中国地质科学院地质力学研究所
中国地质学会
主办

大洋地幔橄榄岩-铬铁矿中的金刚石和深地幔再循环

杨经绥. 2020. 大洋地幔橄榄岩-铬铁矿中的金刚石和深地幔再循环. 地质力学学报, 26(5): 731-741. doi: 10.12090/j.issn.1006-6616.2020.26.05.060
引用本文: 杨经绥. 2020. 大洋地幔橄榄岩-铬铁矿中的金刚石和深地幔再循环. 地质力学学报, 26(5): 731-741. doi: 10.12090/j.issn.1006-6616.2020.26.05.060
YANG Jingsui. 2020. Diamond in oceanic peridotites-chromitites and recycled in deep mantle. Journal of Geomechanics, 26(5): 731-741. doi: 10.12090/j.issn.1006-6616.2020.26.05.060
Citation: YANG Jingsui. 2020. Diamond in oceanic peridotites-chromitites and recycled in deep mantle. Journal of Geomechanics, 26(5): 731-741. doi: 10.12090/j.issn.1006-6616.2020.26.05.060

大洋地幔橄榄岩-铬铁矿中的金刚石和深地幔再循环

  • 基金项目:
    国家自然基金项目(41720104009)
详细信息
    作者简介: 杨经绥(1950-), 男, 研究员、中国科学院院士, 主要从事蛇绿岩及板块构造研究。E-mail:yangjsui@163.com
  • 中图分类号: P588.3;P542.5

  • 获奖者简历:
    杨经绥, 中国科学院院士, 中国地质科学院地质研究所研究员, 南京大学地球科学与工程学院教授。2009 年荣获第11 次李四光地质科学奖科研奖。主要从事青藏高原和造山带的岩石学与大地构造学研究。在蛇绿岩铬铁矿中发现原位金刚石,证明是自然界中一种新的产出类型,命名为“蛇绿岩型金刚石”;在全球多个板块缝合带的蛇绿岩中发现大量超高压和强还原矿物组合,建立俯冲物质深地幔循环和铬铁矿深部成因模式,开启了研究深地幔物质的一个重要新窗口。发现和厘定我国柴北缘、东秦岭和西藏松多等3条高压/超高压变质带;厘定东昆仑阿尼马卿和西昆仑库地古生代蛇绿岩组合,为建立高原北部古板块体制的演化做出重要贡献。发表论文500 多篇, 引用超过万次, 是我国地球科学类的高引学者。获国家自然科学奖二等奖、何梁何利科技进步奖等,选为美国地质学会会士和美国矿物学会会士。

Diamond in oceanic peridotites-chromitites and recycled in deep mantle

  • 全球多地蛇绿岩型地幔橄榄岩和铬铁矿中发现微粒金刚石,并在中国西藏南部和俄罗斯乌拉尔北部的蛇绿岩铬铁矿中发现原位产出的金刚石,认为是地球上金刚石的一种新的产出类型,不同于金伯利岩型金刚石和超高压变质型金刚石。它们与呈斯石英假象的柯石英、高压相的铬铁矿和青松矿等高压矿物以及碳硅石和单质矿物等强还原矿物伴生,指示蛇绿岩中的这些矿物组合形成于深度150~300 km或者更深的地幔。金刚石具有很轻的C同位素组成(δ13C-18‰~-28‰),并出现多种含Mn矿物和壳源成分包裹体。研究认为它们曾是早期深俯冲的地壳物质,达到>300 km深部地幔或地幔过渡带后,经历了熔融并产生新的流体,后者在上升过程中结晶成新的超高压、强还原矿物组合,通过地幔对流或地幔柱作用被带回到浅部地幔,由此建立了一个俯冲物质深地幔再循环的新模式。蛇绿岩型地幔橄榄岩和铬铁矿中发现金刚石等深部矿物,质疑了蛇绿岩铬铁矿形成于浅部地幔的已有认识,引发了一系列新的科学问题,提出了新的研究方向。

  • 加载中
  • 图 1  发现金刚石等深部矿物的蛇绿岩分布图(连东洋等,2019)

    Figure 1. 

