1): 29−55. doi: 10.2113/econgeo.111.1.29

    [91]

    Sun Yangui, Zhang Guowei, Wang Jin, Zhan Fayu, Zhang Zhiyong. 2004. 40Ar/39Ar age of the basic sill swarms of two periods in the junction area of Qinling and Kunlun and its tectonic significance[J]. Acta Geologica Sinica, 78(1): 65−71 (in Chinese with English abstract).

    [92]

    Tian Nan. 2022. Metallogenesis of Cu−Ni Sulfide Deposits in the Eastern Section of East Kunlun Orogenic belt, Qinghai Province[D]. Changchun: Jilin University, 1−257 (in Chinese with English abstract).

    [93]

    Wang Bingzhang, Luo Zhaohua, Pan Tong, Song Taizhong, Xiao Peixi, Zhang Zhiqing. 2012. Petrotectonic assemblages and LA−ICP−MS zircon U−Pb age of Early Paleozoic volcanic rocks in Qimantag area, Tibetan Plateau[J]. Geological Bulletin of China, 31(6): 860−874 (in Chinese with English abstract).

    [94]

    Wang C, Zhang Z, Zhang C, Chen C, Li Y, Qian B. 2020. Constraints on sulfide saturation by crustal contamination in the Shitoukengde Cu−Ni deposit, East Kunlun orogenic belt, northern Qinghai−Tibet Plateau, China[J]. Geosciences Journal, 24(6): 1−15. doi: 10.1007/s12303-020-0025-8

    [95]

    Wang Guan. 2014. Metallogenesis of Nickel Deposits in Eastern Kunlun Orogenic Belt, Qinghai Province[D]. Changchun: Jilin University, 1−200 (in Chinese with English abstract).

    [96]

    Wang Guan, Sun Fengyue, Li Bile, Li Shijin, Zhao Junwei, Ao Cong, Yang Qian. 2014. Petrography, Zircon U−Pb geochronology and geochemistry of the mafic−ultramafic intrusion in Xiarihamu Cu−Ni deposit from East Kunlun, with implications for geodynamic setting[J]. Earth Science Frontiers, 21(6): 381−401 (in Chinese with English abstract).

    [97]

    Wang Guocan, Zhang Tianping, Liang Bin, Chen Nengsong, Zhu Yunhai, Zhu Jie, Bai Yongshan. 1999. Composite ophiolitic melange zone in the central part of the Eastern Kunlun orogenic zone and geological significance of fault belt in central part of eastern section of Eastern Kunlun orogenic zone[J]. Earth Science, 24(2): 129−133 (in Chinese with English abstract).

    [98]

    Wang K Y, Song X Y, Yi J N, Barnes S J, She Y W, Zheng W Q, Schoneveld L E. 2019. Zoned orthopyroxenes in the Ni−Co sulfide ore−bearing Xiarihamu mafic−ultramafic intrusion in northern Tibetan Plateau, China: Implications for multiple magma replenishments[J]. Ore Geology Reviews, 113: 103082. doi: 10.1016/j.oregeorev.2019.103082

    [99]

    Wang Ruiting, He Ying, Wang Dongsheng, Liu Minwu. 2003. Re−Os isotopic age and its application to the Jianchaling nickel−copper sulfide deposit, Luyang, Shanxxi Provine[J]. Geological Review, 49(2): 205−211 (in Chinese with English abstract).

    [100]

    Wang Qimeng. 2020. Geochemical characteristics and geological significance of eclogite in Airikehansen Area, Dulan County, Qinghai Province[J]. Northwestern Geology, 53(1): 1−12 (in Chinese with English abstract).

    [101]

    Wang X, Liou J, Mao H. 1989. Coesite−bearing eclogite from the Dabie Mountains in central China[J]. Geology, 17(12): 1085−1088. doi: 10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2

    [102]

    Wang Yalei, Zhang Zhaowei, Zhang Jiangwei, Qian Bing, Liu Yuegao, You Minxin. 2017. Early Mesozoic mantle−derived magmatic events and their geological significance in the East Kunlun Orogenic Belt[J]. Geology & Exploration, 53(5): 855−866 (in Chinese with English abstract).

    [103]

    Wang Zhian. 2019. Extraction of Comprehensive Prospecting Information and Application of Xiarihamu Cu−Ni Exploration Area in the East Kunlun, Qinghai Province[D]. Changchun: Jilin University, 1−51 (in Chinese with English abstract).

