中国地质科学院地质力学研究所
中国地质学会
主办

安第斯带斑岩型铜(金-钼)矿床时空分布特征

赵宏军, 邱瑞照, 陈秀法, 张潮. 安第斯带斑岩型铜(金-钼)矿床时空分布特征[J]. 地质力学学报, 2019, 25(S1): 135-139. doi: 10.12090/j.issn.1006-6616.2019.25.S1.023
引用本文: 赵宏军, 邱瑞照, 陈秀法, 张潮. 安第斯带斑岩型铜(金-钼)矿床时空分布特征[J]. 地质力学学报, 2019, 25(S1): 135-139. doi: 10.12090/j.issn.1006-6616.2019.25.S1.023
ZHAO Hongjun, QIU Ruizhao, CHEN Xiufa, ZHANG Chao. THE TEMPORAL AND SPATIAL DISTRIBUTION OF PORPHYRY CU (AU-MO) DEPOSITS IN THE ANDES BELT[J]. Journal of Geomechanics, 2019, 25(S1): 135-139. doi: 10.12090/j.issn.1006-6616.2019.25.S1.023
Citation: ZHAO Hongjun, QIU Ruizhao, CHEN Xiufa, ZHANG Chao. THE TEMPORAL AND SPATIAL DISTRIBUTION OF PORPHYRY CU (AU-MO) DEPOSITS IN THE ANDES BELT[J]. Journal of Geomechanics, 2019, 25(S1): 135-139. doi: 10.12090/j.issn.1006-6616.2019.25.S1.023

安第斯带斑岩型铜(金-钼)矿床时空分布特征

  • 基金项目:
    中国地质调查局地质调查项目(121201004000150009,1212011220912,DD20160118);国家国际科技合作专项(2011DFA22460)
详细信息
    作者简介: 赵宏军(1969-), 男, 教授级高工, 从事地质矿产普查找矿及成矿规律研究。E-mail:zhaohongjun2008@126.com
  • 中图分类号: P618

THE TEMPORAL AND SPATIAL DISTRIBUTION OF PORPHYRY CU (AU-MO) DEPOSITS IN THE ANDES BELT

  • 南美安第斯带斑岩型铜(金-钼)矿床受板块持续俯冲作用影响,呈线性多条带状分布,以中安第斯段的矿床数量多、分布集中、矿床规模巨大为特征;成矿时代有晚古生代冈瓦纳造山旋回两期和中—新生代安第斯造山旋回4期,以始新世晚期—渐新世和中新世中期—上新世最为重要。

  • 加载中
  • 图 1  安第斯带斑岩铜(金-钼)矿床分布图

    Figure 1. 

    表 1  安第斯带各斑岩铜矿成矿期已发现的铜资源量

    Table 1.  Copper resources discovered during the ore-forming period of various porphyry copper deposits in the Andes belt

    成矿时代 铜资源量(万吨) 占已发现资源量的比例
    新生代 中新世—上新世 19490 32.9%
    渐新世—中新世 5110 8.6%
    始新世—渐新世 26900 45.4%
    古新世—始新世 6500 11.0%
    中生代 早白垩世 155 0.3%
    中晚侏罗世 900 1.5%
    古生代 二叠纪 200 0.3%
    合计 59255 100%
    资料来源:USGS Open-File Report 2008-1253[22]
    下载: 导出CSV
  • SILLITOE R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J]. Australian Journal of Earth Sciences, 1997, 44(3):373-388. doi: 10.1080/08120099708728318

    COOKE D R, HOLLINGS P, WALSH J L. Giant porphyry deposits:Characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5):801-818. doi: 10.2113/gsecongeo.100.5.801

    MUTSCHLER F E, LUDINGTON S, BOOKSTROM A A. Giant porphyry-related metal camps of the world, a database[R]. Open-File Report 99-556, Menlo Park, CA: U.S. Geological Survey, 2010.https://pubs.usgs.gov/of/1999/of99-556/

    REICH M, PARADA M A, PALACIOS C, et al. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile:Metallogenic implications[J]. Mineralium Deposita, 2003, 38(7):876-885. doi: 10.1007/s00126-003-0369-9

    OYARZUN R, MÁRQUEZ A, LILLO J, et al. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:Adakitic versus normal calc-alkaline magmatism[J]. Mineralium Deposita, 2001, 36(8):794-798. doi: 10.1007/s001260100205

    COOKE D R, HOLLINGS P, WALSH J L. Giant porphyry deposits:characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5):801-818. doi: 10.2113/gsecongeo.100.5.801

    孙卫东, 凌明星, 杨晓勇, 等.洋脊俯冲与斑岩铜金矿成矿[J].中国科学:地球科学, 2010, 40(2):127-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000351469

    SUN Weidong, LING Mingxing, YANG Xiaoyong, et al. Ridge subduction and porphyry copper-gold mineralization:An overview[J]. Science China Earth Sciences, 2010, 53(4):475-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000351469

    SINGER D A, BERGER V I, MORING B C. Porphyry copper deposits of the world: Database, map, and grade and tonnage models[M]. U.S. Geological Survey Open-File Report 2005-1060, Menlo Park, CA: U.S. Geological Survey, 2005: 1060.

