中国地质调查局 中国地质科学院主办
科学出版社出版

滇东南瓦渣W−Be矿床中含铍伟晶岩成因研究

漆群佳, 孙涛, 殷顺媛, 夏自辛, 马致远, 李泽姗. 2025. 滇东南瓦渣W−Be矿床中含铍伟晶岩成因研究[J]. 中国地质, 52(3): 1002-1021. doi: 10.12029/gc20240203001
引用本文: 漆群佳, 孙涛, 殷顺媛, 夏自辛, 马致远, 李泽姗. 2025. 滇东南瓦渣W−Be矿床中含铍伟晶岩成因研究[J]. 中国地质, 52(3): 1002-1021. doi: 10.12029/gc20240203001
QI Qunjia, SUN Tao, YIN Shunyuan, XIA Zixin, MA Zhiyuan, LI Zeshan. 2025. Genesis of the beryllium−bearing pegmatite in Wazha W−Be deposit, Southeastern Yunnan[J]. Geology in China, 52(3): 1002-1021. doi: 10.12029/gc20240203001
Citation: QI Qunjia, SUN Tao, YIN Shunyuan, XIA Zixin, MA Zhiyuan, LI Zeshan. 2025. Genesis of the beryllium−bearing pegmatite in Wazha W−Be deposit, Southeastern Yunnan[J]. Geology in China, 52(3): 1002-1021. doi: 10.12029/gc20240203001

滇东南瓦渣W−Be矿床中含铍伟晶岩成因研究

  • 基金项目: 国家自然科学基金项目(41862005)、云南省基础研究计划项目(202401AS070124、202301AT070116)、云南省新一轮找矿行动暨地勘基金项目(Y202406)联合资助。
详细信息
    作者简介: 漆群佳,女,1997年生,硕士,从事矿产研究及资源开发规划;E-mail: 1768724056@qq.com
    通讯作者: 孙涛,男,1983年生,教授,从事关键矿产成矿规律研究;E-mail: suntao06@126.com
  • 中图分类号: P618.67; P618.72

Genesis of the beryllium−bearing pegmatite in Wazha W−Be deposit, Southeastern Yunnan

  • Fund Project: Supported by National Science Foundation of China (No.41862005), Yunnan Fundamental Research Projects (No.202401AS070124, No.202301AT070116) and the New Round of Prospecting Operation and Geological Prospecting Fund Project in Yunnan Province (No.Y202406).
More Information
    Author Bio: QI Qunjia, female, born in 1997, master, mainly engaged in mineral resource research and development planning; E-mail:1768724056@qq.com .
    Corresponding author: SUN Tao, male, born in 1983, professor, mainly engaged in magmatic deposit research; E-mail:suntao06@126.com.
  • 研究目的

    铍属于稀有金属,在国民经济建设以及国防科技等领域都发挥着不可替代的作用。瓦渣钨铍矿床位于滇东南老君山花岗岩体东北接触带,矿区主要出露老君山岩体二云母花岗岩、古元古代南秧田岩组第二段云母片岩、片麻岩和伟晶岩脉;铍矿化均发生在伟晶岩脉中,具明显分带性;探讨含铍伟晶岩的成因,对区域钨铍矿床成因研究以及铍矿找矿勘查都具有重要意义。

    研究方法

    本文通过对含铍伟晶岩脉开展LA−ICP−MS锆石U−Pb定年、全岩主微量元素、Sr−Nd同位素和绿柱石包裹体研究,探讨含铍伟晶岩成因。

    研究结果

    含铍伟晶岩脉形成年龄为(187.9±1.4)Ma,岩脉具有高硅、富铝、富碱特征;轻稀土相对富集、重稀土相对亏损;富集Rb、Th、U、Ta等大离子亲石元素,亏损Ba、Nd、Sm、Ti等高场强元素;伟晶岩的(87Sr/86Sr)i=0.702740~0.732013,(143Nd/144Nd)i=0.512017~0.512039,εNd(t)=−10.3~−10.6,显示伟晶岩具有富集特征。

    结论

    伟晶岩成矿流体为中温、中盐度的NaCl−H2O−CO2−CH4±N2体系,形成于陆壳物质部分熔融,在成矿过程中发生过流体不混溶作用。

  • 加载中
  • 图 1  滇东南—桂西区域地质和多金属矿床分布图(a,据程彦博等, 2008修改);滇东南老君山地区地质简图及伟晶岩脉分布图(b,据张振发等,2018修改)

    Figure 1. 

    图 2  瓦渣钨铍矿区地质简图 1

    Figure 2. 

    图 4  瓦渣钨铍矿区伟晶岩脉中代表性矿物特征

    Figure 4. 

    图 3  4#号脉的脉体分布特征(a~c);3#脉矿物分带性(d);3#脉长英带中的绿柱石晶体(e)

    Figure 3. 

    图 5  锆石稀土元素球粒陨石标准化配分图(a,据Sun and McDonough, 1989)及锆石成因判别图解(b,底图据 Li et al., 2018

    Figure 5. 

    图 6  伟晶岩锆石U−Pb年龄结果

    Figure 6. 

    图 7  流体包裹体显微图

    Figure 7. 

    图 8  绿柱石包裹体及含子晶包裹体激光拉曼成分分析图

    Figure 8. 

    图 9  包裹体均一温度直方图(a);包裹体冰点温度直方图(b);气液两相包裹体盐度直方图(c);含子晶包裹体盐度直方图(d)

    Figure 9. 

    图 10  瓦渣伟晶岩及周边相关花岗岩的A/NK−A/CNK图解(a)及SiO2−K2O图解(b)

    Figure 10. 

    图 11  瓦渣伟晶岩全岩稀土元素球粒陨石标准化配分图(a)、全岩微量元素原始地幔标准化配分图(b)

    Figure 11. 

    图 12  伟晶岩及周边花岗岩Nd同位素演化图解

    Figure 12. 

    图 13  包裹体沸腾证据(L—液相;V—气相;S—子矿物)

    Figure 13. 