    [104]

    Wendlandt R F. 1982. Sulfide saturation of basalt and andesite melts at high pressures and temperatures[J]. American Mineralogist, 67: 877−885.

    [105]

    Wu Jianliang, Lü Xinbiao, Feng Jing, Wang Heng, Liu Yuegao, Yin Xianke, Zhang Wei, Liu Wen. 2018. Mineralogical characteristics of chromite from the Poyi mafic−ultramafic intrusion in Beishan, Xinjiang, and its geological significance[J]. Geotectonica et Metallogenia, 42(2): 348−364 (in Chinese with English abstract).

    [106]

    Xia Mingzhe, Fan Yazhou, Xia Zhaode, Rui Huichao, Jiang Changyi. 2018. Geochronology, geochemical characteristics and ore−forming conditions of the Dalakuan mafic−ultramafic intrusion, East Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 34(8): 2380−2392 (in Chinese with English abstract).

    [107]

    Xiao Peixi, Gao Xiaofeng, Hu Yunxu, Xie Congrui, Guo Lei, Xi Rengang, Dong Zengchan, Kang Lei. 2014. Study on the Geological Background of the Metallogenic Belt in the Western Section of the Altun−East Kunlun Mountains[M]. Beijing: Geological Publishing House, 1−261 (in Chinese).

    [108]

    Xin W, Sun F, Zhang Y, Fan X, Wang Y, Li L. 2019. Mafic–intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic[J]. Lithos, 346: 105159.

    [109]

    Xiong Fuhao, Ma Changqian, Zhang Jinyang, Liu Bin, Jiang Hongan, Huang Jian. 2011. Zircon LA−ICP−MS U−Pb dating of Bairiqili gabbro pluton in East Kunlun orogenic belt and its geological significance[J]. Geological Bulletin of China, 30(8): 1196−1202 (in Chinese with English abstract).

    [110]

    Xiong F, Ma C, Jiang H A, Liu B, Huang J. 2014. Geochronology and geochemistry of Middle Devonian mafic dykes in the East Kunlun orogenic belt, Northern Tibet Plateau: Implications for the transition from Prototethys to Paleotethys orogeny[J]. Chemie der Erde − Geochemistry, 74(2): 225−235. doi: 10.1016/j.chemer.2013.07.004

    [111]

    Xiong Fuhao, Ma Changqian. 2016. Petrological evidence for the deep subduction of the proto−Tethys oceanic crust in the central East Kunlun[C]//Symposium on New Advances in Resource Environment and Geospatial Information Technology. Chengdu: Sichuan, China (in Chinese).

    [112]

    Xiong S. 2021. Research achievements of the Qinghai−Tibet Plateau based on 60 years of aeromagnetic surveys[J]. China Geology, 4(1): 147−177.

    [113]

    Yan J, Sun F, Li B, Li L, Zhang W, Yan Z, Zhang Y. 2020. Geochronological, geochemical, and mineralogical characteristics of the Akechukesai−I mafic–ultramafic complex in the eastern Kunlun area of the northern Tibet Plateau, west China: Insights into ore potential[J]. Ore Geology Reviews, 121: 103468. doi: 10.1016/j.oregeorev.2020.103468

    [114]

    Yan J, Sun F, Li L, Yang Y, Zhang D. 2019a. A slab break−off model for mafic–ultramafic igneous complexes in the East Kunlun Orogenic Belt, northern Tibet: insights from Early Palaeozoic accretion related to post−collisional magmatism[J]. International Geology Review, 61(10): 1171−1188. doi: 10.1080/00206814.2018.1501618

    [115]

    Yan J, Sun F, Qian Y, Li L, Zhang Y, Yan Z. 2019b. Geochemistry, geochronology, and Hf−S−Pb isotopes of the Akechukesai IV mafic−ultramafic complex, Western China[J]. Minerals, 9(5): 275. doi: 10.3390/min9050275

    [116]

    Yan J, Sun G, Sun F, Li L, Li H, Gao Z, Hua L, Yan Z. 2019c. Geochronology, geochemistry, and Hf isotopic compositions of monzogranites and mafic−ultramafic complexes in the Maxingdawannan area, eastern Kunlun orogen, western China: Implications for magma sources, geodynamic setting, and petrogenesis[J]. Journal of Earth Science, 30(2): 335−347. doi: 10.1007/s12583-018-1203-8

    [117]

    Yan Wei, Qiu Dianming, Ding Qingfeng, Liu Fei. 2016. Geochronology, petrogenesis, source and its structural significance of Houtougou monzogranite of Wulonggou Area in Eastern Kunlun Orogen[J]. Journal of Jilin University, 46(2): 443−460 (in Chinese with English abstract).