    图 2  西藏罗布莎康金拉块状铬铁矿中发现的微粒金刚石(杨经绥等, 2014b)

    Figure 2. 

    图 3  铬铁矿中原位金刚石的发现

    Figure 3. 

    图 4  显微镜下铬铁矿中原位金刚石和C元素成分面扫描图像(Yang et al., 2014a, 2015a)

    Figure 4. 

    图 5  西藏和俄罗斯极地乌拉尔蛇绿岩铬铁矿中不同产出类型金刚石的C同位素特征(数据引自Yang et al., 2015aCartigny, 2005)

    Figure 5. 

    图 6  蛇绿岩铬铁矿金刚石中的矿物包裹体

    Figure 6. 

    图 7  西藏罗布莎铬铁矿中的TiFe合金显微图像

    Figure 7. 

    图 8  地幔对流和地幔柱上涌将深部形成的超高压和强还原矿物带回浅部地幔,其中包括早期深俯冲的壳源物质形成的矿物组合(Yang et al., 2015b)

    Figure 8. 

  • ARAI S, 1997. Origin of podiform chromitites[J]. Journal of Asian Earth Sciences, 15(2-3):303-310. doi: 10.1016/S0743-9547(97)00015-9

    ARAI S, 2013. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling:A good inference[J]. Earth and Planetary Science Letters, 379:81-87. doi: 10.1016/j.epsl.2013.08.006

    BAI W J, ZHOU M F, ROBINSON P T, 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 30(8):1650-1659. doi: 10.1139/e93-143

    BALLHAUS C, WIRTH R, FONSECA R O C, et al., 2017. Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes[J]. Geochemical Perspectives Letters, 5:42-46.

    BERCOVICI D, KARATO S I, 2003. Whole-mantle convection and the transition-zone water filter[J]. Nature, 425(6953):39-44. doi: 10.1038/nature01918

    BUSLOV M M, SAPHONOVA Y I, WATANABE T, et al., 2001. Evolution of the paleo-asian ocean (altai-sayan region, central asia) and collision of possible gondwana-derived terranes with the southern marginal part of the siberian continent[J]. Geosciences Journal, 5(3):203-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000904746

    BUTLER J P, BEAUMONT C, 2017. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases[J]. Earth and Planetary Science Letters, 463:101-117. doi: 10.1016/j.epsl.2017.01.025

    CARTIGNY P, 2005. Stable isotopes and the origin of diamond[J]. Elements, 1(2):79-84. doi: 10.2113/gselements.1.2.79

    CARTIGNY P, DE CORTE K, SHATSKY V S, et al., 2001. The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan:a nitrogen and carbon isotopic study[J]. Chemical Geology, 176(1-4):265-281. doi: 10.1016/S0009-2541(00)00407-1

    CHICHEST INC, 1997. There are no primary or residual diamonds in the mantle peridotite of Lobusa or Dongqiao, Tibet[J] Tibet Geology, (1):103-112. (in Chinese)

    COLEMAN R G, 2014. The ophiolite concept evolves[J]. Elements, 10(2):82-84. doi: 10.2113/gselements.10.2.82

    CONDIE K C, 2018. A planet in transition:The onset of plate tectonics on Earth between 3 and 2 Ga?[J]. Geoscience Frontiers, 9(1):51-60. DOI:10.1016/j.gsf.2016.09.001.