    表 1  伟晶岩锆石U−Pb同位素测年结果

    Table 1.  Zircon U−Pb isotopic dating results of the Wazha pegmatite

    测点号 含量/10-6 Th/U 同位素比值 同位素年龄/Ma
    Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    XZ-1-1 292.3 395.0 8175.4 0.05 0.0521 0.0005 0.2179 0.0060 0.0305 0.0009 287.1 28.7 200.1 5.0 193.8 5.4
    XZ-1-2 84.0 244.4 2729.2 0.09 0.0606 0.0010 0.2438 0.0054 0.0296 0.0006 633.4 37.0 221.5 4.4 187.9 3.9
    XZ-1-3 210.4 187.4 6068.0 0.03 0.0522 0.0005 0.2140 0.0027 0.0298 0.0003 294.5 22.2 196.9 2.2 189.0 1.9
    XZ-1-4 46.4 99.9 1349.3 0.07 0.0554 0.0012 0.2229 0.0046 0.0295 0.0004 427.8 43.5 204.3 3.8 187.1 2.3
    XZ-1-5 41.0 18.6 1186.0 0.02 0.0496 0.0009 0.2010 0.0036 0.0294 0.0003 189.0 8.3 186.0 3.1 187.0 1.8
    XZ-1-6 207.0 356.4 6019.3 0.06 0.0549 0.0007 0.2166 0.0026 0.0287 0.0003 409.3 23.1 199.1 2.2 182.4 1.8
    XZ-1-7 520.6 1554.8 15974.5 0.10 0.0532 0.0006 0.2187 0.0050 0.0298 0.0006 338.9 21.3 200.8 4.2 189.5 4.0
    XZ-1-8 128.4 226.9 3712.5 0.06 0.0549 0.0008 0.2224 0.0033 0.0295 0.0003 405.6 31.5 203.9 2.8 187.2 1.8
    XZ-1-9 92.8 323.7 2580.4 0.13 0.0601 0.0008 0.2410 0.0043 0.0289 0.0002 609.3 25.0 219.3 3.5 183.9 1.5
    下载: 导出CSV

    表 2  包裹体物理形态特征

    Table 2.  Physical characteristics of inclusions

    样品 主矿物 类型 室温组成形态 粒径/μm 形态 分布特点
    cxz-1(横切) 绿柱石 液体包裹体;含子矿物包裹体 L+V;L+V+子矿物 3~33 μm 规则;不规则 自由分布或沿裂隙成群分布
    cxz-1(纵切) 绿柱石 液体包裹体;含子矿物包裹体 L+V;L+V+子矿物 3~37 μm 规则;不规则 自由分布或沿裂隙成群分布
    cxz-3(纵切) 绿柱石 液体包裹体;含子矿物包裹体 L+V;L+V+子矿物 3~38 μm 规则;不规则(纵切) 自由分布或沿裂隙成群分布
    下载: 导出CSV

    表 3  绿柱石包裹体显微测温数据

    Table 3.  Microthermometric data of the beryl inclusions

    样号 序号 主矿物 形态 大小/μm 类型 V/T 子晶融化温度Ths/℃ 全部均一温度Th/℃ 冰晶全融化温度Tm/℃
    XZ-3 1 绿柱石 矩形 14.82 L+V 60% 251.6 −4.9
    XZ-3 2 绿柱石 四边形 14.2 L+V 30% 226.9 −3.8
    XZ-3 3 绿柱石 不规则 16.67 L+V 40% 230.6 −4.5
    XZ-3 4 绿柱石 负晶形 27.75 L+V 30% 253.8 −4
    XZ-3 5 绿柱石 四边形 12.28 L+V 50% 266.8 −3.2
    XZ-3 6 绿柱石 规则 28.5 L+V 55% 255.8 256.4 −3.3
    XZ-3 7 绿柱石 不规则 19.42 L+V 55% 254.8 −4.6
    XZ-3 8 绿柱石 不规则 25.46 L+V+S 60% 412.4 273.6 −5.2
    XZ-3 9 绿柱石 不规则 18.74 L+V 60% 273.7 −5.1
    XZ-3 10 绿柱石 不规则 33.59 L+V 50% 294.9 −3.6
    XZ-3 11 绿柱石 负晶形 36.58 L+V+S 45% 254.6 −4
    XZ-3 12 绿柱石 不规则 23.5 L+V 60% 251.8 −6.5
    XZ-3 13 绿柱石 不规则 14.76 L+V 50% 232.3 −6.7
    XZ-3 14 绿柱石 不规则 15.46 L+V 50% 262.5 −2.9
    XZ-3 15 绿柱石 不规则 20.9 L+V 50% 318.7 −3.4
    XZ-3 16 绿柱石 不规则 12.19 L+V 45% 266.3 −6.2
    XZ-3 17 绿柱石 不规则 13.81 L+V 40% 253.4 −5.6
    XZ-3 18 绿柱石 不规则 15.63 L+V 50% 290.5 −3.3
    XZ-3 19 绿柱石 不规则 14.46 L+V 40% 256.5 −3.6
    XZ-3 20 绿柱石 不规则 13.72 L+V 30% 254.7 −5.2
    XZ-3 21 绿柱石 不规则 17.89 L+V 40% 258.6 −5.7
    XZ-3 22 绿柱石 负晶形 16.32 L+V 40% 223.6 −6.7
    XZ-3 23 绿柱石 四边形 14.22 L+V+S 35% 412.5 241.5 −4.9
    XZ-3 24 绿柱石 不规则 15.08 L+V 50% 249.2 −4.1
    XZ-3 25 绿柱石 不规则 15.2 L+V 40% 226 −4.9
    XZ-3 26 绿柱石 不规则 10.68 L+V 60% 255.9 −6.7
    XZ-3 27 绿柱石 不规则 20.41 L+V 45% 256.7 −5.6
    XZ-3 28 绿柱石 不规则 11.53 L+V 35% 250.9 −4.7
    XZ-3 29 绿柱石 不规则 12.32 L+V 40% 267.9 −5.6
    XZ-3 30 绿柱石 不规则 18.64 L+V 50% 258.6 −6.1
    XZ-1 31 绿柱石 椭圆 10 L+V 30.00% 267.5 −4.4
    XZ-1 32 绿柱石 椭圆 17.1 L+V 55.00% 256.5 −6.6
    XZ-1 33 绿柱石 椭圆 15.52 L+V+S 50.00% 359.1 229.5 −6.8
    XZ-1 34 绿柱石 不规则 21.47 L+V+S 55.00% 275.4 −5.5
    XZ-1 35 绿柱石 椭圆 9.05 L+V 35.00% 266.7 −6.2
    XZ-1 36 绿柱石 不规则 10.21 L+V+S 65.00% 409.7 246.3 −5.1
    XZ-1 37 绿柱石 不规则 10.88 L+V 40.00% 274.1 −5.3
    XZ-1 38 绿柱石 不规则 10.61 L+V+S 35.00% 381.5 243 −5.3
    XZ-1 39 绿柱石 不规则 8.81 L+V 50.00% 254.9 −5.1
    XZ-1 40 绿柱石 椭圆 10.42 L+V 50.00% 268.2 −5.3
    XZ-1 41 绿柱石 五边形 7.51 L+V 50.00% 241.9 −6.8
    XZ-1 42 绿柱石 不规则 14.41 L+V 45.00% 251.2 −5.7
    XZ-1 43 绿柱石 不规则 9.68 L+V 30.00% 255.7 −4.9
    XZ-1 44 绿柱石 不规则 7.73 L+V 50.00%   252.6 −6.1
    注:L+V=气液两相包裹体;L+V+S=含子晶三相包裹体;V/T=气相所占百分比;Ths=子晶融化温度;Th=全部均一温度;Tm=冰晶全融化温度。
    下载: 导出CSV

