Two-phase motion analysis system for landslide-induced impulse wave based on the particle image velocimetry
-
摘要:
滑坡-涌浪灾害威胁沿河两岸居民生产生活安全和航道安全。当前尚缺乏同步提供流固两相运动矢量的相关物理试验分析系统,以深刻分析滑坡-涌浪产生机制。文章提出了基于流固两相识别的粒子图像测速(PIV)技术和试验实现方法。利用2560×1024像素的工业相机,该PIV技术可实现在3 m×1.5 m视窗下最小1.17 mm的空间分辨率和0.01 s内最小0.117 m/s的观测速度。同时,提出了与该系统方法有关的误差来源和克服相关问题的解决方法。利用相关硬件设施示范性构建了滑坡-涌浪两相运动观测平台,并编制了专门的解算软件。对三维柱体颗粒崩塌、二维柱体颗粒崩塌及其涌浪和水下崩塌-涌浪进行了展示性试验,取得了良好效果。该系统可以揭示广泛的岩土体及水体运动全过程,具有很好的应用前景;将为滑坡-涌浪及相关动力学领域研究提供强有力的研究工具。
Abstract:Landslide-induced impulse wave disasters threaten the safety of production and life of residents along both sides of the river and the safety of navigation channels. However, there is still a lack of relevant physical experimental analysis system to provide fluid-solid two-phase motion vector synchronously to deeply analyze the mechanism of impulse wave generated by landslide. In this paper, the particle image velocimetry (PIV) and experimental implementation method based on fluid-solid two-phase recognition are proposed. This PIV technique can achieve a minimum spatial resolution of 1.17 mm and a minimum observation speed of 0.117 m/s in 0.01 s with a 2560×1024-pixel industrial camera under a 3 m×1.5 m observation window. The error sources related to this system and the solutions to overcome the related problems are proposed. A two-phase motion observation platform for landslide and its impulse wave is constructed by related hardware facilities, and a special resolving software is compiled. The demonstration tests of three-dimensional granular pillar collapse, two-dimensional granular column collapse and its impulse wave and underwater collapse-induced impulse wave have been carried out, and good results have been achieved. This system can reveal the whole process of rock, soil and water movement, and has good application prospects. It will provide a powerful research tool for landslide-induced impulse wave and related dynamics research.
-
-
ADAMCZYK A A, RIMAI L.1988. 2-Dimensional particle tracking velocimetry (PTV):Technique and image processing algorithms[J]. Experiments in Fluids, 6(6):373-380. doi: 10.1007/BF00196482
ADRIAN R J.1991. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 23(1):261-304. http://cn.bing.com/academic/profile?id=d3f75ab2fd54849a84079796c577e59e&encoded=0&v=paper_preview&mkt=zh-cn
ATAIE-ASHTIANI B, NIK-KHAH A.2008. Impulsive waves caused by subaerial landslides[J]. Environmental Fluid Mechanics, 8(3):263-280. http://link.springer.com/article/10.1007/s10652-008-9074-7
BALL J W.1970. Hydraulic model studies, wave action generated by slides into Mica reservoir[R]. Vancouver, Canada:Western Canada Hydraulic Laboratories.
DUAN L, KANG Q, SHEN G X.2000. Image processing method of PIV technique[J]. Journal of Beijing University of Aeronautics and Astronautics, 26(1):79-82. (in Chinese with English abstract) http://www.researchgate.net/publication/285353240_Image_processing_method_of_PIV_technique
FRITZ H M, HAGERW H, MINORH E.2003. Landslide generated impulse waves[J]. Experiments in Fluids, 35(6):505-519. doi: 10.1007/s00348-003-0659-0
FRITZ H M, HAGER W H, MINOR H E.2004. Near field characteristics of landslide generated impulse waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130(6):287-302. doi: 10.1061/(ASCE)0733-950X(2004)130:6(287)
GOLLIN D, BREVIS W, BOWMAN E T, et al., 2017. Performance of PIV and PTV for granular flow measurements[J]. Granular Matter, 19(3):42. doi: 10.1007/s10035-017-0730-9
HELLER V.2007. Landslide generated impulse waves: Prediction of near field characteristics[D]. Zürich: Swiss Federal Institute of Technology.
HU X B, FAN X Y, TANG J J.2019. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM:a case study ofSanxicunlandslide[J] Journal of Geomechanics, 25(4):527-535. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201904023.htm
HUANG B L, YIN Y P, WANG S C, et al., 2013. Landslide impulsive wave hazard study supported by GIS technology[J]. Chinese Journal of Rock Mechanics and Engineering, 32(S2):3844-3851. (in Chinese with English abstract) http://www.researchgate.net/publication/286285352_Landslide_impulsive_wave_hazard_study_supported_by_GIS_technology
HUANG B L, YIN Y P, CHEN X T, et al., 2014a. Experimental modeling of tsunamis generated by subaerial landslides:two case studies of the Three Gorges Reservoir, China[J]. Environmental Earth Sciences, 71(9):3813-3825. doi: 10.1007/s12665-013-2765-5
HUANG B L, YIN Y P, WANG S C, et al., 2014b. A physical similarity model of an impulsive wave generated by Gongjiafang landslide in Three Gorges Reservoir, China[J]. Landslides, 11(3):513-525. doi: 10.1007/s10346-013-0453-x
HUANG B L, WANG S C, ZHAO Y B.2017. Impulse waves in reservoirs generated by landslides into shallow water[J]. Coastal Engineering, 123:52-61. doi: 10.1016/j.coastaleng.2017.03.003
HUANG B L, ZHANG Q, WANG J, et al., 2019.Study on collapse-deposit process of layered granular column[J].Water Resources and Hydropower Engineering, 50(11):110-117. (in Chinese with English abstract) https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202002290546875536
HUBER A, HAGER W H.1997. Forecasting impulse waves in reservoirs[C]//Proceedings of the 19th congress des grands barrages. Paris: [s.n.]: 993-1005.