    [118]

    Yang Liu, Zhou Hanwen, Zhu Yunhai, Dai Xiong, Lin Qixiang, Ma Zhanqing, Jian Kunkun, Zhang Minyue. 2014. Geochemical characteristics and LA−ICP−MS zircon U−Pb ages of intermediate to mafic dyke swarms in Haxiya area, Golmud, Qinghai Province[J]. Geological Bulletin of China, 33(6): 804−819 (in Chinese with English abstract).

    [119]

    Yang J, Xu Z, Dobrzhinetskaya L F, Green II H W, Pei X, Shi R, Wu C, Wooden J L, Zhang J, Wan Y. 2003. Discovery of metamorphic diamonds in central China: An indication of a > 4000−km−long zone of deep subduction resulting from multiple continental collisions[J]. Terra Nova, 15(6): 370−379. doi: 10.1046/j.1365-3121.2003.00511.x

    [120]

    Yang J, Xu Z, Zhang J, Song S, Wu C, Shi R, Li H, Brunel M. 2002. Early Palaeozoic North Qaidam UHP metamorphic belt on the north−eastern Tibetan plateau and a paired subduction model[J]. Terra Nova, 14(5): 397−404. doi: 10.1046/j.1365-3121.2002.00438.x

    [121]

    Yang Weiran. 2004. Some problems of opening−closing tectonics[J]. Geological Bulletin of China, 23(3): 195−199 (in Chinese with English abstract).

    [122]

    Yang Ximing, Sun Fengyue, Zhao Tuofei, Liu Jinlong, Peng Bo. 2018. Zircon U−Pb dating, geochemistry and tectonic implications of Akechukesai gabbro in East Kunlun orogenic belt[J]. Geological Bulletin of China, 37(10): 1842−1852 (in Chinese with English abstract).

    [123]

    Yuan Wanming, Mo Xuanxue, Wang Xiaohong. 1998. Geochemical characteristics and tectonic setting of the Early Carboniferous volcanic rocks in East Kunlun Mountains[J]. Acta Petrrologica et Mineralogica, 17(4): 289−295 (in Chinese with English abstract).

    [124]

    Zhang J X, Mattinson C G, Yu S Y, Li J P, Meng F. 2010. U−Pb zircon geochronology of coesite−bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: Spatially and temporally extensive UHP metamorphism during continental subduction[J]. Journal of Metamorphic Geology, 28(9): 955−978. doi: 10.1111/j.1525-1314.2010.00901.x

    [125]

    Zhang J, Lei H, Ma C, Li J, Pan Y. 2021. Silurian−Devonian granites and associated intermediate−mafic rocks along the Eastern Kunlun Orogen, western China: Evidence for a prolonged post−collisional lithospheric extension[J]. Gondwana Research, 89: 131−146. doi: 10.1016/j.gr.2020.08.019

    [126]

    Zhang M, Kamo S L, Li C, Hu P, Ripley E, 2010. Precise U–Pb zircon–baddeleyite age of the Jinchuan sulfide ore−bearing ultramafic intrusion, western China[J]. Mineralium Deposita 45(1), 3–9.

    [127]

    Zhang M, Liu Y, Chen A, Liang K, Yang Y, Xu W. 2023. The tectonic links between Palaeozoic eclogites and mafic magmatic Cu−Ni−Co mineralization in East Kunlun orogenic belt, western China[J]. International Geology Review, 65(7): 1158−1178. doi: 10.1080/00206814.2021.1885504

    [128]

    Zhang Z W, Tang Q Y, Li C S, Wang Y L, Ripley E M. 2017. Sr−Nd−Os−S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai–Tibet plateau, China[J]. Mineralium Deposita, 52: 51−68. doi: 10.1016/j.oregeorev.2018.04.027

    [129]

    Zhang Z W, Wang Y L, Qian B, Liu Y G, Zhang D Y, Lü P R, Dong J. 2018. Metallogeny and tectonomagmatic setting of Ni−Cu magmatic sulfide mineralization, number I Shitoukengde mafic−ultramafic complex, East Kunlun Orogenic Belt, NW China[J]. Ore Geology Reviews, 96: 236−246.