    GAMMONS C H, WILLIAMS-JONES A E. Chemical mobility of gold in the porphyry-epithermal environment[J]. Economic Geology, 1997, 92(1):45-59. http://d.old.wanfangdata.com.cn/NSTLQK/10.2113-gsecongeo.92.1.45/

    卢民杰, 朱小三, 郭维民.南美安第斯地区成矿区带划分探讨[J].矿床地质, 2016, 35(5):1073-1083. http://d.old.wanfangdata.com.cn/Periodical/kcdz201605014

    LU Minjie, ZHU Xiaosan, GUO Weimin. Division of Andean metallogenic domain in South America[J]. Mineral Deposits, 2016, 35(5):1073-1083. (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kcdz201605014

    赵宏军, 卢民杰, 邱瑞照, 等.浅谈安第斯成矿带铜矿时空分布规律[C]//2014年中国地球科学联合学术年会论文集.北京: 中国地球物理学会, 中国地质学会, 2014: 2604-2607.http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201410068004.htm

    ZHAO Hongjun, LU Minjie, QIU Ruizhao, et al. Discussion on the temporal and spatial distribution of copper deposits in the Andean metallogenic belt[C]//China Earth Science Joint Academic Annual Meeting. 2014: 2604-2607. (in Chinese)

    SILLITOE R H, PERELLÓ J. Andean copper province-tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery. In: HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. Economic Geology One Hundredth Anniversary Volume, 1905-2005. Littleton: Society of Economic Geologists, 2005: 845-890.https://www.researchgate.net/publication/284564661_Andean_copper_province_Tectonomagmatic_settings_deposit_types_metallogeny_exploration_and_discovery

    CHARRIER R, RAMOS V A, TAPIA F, et al. Tectono-stratigraphic evolution of the Andean Orogen between 31-37°S (Chile and Western Argentina)[J]. Journal of South American Earth Sciences, 2015, 38:13-30. https://www.researchgate.net/profile/Lucia_Sagripanti/publication/265846187_Tectono-stratigraphic_evolution_of_the_Andean_Orogen_between_31_and_37_S_Chile_and_Western_Argentina/links/541d900b0cf241a65a1896b8/Tectono-stratigraphic-evolution-of-the-Andean-Orogen-between-31-and-37-S-Chile-and-Western-Argentina.pdf?origin=publication_detail

    RAMOS V A, FOLGUERA A. Andean flat-slab subduction through time[M]//MURPHY J B, KEPPIE J D, HYNES A J. Ancient Orogens and Modern Analogues. The Geological Society, Special Publication, London, 2009, 327: 31-54.

    MAKSAEV V, ZENTILLI M, REYNOLDS P H.40Ar/39Ar geochronology of porphyry copper deposits of the northern Chilean Andes[J]. Congreso Geologico Chilena, 5th, Santiago Aetas, 1998, l:8109-8133.

    REUTTER K J, SCHEUBER E, HELMCKE D. Structural evidence of orogen-parallel strike slip displacements in the Precordillera of northern Chile[J]. Geologische Rundschau, 1991, 80(1):135-153. doi: 10.1007/BF01828772

    REUTTER K J, SCHEUBER E, CHONG G. The Precordilleran fault system of Chuquicamata, northern Chile:Evidence for reversals along arc-parallel strike-slip faults[J]. Tectonophysics, 1996, 259(1-3):213-228. doi: 10.1016/0040-1951(95)00109-3

    LINDSAY D O, ZENTILLI M, ROJAS DE LA RIVERA J. Evolution of an active ductile to brittle shear system controlling mineralization at the Chuquicamata porphyry copper deposit, northern Chile[J]. International Geology Review, 1995, 37(11):945-958. doi: 10.1080/00206819509465434

    MPODOZIS C, RAMOS V. The Andes of Chile and Argentina[J]. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, 1990, 11:59-90. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1ccdb81157a4811170b026ed1b5f42e6

    STERN C R. Role of subduction erosion in the generation of Andean magmas[J]. Geology, 1991, 19(1):78-81. doi: 10.1130/0091-7613(1991)019<0078:ROSEIT>2.3.CO;2

    HASCHKE M, SIEBEL W, GÜNTHER A, et al. Repeated crustal thicking and recycling during the Andean orogeny in north Chile (21°-26° S)[M]. Journal of Geophysical Research, 2002, 107(B1): 6-1-6-18.

    Cunningham, C.G., Zappettini, E.O., Vivallo S., Waldo, Celada, C.M., Quispe, Jorge, Singer, D.A., Briskey, J.A, Sutphin, D.M., Gajardo M., Mariano, Diaz, Alejandro, Portigliati, Carlos, Berger, V.I., Carrasco, Rodrigo, and Schulz, K.J., 2008, Quantitative mineral resource assessment of copper, molybdenum, gold, and silver in undiscovered porphyry copper deposits in the Andes Mountains of South America: U.S. Geological Survey Open-File Report 2008-1253, 282 p. Available on CD-ROM and online at https://pubs.usgs.gov/of/2008/1253/.

  • 加载中

(1)

(1)

计量
  • 文章访问数:  824
  • PDF下载数:  20
  • 施引文献:  0
出版历程
刊出日期:  2019-05-25

目录