JIANG C W, MEI F M, WANG X Y.2011. A segmentation method of PIV images of wind-sand two-phase flow based on matlab platform[J].Journal of Desert Research, 31(2):367-371. (in Chinese with English abstract)
KAMPHUIS J W, BOWERING R J.1970.Impulse waves generated by landslides[C]//Proceedings of the 12th international conference on coastal engineering. Washington, D.C.: [s.n.]: 1575-1588.
LIU Y F, LIU G, CHEN X J, et al., 2019.Structural Plane Effect on the Deformation and Failure of the Heifangtai Tableland Slope[J].China Earthquake Engineering Journal, 41(4):908-915. (in Chinese with English abstract)
LOURENCO L, KROTHAPALLI A.1986. The role of photographic parameters in laser Speckle of particle image displacement velocimetry[J]. Experiments in Fluids, 5(1):29-32. doi: 10.1007/BF00272421
MOHAMMED F, FRITZ H M.2010. Experiments on tsunamis generated by 3D granular landslides[C]//Submarine mass movements and their consequences.Dordrecht: Springer, 28: 705-718.
RUAN C Q, LIUL R, XIE L.2009. Application study of displaying air current with solid tracer elements of MgCO3[J]. Journal of Guangdong University of Technology, 26(3):17-19. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_journal-guangdong-university-technology_thesis/020128982395.html
URSELL F, DEAN R G, YU Y S.1960. Forced small-amplitude water waves:a comparison of theory and experiment[J]. Journal of Fluid Mechanics, 7(1):33-52. http://adsabs.harvard.edu/abs/1960jfm.....7...33u
VIROULET S, SAURET A, KIMMOUN O, et al., 2013. Granular collapse into water:toward tsunami landslides[J]. Journal of Visualization, 16(3):189-191. http://link.springer.com/article/10.1007/s12650-013-0171-4
WANG Y L, CHEN F Y, QI H L, et al., 1994. The effect of rockfall and landslide on channel and the study on the characteristics of surge generated by landslide[J]. The Chinese Journal of Geological Hazard and Control, 5(3):95-100. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH403.010.htm
XIONG W, LIU K, FAN W.2018. Analysis on internal dynamic geological genesis of shallow landslide in Qin-Ba mountain area[J] Journal of Geomechanics, 24(3):424-431. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201803056.htm
YIN K L, LIU Y L, WANG Y, et al., 2012. Physical model experiments of landslide-induced surge in Three Gorges Reservoir[J]. Earth Science-Journal of China University of Geosciences, 37(5):1067-1074. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201205022.htm
段俐, 康琦, 申功炘.2000. PIV技术的粒子图像处理方法[J].北京航空航天大学学报, 26(1):79-82. http://d.wanfangdata.com.cn/Periodical/bjhkhtdxxb200001022
胡晓波, 樊晓一, 唐俊杰.2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究:以三溪村滑坡为例[J].地质力学学报, 25(4):527-535. http://www.cnki.com.cn/Article/CJFDTotal-DZLX201904009.htm
黄波林, 殷跃平, 王世昌, 等.2013. GIS技术支持下的滑坡涌浪灾害分析研究[J].岩石力学与工程学报, 32(S2):3844-3851. http://d.wanfangdata.com.cn/Periodical/yslxygcxb2013z2108
黄波林, 张全, 王健, 等.2019.层状颗粒柱体崩塌-堆积过程研究[J].水利水电技术, 50(11):110-117. http://www.cnki.com.cn/Article/CJFDTotal-SJWJ201911014.htm
蒋缠文, 梅凡民, 王晓艳.2011.基于MATLAB图像处理算法的风沙两相流PIV图像的分割方法[J].中国沙漠, 31(2):367-371. http://www.cqvip.com/QK/97197X/20112/37027068.html
刘亚峰, 刘高, 陈小军, 等.2019.黑方台台塬斜坡变形破坏的结构面效应研究[J].地震工程学报, 41(4):908-915. http://www.cnki.com.cn/Article/CJFDTotal-ZBDZ201904013.htm
阮彩群, 刘丽孺, 谢灵.2009.MgCO3固体粒子示踪剂气流显示的应用研究[J].广东工业大学学报, 26(3):17-19. http://d.wanfangdata.com.cn/Periodical/gdgydxxb200903005
王育林, 陈凤云, 齐华林, 等.1994.危岩体崩滑对航道影响及滑坡涌浪特性研究[J].中国地质灾害与防治学报, 5(3):95-100.
熊炜, 刘可, 范文.2018.秦巴山区浅层滑坡内动力地质成因分析[J].地质力学学报, 24(3):424-431. http://d.old.wanfangdata.com.cn/Periodical_dzlxxb201803015.aspx
殷坤龙, 刘艺梁, 汪洋, 等.2012.三峡水库库岸滑坡涌浪物理模型试验[J].地球科学-中国地质大学学报, 37(5):1067-1074. http://www.cqvip.com/QK/94035X/201205/44784876.html
-