    [130]

    Zhang Zhaochong, Yan Shenghao, Chen Bailin, He Lixin, He Yongsheng, Zhou Gang. 2003. Geochemistry of the Kalatongke basic complex in Xinjiang and its constraints on genesis of the deposit[J]. Acta Petrologica et Mineralogica, 22(3): 217−224 (in Chinese with English abstract).

    [131]

    Zhang Zhaowei, Li Wenyuan, Qian Bing, Wang Yalei, Li Shijin, Liu Changzheng, Zhang Jiangwei, Yang Qian, You Minxin, Wang Zhian. 2015. Metallogenic epoch of the Xiarihamu magmatic Ni−Cu sulfide deposit in eastern Kunlun orogenic belt and its prospecting significance[J]. Geology in China, 42(3): 438−451 (in Chinese with English abstract).

    [132]

    Zhang Zhaowei, Li Wenyuan, Qian Bing, Li Wenyuan, Wang Yalei, Zhang Jiangwei, You Minxin, Liu Yuegao. 2017. The discovery of Early Paleozoic eclogite from the Xiarihamu magmatic Ni−Cu sulfide deposit in eastern Kunlun orogenic belt: Zircon U−Pb chronologic evidence[J]. Geology in China, 44(4): 816−817 (in Chinese with English abstract).

    [133]

    Zhang Zhaowei, Qian Bing, Wang Yalei, Li Wenyuan. 2024. Tectonic settings discussion of magmatic nickel−cobalt sulfide deposits in the eastern Kunlun orogenic belt[J]. Geology in China, 51(2): 371−384 (in Chinese with English abstract).

    [134]

    Zhang Z W, Wang Y L, Wang C Y, Qian B, Li W Y, Zhang J W, You M X. 2019. Mafic−ultramafic magma activity and copper−nickel sulfide metallogeny during Paleozoic in the Eastern Kunlun Orogenic Belt, Qinghai Province, China[J]. China Geology, 2(4): 467−477.

    [135]

    Zhao Caisheng, Yang Fuquan, Dai Junzhi. 2006. Metallogenic age of the Kendekeke Co, Bi, Au deposit in East Kunlun Mountains, Qinghai Province, and its significance[J]. Mineral Deposits, 25(S1): 427−430 (in Chinese with English abstract).

    [136]

    Zhao Haichao, Zhang Jinling, Liu Caile, Sun Tingting, Wang Yongde. 2018. Copper−nickel−cobalt sulfide deposit prospecting model of Xiarihamu in Qinghai Province[J]. Science Technology and Engineering, 18(36): 166−174 (in Chinese with English abstract).

    [137]

    Zhao Tuofei. 2021. Study on Metallogenesis of Nickel and Copper Deposits in Kaerqueka−Akechukesai Area, Western Segment of the East Kunlun Orogenic Belt, Qinghai Province[D]. Changchun: Jilin University, 1−227 (in Chinese with English abstract).

    [138]

    Zhou Wei. 2016. Petrogenesis of Shitoukengde Mafic−Ultramafic Intrusion and Analysis of its Metallogenic Potential, East Kunlun [D]. Xi'an: Chang'an University, 1−99 (in Chinese with English abstract).

    [139]

    Zhu Yunhai, Lin Qixiang, Jia Chunxing, Wang Guocan. 2005. Zircon SHRIMP age of Early Paleozoic volcanic rocks in the East Kunlun Orogenic Belt and its geological significance[J]. Science China−Earth Sciences, 35(12): 1112−1119 (in Chinese).

    [140]

    奥琮, 孙丰月, 李碧乐, 王冠, 李良, 李世金, 赵俊伟. 2015. 东昆仑祁漫塔格地区小尖山辉长岩地球化学特征、U−Pb年代学及其构造意义[J]. 大地构造与成矿学, 39(6): 1176−1184.

    [141]

    边千韬, 罗小全, 李红生, 陈海泓, 赵大升, 李涤徽. 1999. 阿尼玛卿山早古生代和早石炭—早二叠世蛇绿岩的发现[J]. 地质科学, 34(4): 523−524.