    表 4  瓦渣含铍伟晶岩全岩主量元素(%)、微量元素(10−6)分析结果

    Table 4.  Analysis results of the major elements (%) and trace elements (10−6) for the Wazha beryllium-bearing pegmatites

    样品名称 电气石伟晶岩 长石石英伟晶岩 含绿柱石伟晶岩
    样品编号 XZ-1 XZ-3-1 XZ-3-3 XZ-2 XZ-3-4 XZ-3-5 XZ-4-1 LAZ-1 LAZ-2 XZ-3-2 LAZ-3 XZ-4-2
    SiO2 63.20 64.54 73.74 64.55 73.60 75.35 80.35 75.17 71.07 70.74 78.36 66.17
    TiO2 0.55 0.32 0.02 0.01 0.01 0.01 0.07
    Al2O3 19.67 19.39 14.72 18.66 15.02 14.41 11.96 14.47 16.13 16.36 12.34 19.29
    TFe2O3 6.70 5.26 0.55 0.01 1.12
    MnO 0.08 0.10 0.01 0.06 0.25 0.14 0.03 0.11 0.01 0.03
    MgO 2.52 1.29 0.09 0.19 0.09 0.09 0.10 0.09 0.10 0.09 0.12 0.51
    CaO 0.72 1.19 0.38 1.79 0.47 0.50 0.51 0.61 0.44 0.48 0.48 0.50
    Na2O 0.85 5.64 2.61 5.23 5.33 5.85 6.39 8.25 4.34 5.61 5.13 6.55
    K2O 1.87 0.07 8.78 8.03 5.16 3.49 0.35 0.17 7.75 5.92 2.96 4.38
    P2O5 0.01 0.44 0.03 0.66 0.06 0.05 0.03 0.03 0.04 0.06 0.03 0.03
    LOI 2.90 0.93 0.16 0.54 0.21 0.29 0.59 1.68 0.67 0.95 0.75 0.78
    Total 99.07 99.17 100.52 100.3 100.2 100.2 100.3 100.5 100.5 100.3 100.2 99.43
    A/CNK 4.16 1.68 1.02 0.91 0.99 1.01 1.01 0.97 0.99 0.99 0.99 1.17
    A/NK 14.07 2.09 3.43 2.17 1.71 1.50 1.14 1.07 2.26 1.77 1.46 1.79
    Li 109.4 5.77 5.34 1.96 7.70 6.96 4.94 3.23 3.54 4.04 5.93 26.40
    Be 38.23 13.57 2.13 4.06 188.80 127.40 10.57 6.40 3.30 34.77 7.58 514.20
    Sc 10.57 3.90 2.71 2.40 2.91 2.80 2.01 2.48 2.77 0.48 2.05 3.87
    Ti 4465 2188 13.1 128.5 8.1 16.9 11.6 19.2 18.3 7.9 35.7 361.2
    P 44 1921 131 2882 262 218 131 131 175 262 131 131
    V 55.93 29.06 0.93 6.84 0.49 0.41 0.48 0.33 0.40 0.17 1.33 11.85
    Cr 29.62 15.19 3.22 3.24 9.33 1.31 0.72 1.11 1.59 0.88 0.82 1.00
    Mn 421 525 8 313 1201 737 144 29 3 518 14 123
    Co 15.48 9.70 0.58 0.60 0.38 0.25 0.17 0.14 0.12 0.24 0.24 2.16
    Ni 16.19 6.63 1.04 1.73 2.20 0.68 0.47 0.49 0.61 0.93 0.60 2.17
    Cu 13.24 10.04 3.01 6.22 4.46 3.52 2.11 1.81 2.19 3.47 2.21 4.49
    Zn 133.8 388.6 4.75 17.27 5.70 9.69 6.13 6.43 11.37 4.83 8.01 57.00
    Ga 31.86 30.47 9.60 18.28 16.17 14.77 14.09 16.62 11.62 13.92 11.90 21.56
    Ge 2.88 3.58 5.49 3.96 6.13 5.50 4.36 4.67 4.42 4.30 4.05 5.01
    As 2.31 4.61 36.24 1.51 8.37 22.50 7.93 0.93 1.54 7.89 0.98 8.36
    Rb 221.0 1.8 821.6 1035 442.8 298.2 16.9 5.4 556.4 415.2 186.0 275.5
    Sr 30.99 13.27 18.71 266.6 11.89 17.26 16.44 8.23 26.83 25.63 14.28 42.33
    Y 9.78 6.30 0.05 5.51 0.82 0.51 0.50 0.39 0.22 1.17 1.87 3.40
    Zr 38.99 54.91 0.84 16.30 21.91 8.02 19.46 1.66 4.15 2.85 30.75 11.44
    Nb 9.38 36.51 4.29 9.86 25.87 41.10 0.67 5.15 3.61 17.44 2.42 13.39
    Mo 0.36 0.08 0.10 0.15 0.12 0.10 0.79 0.10 0.12 0.11 0.12 0.09
    Cd 0.21 0.06 0.00 0.04 0.13 0.09 0.04 0.01 0.00 0.06 0.00 0.10
    In 0.10 0.04 0.00 0.03 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.01
    Sn 88.82 26.21 1.19 25.77 4.70 2.86 1.16 1.65 0.94 1.88 1.88 7.17
    Sb 0.09 0.09 0.29 0.15 0.11 0.11 0.07 0.12 0.19 0.08 0.11 0.17
    Cs 34.70 2.52 265.70 45.17 58.35 36.64 4.18 1.78 63.71 50.97 22.01 61.55
    Ba 111.0 1.06 27.03 310.4 27.09 21.27 12.68 3.32 46.02 46.71 24.75 96.16
    La 15.43 8.07 0.03 3.08 0.19 0.22 0.10 0.10 0.06 0.34 0.22 1.73
    Ce 20.79 18.65 0.10 6.77 0.15 0.38 0.11 0.05 0.09 0.41 0.18 1.29
    Pr 3.73 2.12 0.01 0.67 0.03 0.04 0.02 0.02 0.01 0.07 0.05 0.33
    Nd 13.40 8.22 0.02 2.16 0.14 0.15 0.09 0.07 0.06 0.25 0.18 1.15
    Sm 2.65 1.87 0.01 0.52 0.03 0.04 0.02 0.02 0.02 0.07 0.09 0.36
    Eu 0.41 0.14 0.01 0.21 0.04 0.03 0.03 0.02 0.03 0.09 0.06 0.17
    Gd 2.45 1.83 0.00 0.66 0.04 0.05 0.05 0.02 0.03 0.08 0.17 0.50
    Tb 0.37 0.27 0.00 0.13 0.02 0.01 0.01 0.01 0.01 0.02 0.04 0.12
    Dy 2.08 1.30 0.00 0.80 0.11 0.05 0.07 0.05 0.04 0.11 0.22 0.70
    Ho 0.44 0.21 0.00 0.15 0.02 0.01 0.01 0.01 0.01 0.02 0.04 0.14
    Er 1.22 0.52 0.00 0.48 0.06 0.04 0.03 0.04 0.02 0.06 0.11 0.38
    Tm 0.18 0.07 0.00 0.08 0.01 0.00 0.01 0.01 0.00 0.01 0.02 0.05
    Yb 1.17 0.47 0.00 0.60 0.08 0.04 0.04 0.04 0.03 0.08 0.13 0.40
    Lu 0.18 0.06 0.00 0.10 0.02 0.01 0.01 0.01 0.00 0.01 0.02 0.06
    Hf 2.72 5.45 0.08 2.66 4.96 1.69 3.88 0.23 0.64 0.49 5.41 2.56
    Ta 2.23 24.02 2.86 12.37 11.87 24.42 0.49 3.90 2.35 7.45 1.33 6.14
    W 7.70 5.15 1.61 1.06 2.73 3.28 7.84 1.04 0.83 2.07 0.48 3.86
    Tl 1.50 0.09 4.85 6.15 2.78 1.81 0.26 0.11 3.29 2.40 1.18 2.22
    Pb 10.52 5.73 51.77 43.48 32.58 22.59 9.04 10.55 37.65 29.70 16.19 25.35
    Bi 0.08 1.28 0.67 0.82 1.35 1.44 0.40 0.75 0.46 0.78 1.46 0.31
    Th 11.70 7.91 0.05 3.34 0.68 0.55 0.25 0.22 0.16 0.68 0.77 2.51
    U 3.76 3.35 0.39 5.29 2.17 1.13 2.05 2.37 1.70 1.20 2.63 8.95
    δEu 0.48 0.23 6.54 1.11 3.60 2.03 3.07 2.51 3.33 3.69 1.40 1.21
    δCe 0.65 1.08 1.71 1.11 0.44 0.89 0.60 0.29 0.83 0.62 0.42 0.39
    (La/Sm)N 3.76 2.79 3.66 3.80 3.83 3.53 3.13 3.44 1.90 3.21 1.62 3.10
    (Gd/Yb)N 1.74 3.23 0.74 0.90 0.40 1.06 1.07 0.51 0.95 0.82 1.05 1.05
    (La/Yb)N 9.50 12.36 6.10 3.66 1.68 4.02 1.78 1.86 1.61 3.24 1.18 3.13
    下载: 导出CSV