    COURTILLOT V, DAVAILLE A, BESSE J, et al., 2003. Three distinct types of hotspots in the Earth's mantle[J]. Earth and Planetary Science Letters, 205(3-4):295-308. doi: 10.1016/S0012-821X(02)01048-8

    DAS S, BASU A R, MUKHERJEE B K, 2017. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone[J]. Geology, 45(8):755-758. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=130eb64126710cf80addf1c9432fe795

    DAS S, MUKHERJEE B K, BASU A R, et al., 2015. Peridotitic minerals of the Nidar Ophiolite in the NW Himalaya:sourced from the depth of the mantle transition zone and above[J]. Geological Society, London, Special Publications, 412(1):271-286. doi: 10.1144/SP412.12

    DE PABLO J F, PROENZA J A, GONZÁLEZ-JIMÉNEZ J M, et al., 2018. A shallow origin for diamonds in ophiolitic chromitites[J]. Geology, 47(1):75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd934e60abe87e368776f016533c7475

    DENG Z B, CHAUSSIDON M, GUITREAU M, et al., 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes[J]. Nature Geoscience, 12(9):774-778. doi: 10.1038/s41561-019-0407-6

    DILEK Y, FURNES H, 2011. Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 123(3-4):387-411. doi: 10.1130/B30446.1

    DILEK Y, FURNES H, 2014. Ophiolites and their origins[J]. Elements, 10(2):93-100. doi: 10.2113/gselements.10.2.93

    DOBRZHINETSKAYA L F, WIRTH R, YANG J S, et al., 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(46):19233-19238. doi: 10.1073/pnas.0905514106

    DOBRZHINETSKAYA L F, WIRTH R, YANG J S, et al., 2014. Qingsongite, natural cubic boron nitride:the first boron mineral from the Earth's mantle[J]. American Mineralogist, 99(4):764-772. doi: 10.2138/am.2014.4714

    DRESSER J A, 1913. Preliminary report on the serpentine and associated rocks of southern Quebec[R]. Geological Survey of Canada, 103. DOI: 10.1017/S0016756800153531.

    FURNES H, DE WIT M, STAUDIGEL H, et al., 2007. A vestige of earth's oldest ophiolite[J]. Science, 315(5819):1704-1707. doi: 10.1126/science.1139170

    GASS I G, 1968. Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor?[J]. Nature, 220(5162):39-42. doi: 10.1038/220039a0

    GRAND S P, VAN DER HILST R D, WIDIYANTORO S, 1997. Global Seismic Tomography:A Snapshot of Convection in the Earth[J]. Geological Society of America Today, 7(4):1-7.

    GRIFFIN W L, AFONSO J C, BELOUSOVA E A, et al., 2016. Mantle recycling:transition zone metamorphism of tibetan ophiolitic peridotites and its tectonic implications[J]. Journal of Petrology, 57(4):655-684. doi: 10.1093/petrology/egw011

    HIROSE K, FEI Y W, MA Y Z, et al., 1999. The fate of subducted basaltic crust in the Earth's lower mantle[J]. Nature, 397(6714):53-56. doi: 10.1038/16225

    HOWELL D, GRIFFIN W L, YANG J S, et al., 2015. Diamonds in ophiolites:Contamination or a new diamond growth environment?[J]. Earth and Planetary Science Letters, 430:284-295. doi: 10.1016/j.epsl.2015.08.023

    HUANG Z, YANG J S, ROBINSON P T, et al., 2015. The Discovery of diamonds in chromitites of the hegenshan Ophiolite, inner Mongolia, China[J]. Acta Geologica Sinica (English Edition), 892(2):341-350.

    LAMBERT I B, WYLLIE P J, 1970. Low-velocity zone of the Earth's mantle:incipient melting caused by water[J]. Science, 169(3947):764-766. doi: 10.1126/science.169.3947.764

    LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-cenozoic tectonic evolution and plate reconstruction of the pacific plate[J]. Journal of Geomechanics, 25(5):642-677. DOI:10.12090/j.issn.1006-6616.2019.25.05.060..

    LI Z Y, LI J, LANGE R, et al., 2017. Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle[J]. Earth and Planetary Science Letters, 457:395-402. doi: 10.1016/j.epsl.2016.10.027

    LIAN D Y, YANG J S, DILEK Y, et al., 2017. Deep mantle origin and ultra-reducing conditions in podiform chromitite:Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey[J]. American Mineralogist, 102(5):1101-1113.