    [142]

    陈静, 谢智勇, 李彬, 谈生祥, 任华, 张启梅, 李燕. 2013. 东昆仑拉陵灶火地区泥盆纪侵入岩成因及其地质意义[J]. 矿物岩石, 33(2): 26−34.

    [143]

    杜玮, 姜常义, 凌锦兰, 周伟, 夏明哲, 夏昭德. 2017. 东昆仑夏日哈木铜镍矿床Ⅱ号岩体年代学、地球化学及其意义[J]. 矿床地质, 36(5): 1185−1196.

    [144]

    段建华, 张照伟, 祁昌炜, 王亚磊, 钱兵, 张江伟, 弥佳茹, 尤敏鑫, 刘月高. 2017. 东昆仑夏日哈木铜镍矿床 Ⅱ 号岩体辉长岩形成年龄与找矿潜力[J]. 地质与勘探, 53(5): 880−888.

    [145]

    段雪鹏, 孟繁聪, 范亚洲. 2019. 东昆仑夏日哈木镁铁−超镁铁岩中的钛闪石−韭闪石对成矿过程的约束[J]. 岩石学报, 35(6): 1819−1932.

    [146]

    丰成友, 王松, 李国臣, 马圣钞, 李东生. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 28(2): 311−324.

    [147]

    傅飘儿. 2012. 新疆北部晚古生代岩浆铜镍硫化物矿床成因: 岩石及流体地球化学制约[D]. 兰州: 兰州大学, 1−87.

    [148]

    甘彩红. 2014. 青海东昆仑造山带火成岩岩石学、地球化学、锆石U−Pb年代学及Hf同位素特征研究[D]. 北京: 中国地质大学(北京), 1−83.

    [149]

    国显正, 贾群子, 李金超, 孔会磊, 姚学钢, 弥佳茹, 钱兵, 王宇. 2018. 东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义[J]. 地球科学, 43(12): 4300−4318.

    [150]

    郭峰, 王盘喜, 王振宁, 冯乃琦. 2020. 东昆仑夏日哈木退变质榴辉岩地球化学, 年代学特征及其地质意义[J]. 沉积与特提斯地质, 40(4): 45−55.

    [151]

    贾丽辉, 孟繁聪, 冯惠彬. 2014. 榴辉岩相峰期流体活动: 来自东昆仑榴辉岩石英脉的证据[J]. 岩石学报, 30(8): 2339−2350.

    [152]

    何书跃, 孙非非, 李云平, 李东生, 于淼, 钱烨, 刘永乐, 白国龙, 赵梦琪, 张鹏. 张爱奎, 马生龙, 刘国燕, 刘智刚. 2017. 青海祁漫塔格地区冰沟南辉长岩岩石地球化学特征及年代学意义[J]. 矿物岩石地球化学通报, 36(4): 582−592.

    [153]

    侯增谦, 郑远川, 卢占武, 许博, 王长明, 张洪瑞. 2020. 青藏高原巨厚地壳: 生长、加厚与演化[J]. 地质学报, 94(10): 2797−2815.

    [154]

    黄汲清. 1984. 中国大地构造特征的新研究[J]. 中国地质科学院院报, (9): 5−18.

    [155]

    黄旭钊, 范正国, 何敬梓, 葛藤菲, 王思浔, 满毅, 王鹏, 李军, 王恒. 2022. 隐伏岩浆型铜镍矿空—地—井协同勘查技术体系[J]. 物探与化探, 46(3): 597−607.

    [156]

    姜常义, 凌锦兰, 周伟, 杜玮, 王子玺, 范亚洲, 宋艳芳, 宋忠宝. 2015. 东昆仑夏日哈木镁铁质−超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 31(4): 1117−1136.

    [157]

    姜春发. 2004. 开合构造概述[J]. 地质通报, 23(3): 200−207.

    [158]

    孔会磊, 李金超, 栗亚芝, 贾群子, 国显正. 2017. 青海东昆仑东段加当辉长岩 LA−ICP−MS 锆石 U−Pb 测年及其地质意义[J]. 地质与勘探, 53(5): 889−902

    [159]

    孔会磊, 李金超, 栗亚芝, 贾群子, 国显正, 张斌. 2018. 青海东昆仑东段加当橄榄辉长岩锆石 U−Pb 年代学, 地球化学及地质意义[J]. 地质学报, 92(5): 964−978.