    表 5  瓦渣含铍伟晶岩Sr−Nd同位素组成

    Table 5.  Sr−Nd isotopic composition of the Wazha beryllium-bearing pegmatites

    样品编号 Rb/10−6 Sr/10−6 87Rb/86Sr 87Sr/86Sr Sm/10−6 Nd/10−6 147Sm/144Nd 143Nd/144Nd t/Ma (143Nd/144Nd)i (87Sr/86Sr)i εNd(t) T2DM
    XZ-1 221 31 20.63 0.757856 0.000006 2.65 13.40 0.119488 0.512017 0.000012 187.9 0.511870 0.702740 −10.3 1806
    XZ-2 1035 267 11.24 0.748481 0.000006 0.52 2.16 0.146287 0.512039 0.000012 187.9 0.511859 0.718462 −10.5 1823
    XZ3-1 2 13 0.39 0.733003 0.000004 1.87 8.22 0.137313 0.512025 0.000011 187.9 0.511856 0.732013 −10.5 1828
    下载: 导出CSV

    表 6  老君山地区花岗岩及伟晶岩脉同位素年龄统计

    Table 6.  Isotopic ages of the granites and pegmatites in Laojunshan area

    矿床名称及位置 岩石类型 测试对象 年龄/Ma 测试方法 资料来源
    老君山(茶叶山—上阳坡一线及保良街) 马鹿塘伟晶岩脉 锆石 209±2.0 LA−ICP−MS U−Pb 张振发等,2018
    黄瓜坡伟晶岩脉 锆石 381.2±3.3
    滑石板伟晶岩脉 锆石 389.4±4.9
    保良街伟晶岩 白云母钠长石伟晶岩 白云母 141 Ar−Ar 李建康等,2013
    黑云闪长片麻岩 黑云母 112 Ar−Ar
    上阳坡伟晶岩 白云母钠长石伟晶岩 白云母 144 Ar−Ar
    黑云斜长片麻岩 黑云母 121 Ar−Ar
    都龙矿床 矽卡岩 锡石 80 TIMS U−Pb 刘玉平等,2007
    瓦渣钨铍矿床 中粗粒二云二长花岗岩 锆石 83.3±1.5 SHRMP U−Pb 冯佳睿等,2010
    老君山岩体 花岗岩 锆石 88.9~93.9 LA−ICP−MS U−Pb 刘艳宾等,2014
    84.3~91.7 LA−ICP−MS U−Pb 李进文等,2013
    86.9 LA−ICP−MS U−Pb 刘玉平等,2007
    86.02~86.72 LA−ICP−MS U−Pb Feng et al., 2013
    老君山地区早古生代花岗岩 团田单元浅灰色片麻状中细粒花岗岩 锆石 434~438 LA−ICP−MS U−Pb 徐斌,2015
    南崂单元花岗片麻岩 锆石 430
    老城坡单元片麻状黑云母二长花岗岩 锆石 426~427
    老君山地表花岗岩及都龙矿区钻孔 中粗粒花岗岩 锆石 90.1±0.7
    中细粒花岗岩 锆石 89.7±0.8
    花岗斑岩 锆石 86±0.5
    南温河 花岗岩 锆石 405~444 SHRMP U−Pb、
    TIMS U−Pb
    徐伟,2007
    下载: 导出CSV
  • [1]

    Agrawal A, Cronin J P, Agrawal A, Tonazzi J C, Adams L, Ashley K, Brisson M J, Duran B, Whitney J, Burrell A K. 2008. Extraction and optical fluorescence method for the measurement of trace beryllium in soils[J]. Environmental Science & Technology, 42(6): 2066−2071.