    [160]

    孔会磊, 李金超, 国显正, 姚学钢, 贾群子. 2019a. 青海东昆仑希望沟铜镍矿点发现早泥盆世辉橄岩[J]. 中国地质, 46(1): 205−206.

    [161]

    孔会磊, 栗亚芝, 李金超, 贾群子, 国显正, 张斌. 2019b. 东昆仑希望沟橄榄辉石岩LA−ICP−MS锆石U−Pb定年及岩石地球化学特征[J]. 地质力学学报, 25(3): 440−452.

    [162]

    孔会磊, 李金超, 贾群子, 国显正, 王宇, 姚学钢, 栗亚芝. 2021. 东昆仑希望沟橄榄辉长岩的岩石成因: 地球化学、锆石U−Pb年龄与Hf同位素制约[J]. 中国地质, 48(1): 173−188.

    [163]

    李建平. 2016. 东昆仑造山带夏日哈木铜镍硫化物矿床成矿岩浆作用: 岩石及流体地球化学制约[D]. 兰州: 兰州大学, 1−64.

    [164]

    李世金, 孙丰月, 高永旺, 赵俊伟, 李连松, 杨启安. 2012. 小岩体成大矿理论指导与实践—青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 45(4): 185−191.

    [165]

    李文渊. 2015. 中国西北部成矿地质特征及找矿新发现[J]. 中国地质, 42(3): 365−380.

    [166]

    李文渊, 王亚磊, 钱兵, 刘月高, 韩一筱. 2020. 塔里木陆块周缘岩浆Cu−Ni−Co硫化物矿床形成的探讨[J]. 地学前缘, 27(2): 276−293.

    [167]

    李文渊. 2022. 中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破[J]. 地质力学学报, 28(5): 793−820. doi: 10.12090/j.issn.1006-6616.20222810

    [168]

    李玉龙, 蔡生顺, 常涛, 胡继春, 陈健, 舒树兰. 2018. 东昆仑东段中二叠世洋陆俯冲的新证据: 来自希望沟辉长岩U–Pb年龄的约束[J]. 矿物岩石, 38(1): 91−98.

    [169]

    刘彬, 马昌前, 蒋红安, 郭盼, 张金阳, 熊富浩. 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据[J]. 岩石学报, 29(6): 2093−2106.

    [170]

    刘彬, 马昌前, 张金阳, 熊富浩, 黄坚, 蒋红安. 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J]. 岩石学报, 28(6): 1785−1807.

    [171]

    刘成东, 莫宣学, 罗照华, 喻学惠, 谌宏伟, 李述为, 赵欣. 2004. 东昆仑壳−幔岩浆混合作用: 来自锆石 SHRIMP 年代学的证据[J]. 科学通报, 49(6): 596−602.

    [172]

    刘月高, 吕新彪, 阮班晓, 柳潇, 刘双, 冯京, 邓刚, 王恒, 曾华栋, 王鹏, 王伟, 王磊, 陆强. 2019. 新疆北山早二叠世岩浆型铜镍硫化物矿床综合信息勘查模式[J]. 矿床地质, 38(3): 644−666.

    [173]

    刘战庆, 裴先治, 李瑞保, 李佐臣, 张晓飞, 刘智刚, 陈国超, 陈有炘, 丁仨平, 郭俊锋. 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA−ICP−MS锆石U−Pb定年及其构造意义[J]. 地质学报, 85(2): 185−194.

    [174]

    罗明非, 莫宣学, 喻学惠, 李小伟, 黄雄飞, 于峻川. 2014. 东昆仑香日德地区晚三叠世花岗岩LA−ICP−MS锆石U−Pb定年、岩石成因和构造意义[J]. 岩石学报, 30(11): 3229−3241.

    [175]

    罗照华, 柯珊, 曹永清, 邓晋福, 谌宏伟. 2002. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 21(6): 292−297.

    [176]

    孟杰, 胡朝斌, 校培喜. 2019. 东昆仑祁漫塔格地区玉古萨依基性超基性岩体成因及构造意义[J]. 华南地质与矿产, 35(2): 171−185.

    [177]

    孟庆鹏. 2019. 青海东昆仑浪木日铜镍矿矿床地质特征及成因探讨[D]. 长春: 吉林大学, 1−86.

    [178]

    莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403−414.

    [179]

    裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 刘战庆, 陈国超, 李小兵, 王盟. 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学, 43(12): 4498−4520.

    [180]

    潘彤, 张勇. 2020. 东昆仑夏日哈木铜镍矿区榴辉岩地球化学特征及成矿响应[J]. 大地构造与成矿学, 44(3): 447−464.

    [181]

    祁生胜, 宋述光, 史连昌, 才航加, 胡继春. 2014. 东昆仑西段夏日哈木−苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 30(11): 3345−3356.

    [182]

    祁晓鹏, 范显刚, 杨杰, 崔建堂, 汪帮耀, 范亚洲, 杨高学, 李真, 晁文迪. 2016. 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义[J]. 地质通报, 35(11): 1771−1783. doi: 10.3969/j.issn.1671-2552.2016.11.002

    [183]

    秦克章, 唐冬梅, 苏本勋, 毛亚晶, 薛胜超, 田野, 孙赫, 三金柱, 肖庆华, 邓刚. 2012. 北疆二叠纪镁铁−超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J]. 西北地质, 45(4): 83−116. doi: 10.3969/j.issn.1009-6248.2012.04.009

    [184]

    宋梦馨. 2015. 夏日哈木铜镍矿电磁法资料综合解释研究[D]. 北京: 中国地质大学, 1−58.

    [185]

    孙延贵, 张国伟, 王瑾, 詹发余, 张智勇. 2004. 秦昆结合区两期基性岩墙群40Ar/39Ar定年及其构造意义[J]. 地质学报, 78(1): 65−71.

    [186]

    田楠. 2022. 青海省东昆仑造山带东段铜镍硫化物矿床成矿作用[D]. 长春: 吉林大学, 1−257

    [187]

    王秉璋, 罗照华, 潘彤, 宋泰忠, 校培喜, 张志青. 2012. 青藏高原祁漫塔格地区早古生代火山岩岩石构造组合和LA−ICP−MS锆石U−Pb年龄[J]. 地质通报, 31(6): 860−874.

    [188]

    王冠. 2014. 东昆仑造山带镍矿成矿作用研究[D]. 长春: 吉林大学, 1−200.

    [189]

    王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 奥琮, 杨启安. 2014. 东昆仑夏日哈木铜镍矿镁铁质−超镁铁质岩体岩相学、锆石U−Pb年代学、地球化学及其构造意义[J]. 地学前缘, 21: 381−401.

    [190]

    王国灿, 张天平, 梁斌, 陈能松, 朱云海, 朱杰, 拜永山. 1999. 东昆仑造山带东段昆中复合蛇绿混杂岩带及“东昆中断裂带”地质涵义[J]. 地球科学, 24(2): 129−133.

    [191]

    王瑞廷, 赫英, 王东生, 刘民武. 2003. 略阳煎茶岭铜镍硫化物矿床 Re−Os 同位素年龄及其地质意义[J]. 地质论评, 49(2): 205−211. doi: 10.3321/j.issn:0371-5736.2003.02.014

    [192]

    王启蒙. 2020. 青海省都兰县艾日克汗森地区榴辉岩地球化学特征及其地质意义[J]. 西北地质, 53(1): 1−12.

    [193]

    王亚磊, 张照伟, 张江伟, 钱兵, 刘月高, 尤敏鑫. 2017. 东昆仑造山带早中生代幔源岩浆事件及其地质意义[J]. 地质与勘探, 53(5): 855−866.

    [194]

    王治安. 2019. 青海省东昆仑夏日哈木铜镍矿勘查区综合找矿信息提取及应用[D]. 长春: 吉林大学, 1−51.

    [195]

    吴建亮, 吕新彪, 冯金, 王恒, 邓刚, 刘月高, 尹显科, 张伟, 刘文. 2018. 新疆北山坡一基性−超基性岩体铬铁矿矿物学特征及其指示意义[J]. 大地构造与成矿学, 42(2): 348−364.

    [196]

    夏明哲, 范亚洲, 夏昭德, 芮会超, 姜常义. 2018. 新疆东昆仑达拉库岸镁铁−超镁铁质岩体年代学、地球化学及成矿条件[J]. 岩石学报, 34(8): 2380−2392.

    [197]

    校培喜, 高晓峰, 胡云绪, 谢从瑞, 过磊, 奚仁刚, 董增产, 康磊. 2014. 阿尔金−东昆仑西段成矿带地质背景研究[M]: 北京: 地质出版社, 261.