    [2]

    Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar[J]. Geochimica et Cosmochimica Acta, 53: 197−214. doi: 10.1016/0016-7037(89)90286-X

    [3]

    Barton M, Young S. 2002. Non-pegmatitic deposits of beryllium: Mineralogy, geology, phase equilibria and origin[J]. Reviews in Mineralogy & Geochemistry, 50: 591−691.

    [4]

    Bulnaev K B. 2006. Fluorine−beryllium deposits of the Vitim Highland, western Transbaikal region: Mineral types, localization conditions, magmatism, and age[J]. Geology of Ore Deposits, 48(4): 277−289. doi: 10.1134/S1075701506040039

    [5]

    Černý P. 2002. Mineralogy of beryllium in granitic pegmatites[J]. Reviews in Mineralogy and Geochemistry, 50(1): 405−444. doi: 10.2138/rmg.2002.50.10

    [6]

    Chen Zizhan, Guo Ranqi, Han Mei, Li Fangqin. 2023. Risk analysis of beryllium resource supply in China[J]. Acta Geoscientica Sinica, 44(2): 369−377 (in Chinese with English abstract).

    [7]

    Cheng Yanbo, Mao Jingwen, Xie Guiqing, Chen Maohong, Zhao Caisheng, Yang Zongxi, Zhai Haijie, Li Xiangqian. 2008. Preliminary study of the petrogenesis of Laochang−Kafang granite in the Gejiu area, Yunnan province: Constraints from geochemistry and zircon U−Pb dating[J]. Acta Geologica Sinica, 81(11): 1478−1493 (in Chinese with English abstract).

    [8]

    Damdinova L B, Smirnov S Z, Damdinov B B. 2015. Formation conditions of high−grade beryllium ore at the Snezhnoe deposit, Eastern Sayan[J]. Geology of Ore Deposits, 57(6): 454−464. doi: 10.1134/S1075701515060033

    [9]

    Feng J, Mao J, Pei R. 2013. Ages and geochemistry of Laojunshan granites in southeastern Yunnan, China: Implications for W-Sn polymetallic ore deposits[J]. Mineralogy & Petrology, 107(4): 573−589.

    [10]

    Feng Jiarui, Mao Jingwen, Pei Rongfu, Zhou Zhenhua, Yang Zhongxi. 2010. SHRIMP zircon U−Pb dating and geochemical characteristics of Laojunshan grantite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis[J]. Acta Petrologica Sinica, 26(3): 845−857 (in Chinese with English abstract).

    [11]

    Frezzotti M L, Tecce F, Casagli A. 2012. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 112: 1−20. doi: 10.1016/j.gexplo.2011.09.009

    [12]

    Grew E S, Hazen R M. 2014. Beryllium mineral evolution[J]. American Mineralogist, 99(5/6): 999−1021. doi: 10.2138/am.2014.4675

    [13]

    Grew E S. 2002. Mineralogy, petrology and geochemistry of beryllium: An introduction and list of beryllium minerals[J]. Reviews in Mineralogy & Geochemistry, 50(1): 1−76.

    [14]

    Guan Junlei, Geng Quanru, Peng Zhimin, Zhang Zhang, Wang Guozhi, Chen Yuanyuan. 2016. Petrology, petrochemistry and zircon U−Pb dating and Hf isotope features of Xiamari granites in Tanggula magmatic belt, Qinghai−Tibet plateau[J]. Acta Geologica Sinica, 90(2): 304−333 (in Chinese with English abstract).

    [15]

    Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 83(1): 197−202. doi: 10.2113/gsecongeo.83.1.197

    [16]

    Hanson S L, Zito G. 2019. Beryllium mineralization in pegmatites and quartz dikes of Mount Rosa Complex Area, Colorado front range, Colorado, USA beryllium mineralization in Mount Rosa Complex Area[J]. The Canadian Mineralogist, 57(5): 757−759. doi: 10.3749/canmin.AB00014

    [17]

    Hu Zhikang. 2019. Fluid Inclusions Features and Genesis of Beryls from Cuonadong Gneiss Dome, Southern Tibet [D]. Beijing: China University of Geosciences (Beijing), 1−78 (in Chinese with English abstract).

    [18]

    Huang Wenqing, Shui Ting, Ni Pei. 2017. Fluid inclusion studies on emeralds from Malipo area, Yunnan Province, China[J]. Acta Mineralogica Sinica, 37(1): 75−83 (in Chinese with English abstract).

    [19]

    Kol'Tsov V Y, Yudina T B, Azarova Y V, Semenov A A, Lizunov A V, Lesina I G. 2017. Comparative geological and mineral-petrological analysis of ore-bearing rock in lithium and beryllium deposits for modeling the behavior of ore minerals during processing[J]. Atomic Energy, 122(2): 1−6.

    [20]

    Li Dongxu, Xu Shunshan. 2000. Rotation−shearing genesis of metamorphic core complex—Structural analysis if metamorphic core complex in Laojunshan, southeastern Yunnan Province[J]. Geological Review, 46(2): 113−119 (in Chinese with English abstract).

    [21]

    Li H, Li J W, Algeo T J, Wu J H, Cisse M. 2018. Zircon indicators of fluid sources and ore genesis in a multi−stage hydrothermal system: The Dongping Au deposit in North China[J]. Lithos, 314: 463−478.

    [22]

    Li Jiankang, Wang Denghong, Li Huaqin, Chen Zhenghui, Mei Yuping. 2013. Late Jurassic−Early Cretaceous mineralization in the Laojunshan ore concentration area, Yunnan Province[J]. Earth Science—Journal of China University of Geoscience, 38(5): 1023−1026 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.100

    [23]

    Li Jiankang, Zou Tianren, Wang Denghong, Ding Xin. 2017. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 36(4): 951−978 (in Chinese with English abstract).

    [24]

    Li Jinwen, Pei Rongfu, Wang Yonglei, She Hongquan, Feng Chengyou, Guo Zhijun, Wang Haolin, Xu Ke. 2013. Isotopic chronological studies of Dulong tin-zinc deposit in Yunnan Province[J]. Mineral Deposits, 32(4): 767−782 (in Chinese with English abstract).

    [25]

    Li Na, Gao Aihong, Wang Xiaoning. 2019. Global beryllium resource supply and demand situation and suggestions[J]. China Mining, 28(4): 69−73 (in Chinese with English abstract).

    [26]

    Li Zaihui, Tang Fawei, Lin Shiliang, Cong Feng, XieE Tao, Zou Guangfu. 2014. Zircon LA−ICPMS U−Pb geochronology of the beryl−bearing pegmatite and its geological significance, western Yunnan, southwest China[J]. Journal of Jilin University (Earth Science Edition), 44(2): 554−565 (in Chinese with English abstract).

    [27]

    Linnen R L, Lichtervelde M V, Cerny P. 2012. Granitic pegmatites as sources of strategic metals[J]. Elements, 8(4): 275−280. doi: 10.2113/gselements.8.4.275

    [28]

    Liu Tao, Tian Shihong, Wang Dengong, Zhang Yujie, Li Xianfang, Hou Kejun, Jieken·Kalimuhan, Zang Zhongli, Wang Yongqiang, Zhao Yue, Qin Yan. 2020. Genetic relationship between granite and pegmatite in Kalu’an hard−rock−type lithium deposit in Xinjiang: Results from zircon U−Pb dating, Hf−O isotopes and whole rock geochemistry[J]. Acta Geologica Sinica, 94(11): 3293−3320 (in Chinese with English abstract).

    [29]

    Liu Yanbin, Mo Xuanxue, Zhang Da, Que Chaoyang, Di Yongjun, Pu Xingming, Cheng Guoshun, Ma Huihui. 2014. Petrogenesis of the late Cretaceous granite discovered in the Laojunshan region, southeastern Yunnan Province[J]. Acta Petrologica Sinica, 30(11): 3271−3286 (in Chinese with English abstract).

    [30]

    Liu Yuping, Li Zhengxiang, Li Huimin, Guo Liguo, Xu Wei, Ye Lin, Li Chaoyang, Pi Daohui. 2007. U−Pb geochronology of cassiterite and zircon from the Dulong Sn−Zn deposit: Evidence for Cretaceous large−scale granitic magmatism and mineralization events in southeastern Yunnan Province, China[J]. Acta Petrologica Sinica, 23(5): 967−976 (in Chinese with English abstract).

    [31]

    Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2014. Fluid Inclusion [M]. Beijing: Science Press, 1−419 (in Chinese).

    [32]

    Lü Z H, Zhang H, Tang Y, Liu Y L, Zhang X. 2018. Petrogenesis of syn−orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U−Pb age and Hf isotope[J]. Ore Geology Reviews, 95: 161−181. doi: 10.1016/j.oregeorev.2018.02.022

    [33]

    Lyalina L, Selivanova E, Zozulya D, Ivanyuk G. 2018. Beryllium mineralogy of the Kola Peninsula, Russia—A Review[J]. Minerals, 9(1): 12.

    [34]

    Maas R, Grew E S, Carson C J. 2015. Isotopic constraints (Pb, Rb−Sr, Sm−Nd) on the sources of early Cambrian pegmatites with boron and beryllium minerals in the Larsemann Hills, Prydz Bay, Antatcticathe Canadian Mineralogist[J]. The Canadian Mineralogist, 53(2): 249−272. doi: 10.3749/canmin.1400081

    [35]

    Malyukova N, Kim V, Tulyaev R. 2005. Zonation of polymetallic, rare−earth, molybdenum, zirconium, beryllium and tantalum−niobium mineralization in the Ak-Tyuz ore deposits (Northern Tien Shan) [C]// Mineral Deposit Research: Meeting the Global Challenge. Berlin: Springer, 18–21.

    [36]

    Müller R B. 2017. The sveconorwegian pegmatite province-Thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 55(2): 283−315. doi: 10.3749/canmin.1600075

    [37]

    Pan Jinbo, Zhang Da, Que Chaoyang, Di Yongjun, Huang Kongwen, Bi Minfeng, Xu Jianzhen. 2015. Geochemistry and ziron U−Pb chronology of the Laochengpo gneissic granite in the southeast Yunnan Area and their implications [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(4): 795−803 (in Chinese with English abstract).

    [38]

    Ran Zilong, Li Yanjun. 2021. Research advances on rare metal pegmatite deposits[J]. Bulletin of Geological Science and Technology, 40(2): 13−23 (in Chinese with English abstract).

    [39]

    Ripp G S, Izbrodin I A, Rampilov M O, Tomilenko A A, Lastochkin E A, Posokhov V F. 2020. Relationship of F−Be mineralization to granites and syenites at the ermakovka deposit (western transbaikalia)[J]. Geologica Acta, 18: 1−13.

    [40]

    Romer R L, Förster H J, Hahne K. 2012. Strontium isotopes — A persistent tracer for the recycling of Gondwana crust in the Variscan orogeny[J]. Gondwana Research, 22(1): 262−278. doi: 10.1016/j.gr.2011.09.005

    [41]

    Schilling J, Bingen B, Skår Ø, Wenzel T, Markl G. 2015. Formation and evolution of the Høgtuva beryllium deposit, Norway[J]. Contributions to Mineralogy and Petrology, 170: 1−21. doi: 10.1007/s00410-015-1154-3

    [42]

    Sun S S, McDonough W F. 1989. Chemical and Isotopic Systematics in Ocean Basalt: Implication for Mantle Composition and Processes[C]//Saunders A D, Norry M J. (eds.), Magmatism in the Ocean Basins: Geological Society, London, Special Publications, 42(1): 313−345.

    [43]

    Tian S, Hou Z, Mo X, Tian Y, Zhao Y, Hou K, Zhang Y. 2020. Lithium isotopic evidence for subduction of the Indian lower crust beneath southern Tibet[J]. Gondwana Research, 77: 168−183. doi: 10.1016/j.gr.2019.07.016

    [44]

    Wang Denghong, Xu Zhigang, Sheng Jifu, Zhu Mingyu, Xue Jue, Yuan Zhongxin, Bai Ge, Qu Wenjun, Li Huaqin, Chen Zhenghui, Wang Chenghui, Huang Fan, Zhang Changqin, Wang Yonglei, Ying Lijuan, Li Houmin, Gao Lan, Sun Tao, Fu Yong, Li Jiankang, Wu Guang, Tang Juxing, Feng Chengyou, Zhao Zheng, Zhang Daquan. 2014. Progress on study of regularity of major mineral resources and regional metallogenic regularity in China: A review[J]. Acta Geologica Sinica, 88(12): 2176−2191 (in Chinese with English abstract).