    [198]

    熊富浩, 马昌前, 张金阳, 刘彬, 蒋红安, 黄坚. 2011. 东昆仑造山带白日其利辉长岩体 LA− ICP−MS 锆石 U−Pb 年龄及地质意义[J]. 地质通报, 30(8): 1196−1201.

    [199]

    熊富浩, 马昌前. 2016. 东昆仑中部原特提斯洋壳深俯冲事件的岩石学证据[C]//资源环境与地学空间信息技术新进展学术讨论会. 成都: 四川.

    [200]

    严威, 邱殿明, 丁清峰, 刘飞. 2016. 东昆仑五龙沟地区猴头沟二长花岗岩年龄、成因、源区及其构造意义[J]. 吉林大学学报(地球科学版), 46(2): 443−460.

    [201]

    杨柳, 周汉文, 朱云海, 代雄, 林启祥, 马占青, 菅坤坤, 张旻玥. 2014. 青海格尔木哈希牙地区中基性岩墙群地球化学特征与LA−ICP−MS锆石U−Pb年龄[J]. 地质通报, 33(6): 804−819. doi: 10.3969/j.issn.1671-2552.2014.06.004

    [202]

    杨巍然. 2004. 开合构造研究中的几个问题[J]. 地质通报, 23(3): 195−199. doi: 10.3969/j.issn.1671-2552.2004.03.004

    [203]

    杨锡铭, 孙丰月, 赵拓飞, 刘金龙, 彭勃. 2018. 东昆仑阿克楚克塞地区辉长岩地球化学特征、锆石U-Pb年龄及其构造意义[J]. 地质通报, 37(10): 1842−1852.

    [204]

    袁万明, 莫宣学, 喻学惠, 罗照华, 王晓红. 1998. 东昆仑早石炭世火山岩的地球化学特征及其构造背景[J]. 岩石矿物学杂志, 17(4): 289−295. doi: 10.3969/j.issn.1000-6524.1998.04.001

    [205]

    张招崇, 闫升好, 陈柏林, 何立新, 何永胜, 周刚. 2003. 新疆喀拉通克基性杂岩体的地球化学特征及其对矿床成因的约束[J]. 岩石矿物学杂志, 22(3): 217−224.

    [206]

    张照伟, 李文渊, 钱兵, 王亚磊, 李世金, 刘长征, 张江伟, 杨启安, 尤敏鑫. 2015. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义[J]. 中国地质, 42(3): 438−451. doi: 10.3969/j.issn.1000-3657.2015.03.004

    [207]

    张照伟, 钱兵, 李文渊, 王亚磊, 张江伟, 尤敏鑫, 刘月高. 2017. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U−Pb定年证据[J]. 中国地质, 44(4): 816−817. doi: 10.12029/gc20170415

    [208]

    张照伟, 钱兵, 王亚磊, 李文渊. 2024. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨[J]. 中国地质, 51(2): 371−384. doi: 10.12029/gc20200829001

    [209]

    赵财胜, 杨富全, 代军治. 2006. 青海东昆仑肯德可克钴铋金矿床成矿年龄及意义[J]. 矿床地质, 25(S1): 427−430. doi: 10.3969/j.issn.0258-7106.2006.04.007

    [210]

    赵海超, 张金玲, 刘彩乐, 孙婷婷, 王永德. 2018. 青海省夏日哈木铜镍钴硫化物矿床找矿模型[J]. 科学技术与工程, 18(36): 166−174. doi: 10.3969/j.issn.1671-1815.2018.36.027

    [211]

    赵拓飞. 2021. 青海东昆仑西段卡尔却卡−阿克楚克赛地区镍、铜成矿作用研究[D]. 长春: 吉林大学, 1−227.

    [212]

    周伟. 2016. 东昆仑石头坑德镁铁−超镁铁质岩体岩石成因与成矿潜力分析[D]. 西安: 长安大学, 1−99.

    [213]

    朱云海, 林启祥, 贾春兴, 王国灿. 2005. 东昆仑造山带早古生代火山岩锆石SHRIMP年龄及其地质意义[J]. 中国科学: 地球科学, 35(12): 1112−1119.

  • 加载中

(13)

(3)

计量
  • 文章访问数:  53
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2023-01-28
修回日期:  2023-05-09
刊出日期:  2025-05-25

目录