    [45]

    Wu Changnian, Zhu Jinchu, Liu Changshi, Yang Shengzu, Zhu Bingyu, Ning Guangjin. 1995. The physic-chemical conditions of formation of beryl in the Kuwei pegmatite, Altay, Xinjiang[J]. Acta Mineralogica Sinica, 15(3): 346−351 (in Chinese with English abstract).

    [46]

    Wu Runqiu, Rao Chan, Wang Qi, Zhang Di. 2020. Electron probe microanalysis of the key metal beryllium[J]. Chinese Sicence Bulletin, 65(20): 2161−2168 (in Chinese). doi: 10.1360/TB-2020-0082

    [47]

    Wu Yuanbao, Zheng Yongfei. 2004. Mineralogical study of zircon origin and constraint interpretation for the U-Pb ages of zircons[J]. Chinese Sicence Bulletin, 49(16): 1589−1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589

    [48]

    Xu Bin. 2015. Muti-stage Magmatism in Laojunshan of SE Yunnan, China: Geochemistry, Geodynamic Implication and Related Mineralization [D]. Nanjing: Nanjing University, 1−140 (in Chinese with English abstract).

    [49]

    Xu Wei. 2007. A Preliminary Study on the Chronology and Geochemistry of the Nanwenhe Granite in Southeastern Yunnan [D]. Guiyang: Institute of Geochemistry, CAS (in Chinese with English abstract).

    [50]

    Xu Xingwang, Hong Tao, Li Hang, Niu Lei, Ke Qiang, Chen Jianzhong, Liu Shanke, Zhai Mingguo. 2020. Concept of high−temperature granite−pegmatite Li−Be metallogenic system with a primary study in the middle Altyn−Tagh[J]. Acta Petrologica Sinica, 36(12): 3572−3592 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.02

    [51]

    Xu Zhe, Zhang Fushen, Zhang Fangrong, Zhang Yong, Zhou Yu, Xu Jin, Huang Chengwei, He Bin, Long Lixue. 2024. U–Pb dating of monazite from the beryllium mineralized pegmatite and its geological significance in the Guyangzhai area at the southern margin of Jiuling, Jiangxi[J]. Journal of East China University of Technology (Natural Science), 47(1): 13−21.

    [52]

    Yu Meng. 2020. Mineral Genesis Study of Migmatite–granite–pegmatite in Convergent Continental Margins and its Constraints on Petrogenesis [D]. Anhui: University of Science and Technology of China, 1−150 (in Chinese with English abstract).

    [53]

    Zhang Shitao, Feng Minggang, Wang Houqiang, Lü Wei, Yang Ming. 1999. Geological features and genesis of emerald deposit in Malipo County, Yunnan Province, China[J]. Geological Science and Technology information, 18(1): 50−54 (in Chinese with English abstract).

    [54]

    Zhang Zhenfa, Zhang Hui, Lü Zhenghang, Yang Hailin, Yu Wenxiu. 2018. Zircon U−Pb geochronology and the geological significance of pegmatites from the Laojunshan area, Southeastern Yunnan[J]. Geochimica, 47(1): 33−47 (in Chinese with English abstract).

    [55]

    Zhao Z, Hou L, Ding J, Zhang Q, Wu S. 2017. A genetic link between Late Cretaceous granitic magmatism and Sn mineralization in the southwestern South China Block: A case study of the Dulong Sn−dominant polymetallic deposit[J]. Ore Geology Reviews, 93: 268−289.

    [56]

    Zhou Jinjie, Lü Zhenghang, Liu Kun, Tang Yong, Zhang Hui. 2024. Enrichment characteristics of rare metals in the initial magma of anatectic pegmatite[J]. Acta Geologica Sinica, 98(5): 1507−1526.

    [57]

    陈子瞻, 郭冉启, 韩梅, 李芳琴. 2023. 中国铍资源供给风险分析[J]. 地球学报, 44(2): 369−377. doi: 10.3975/cagsb.2022.112802

    Zhou Qifeng, Qin Kezhang, Zhu Liqun, Zhao Junxing. 2023. Discussion on the genesis of granitic pegmatites: Magmatic differentiation versus anatexis[J]. Earth Science Frontiers, 30(5): 26−39. doi: 10.3975/cagsb.2022.112802

    [58]

    陈子瞻, 郭冉启, 韩梅, 李芳琴. 2023. 中国铍资源供给风险分析[J]. 地球学报, 44(2): 369−377.

    Zhou Qifeng, Qin Kezhang, Zhu Liqun, Zhao Junxing. 2023. Discussion on the genesis of granitic pegmatites: Magmatic differentiation versus anatexis[J]. Earth Science Frontiers, 30(5): 26−39.

    [59]

    程彦博, 毛景文, 谢桂青, 陈懋弘, 赵财胜, 杨宗喜, 赵海杰, 李向前. 2008. 云南个旧老厂—卡房花岗岩体成因初探: 锆石U−Pb年代学和岩石地球化学约束[J]. 地质学报, 81(11): 1478−1493. doi: 10.3321/j.issn:0001-5717.2008.11.003

    [60]

    冯佳睿, 毛景文, 裴荣富, 周振华, 杨宗喜. 2010. 云南瓦渣钨矿区老君山花岗岩体的SHRIMP锆石U−Pb定年、地球化学特征及成因探讨[J]. 岩石学报, 26(3): 845−857.

    [61]

    关俊雷, 耿全如, 彭智敏, 张璋, 王国芝, 陈园园. 2016. 西藏唐古拉岩浆岩带夏玛日花岗岩体的岩石学、岩石地球化学、锆石U−Pb测年及Hf同位素组成[J]. 地质学报, 90(2): 304−333. doi: 10.3969/j.issn.0001-5717.2016.02.008

    [62]

    胡志康. 2019. 藏南绿柱石的包裹体研究及成因探讨[D]. 北京: 中国地质大学, 1−78.

    [63]

    黄文清, 水汀, 倪培. 2017. 云南麻栗坡祖母绿的流体包裹体研究[J]. 矿物学报, 37(1): 75−83.

    [64]

    李东旭, 许顺山. 2000. 变质核杂岩的旋扭成因——滇东南老君山变质核杂岩的构造解析[J]. 地质论评, 46(2): 113−119. doi: 10.3321/j.issn:0371-5736.2000.02.001

    [65]

    李建康, 王登红, 李华芹, 陈郑辉, 梅玉萍. 2013. 云南老君山矿集区的晚侏罗世−早白垩世成矿事件[J]. 地球科学—中国地质大学学报, 38(5): 1023−1026.

    [66]

    李建康, 邹天人, 王登红, 丁欣. 2017. 中国铍矿成矿规律[J]. 矿床地质, 36(4): 951−978.

    [67]

    李进文, 裴荣富, 王永磊, 佘宏全, 丰成友, 郭志军, 王浩琳, 徐可. 2013. 云南都龙锡锌矿区同位素年代学研究[J]. 矿床地质, 32(4): 767−782. doi: 10.3969/j.issn.0258-7106.2013.04.010

    [68]

    李娜, 高爱红, 王小宁. 2019. 全球铍资源供需形势及建议[J]. 中国矿业, 28(4): 69−73. doi: 10.12075/j.issn.1004-4051.2019.04.028

    [69]

    李再会, 唐发伟, 林仕良, 丛峰, 谢韬, 邹光富. 2014. 滇西含绿柱石伟晶岩锆石U−Pb年代学及其地质意义[J]. 吉林大学学报(地球科学版), 44(2): 554−565.

    [70]

    刘涛, 田世洪, 王登红, 张玉洁, 李贤芳, 侯可军, 杰肯•卡里木汗, 张忠利, 王永强, 赵悦, 秦燕. 2020. 新疆卡鲁安硬岩型锂矿床花岗岩与伟晶岩成因关系: 锆石U−Pb定年、Hf−O同位素和全岩地球化学证据[J]. 地质学报, 94(11): 3293−3320. doi: 10.3969/j.issn.0001-5717.2020.11.009

    [71]

    刘艳宾, 莫宣学, 张达, 阙朝阳, 狄永军, 蒲兴明, 程国顺, 马慧慧. 2014. 滇东南老君山地区晚白垩世花岗岩的成因[J]. 岩石学报, 30(11): 3271−3286.

    [72]

    刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 2007. 都龙锡锌矿床锡石和锆石U−Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件[J]. 岩石学报, 23(5): 967−976. doi: 10.3321/j.issn:1000-0569.2007.05.010

    [73]

    卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体[M]. 北京: 科学出版社, 1−419.

    [74]

    潘锦波, 张达, 阙朝阳, 狄永军, 黄孔文, 毕珉烽, 徐建珍. 2015. 滇东南老城坡片麻状花岗岩地球化学特征、锆石U−Pb年龄及其意义[J]. 矿物岩石地球化学通报, 34(4): 795−803. doi: 10.3969/j.issn.1007-2802.2015.04.014

    [75]

    冉子龙, 李艳军. 2021. 伟晶岩型稀有金属矿床成矿作用研究进展[J]. 地质科技通报, 40(2): 13−23.

    [76]

    王登红, 徐志刚, 盛继福, 朱明玉, 徐珏, 袁忠信, 白鸽, 屈文俊, 李华芹, 陈郑辉, 王成辉, 黄凡, 张长青, 王永磊, 应立娟, 李厚民, 高兰, 孙涛, 付勇, 李建康, 武广, 唐菊兴, 丰成友, 赵正, 张大权. 2014. 全国重要矿产和区域成矿规律研究进展综述[J]. 地质学报, 88(12): 2176−2191.

    [77]

    吴润秋, 饶灿, 王琪, 张迪. 2020. 关键金属铍的电子探针分析[J]. 科学通报, 65(20): 2161−2168.

    [78]

    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [79]

    吴长年, 朱金初, 刘昌实, 杨升祖, 朱炳玉, 宁广进. 1995. 新疆阿尔泰库威伟晶岩中绿柱石形成的物理化学条件[J]. 矿物学报, 15(3): 346−351. doi: 10.3321/j.issn:1000-4734.1995.03.018

    [80]

    徐斌. 2015. 滇东南老君山地区多期岩浆作用地球化学及成岩成矿背景研究[D]. 南京: 南京大学, 1−140.

    [81]

    徐伟. 2007. 滇东南南温河花岗岩年代学和地球化学初步研究[D]. 贵阳: 中国科学院地球化学研究所.

    [82]

    徐兴旺, 洪涛, 李杭, 牛磊, 柯强, 陈建中, 刘善科, 翟明国. 2020. 初论高温花岗岩−伟晶岩锂铍成矿系统: 以阿尔金中段地区为例[J]. 岩石学报, 36(12): 3572−3592. doi: 10.18654/1000-0569/2020.12.02

    [83]

    徐喆, 张福神, 张芳荣, 张勇, 周渝, 徐进, 黄成伟, 贺彬, 龙立学. 2024. 江西九岭南缘古阳寨地区铍矿化伟晶岩独居石U–Pb定年及其地质意义[J]. 东华理工大学学报(自然科学版), 47(1): 13−21.

    [84]

    于萌. 2020. 汇聚大陆边缘混合岩−花岗岩−伟晶岩矿物成因研究及其对岩石成因的制约[D]. 安徽: 中国科学技术大学, 1−150.

    [85]

    张传昱, 曹晓民, 李文昌, 唐忠, 余海军, 陈曹军, 程涌, 李蓉. 2021. 云南省铍矿床成矿规律初探[J]. 岩石矿物学杂志, 40(2): 452−464. doi: 10.3969/j.issn.1000-6524.2021.02.018

    [86]

    张世涛, 冯明刚, 王厚强, 吕伟, 杨明. 1999. 云南省麻栗坡县祖母绿矿区的地质特征及成因初探[J]. 地质科技情报, 18(1): 50−54.

    [87]

    张振发, 张辉, 吕正航, 杨海林, 于文修. 2018. 滇东南老君山地区伟晶岩年代学研究及其地质意义[J]. 地球化学, 47(1): 33−47. doi: 10.3969/j.issn.0379-1726.2018.01.003

    [88]

    周晋捷, 吕正航, 刘堃, 唐勇, 张辉. 2024. 深熔成因伟晶岩初始岩浆中稀有金属富集特征[J]. 地质学报, 98(5): 1507−1526.

    [89]

    周起凤, 秦克章, 朱丽群, 赵俊兴. 2023. 花岗伟晶岩成因探讨: 岩浆分异与深熔[J]. 地学前缘, 30(5): 26−39.

  • 加载中

(13)

(6)

计量
  • 文章访问数:  57
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2024-02-03
修回日期:  2024-03-13
刊出日期:  2025-05-25

目录