    LIAN D Y, YANG J S, WIEDENBECK M, et al., 2018. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti-Karsanti chromitite, Turkey[J]. Contributions to Mineralogy and Petrology, 173:72. doi: 10.1007/s00410-018-1499-5

    LIAN D Y, YANG J S, LIU F, et al., 2019. Diamond Classification, Compositional Characteristics, and Research Progress:A Review[J]. Earth Science, 044(010):P.3409-3453.

    LIAN D Y, YANG J S. 2019. Ophiolite-Hosted Diamond:A New Window for Probing Carbon Cycling in the Deep Mantle[J]. Engineering, 5(3):351-594. doi: 10.1016/j.eng.2019.05.002

    LIOU J G, ERNST W G, ZHANG R Y, et al., 2009. Ultrahigh-pressure minerals and metamorphic terranes-The view from China[J]. Journal of Asian Earth Sciences, 35(3-4):199-231. doi: 10.1016/j.jseaes.2008.10.012

    LIOU J G, TSUJIMORI T, YANG J S, et al., 2014. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths:a review[J]. Journal of Asian Earth Sciences, 96:386-420. doi: 10.1016/j.jseaes.2014.09.011

    LITASOV K D, KAGI H, VOROPAEV S A, et al., 2019. Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites:Assessing the role of contamination by synthetic materials[J]. Gondwana Research, 75:16-27. doi: 10.1016/j.gr.2019.04.007

    LIU H, SUN W D, ZARTMAN R, et al., 2019. Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago[J]. Nature Communications, 10:3408. doi: 10.1038/s41467-019-11329-z

    LIU J, HU Q Y, KIM D Y, et al., 2017. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones[J]. Nature, 551(7681):494-497. doi: 10.1038/nature24461

    LU H Z, 2019. Geofluids and across earth sphere structures[J]. Journal of Geomechanics, 25(6):1003-1012.DOI:10.12090/j.issn.1006-6616.2019.25.06.083.

    MAO H K, HU Q Y, YANG L X, et al., 2017. When water meets iron at Earth's core-mantle boundary[J]. National Science Review, 4(6):870-878. doi: 10.1093/nsr/nwx109

    MOE K S, YANG J S, JOHNSON P, et al., 2018. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite[J]. Lithosphere, 10(1):133-141.

    NAKAGAWA M, SANTOSH M, MARUYAMA S, 2011. Manganese formations in the accretionary belts of Japan:Implications for subduction-accretion process in an active convergent margin[J]. Journal of Asian Earth Sciences, 42(3):208-222. doi: 10.1016/j.jseaes.2011.04.005

    NICOLAS A, 1989. Structures of ophiolites and dynamics of oceanic lithosphere[M]. Netherlands:Springer:367.

    NIU X L, YANG J S, NASIR S, et al., 2020. A trip through Oceanic Lithosphere:2019 international workshop and field trip of IGCP 649 in Muscat, Oman[J]. Episodes, 43:1-8.

    ROBINSON P T, BAI W J, MALPAS J, et al., 2004. Ultrahigh-pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications[J]. Geological Society, London, Special Publication, 226(1):247-271. doi: 10.1144/GSL.SP.2004.226.01.14

    ROBINSON P T, TRUMBULL R B, SCHMITT A, et al., 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites[J]. Gondwana Research, 27(2):486-506. doi: 10.1016/j.gr.2014.06.003

    ROLLINSON H, 2016. Surprises from the top of the mantle transition zone[J]. Geology Today, 32(2):58-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/gto.12130

    RUBIE D C, VAN DER HILST R D, 2001. Processes and consequences of deep subduction:introduction[J]. Physics of the Earth and Planetary Interiors, 127(1-4):1-7. doi: 10.1016/S0031-9201(01)00217-5

    ŞENGöR A M C, 1979. Mid-Mesozoic closure of Permo-Triassic tethys and its implications[J]. Nature, 279(5714):590-593. doi: 10.1038/279590a0

    SHILO N A, KAMINSKIY F V, PALANDZHYAN S, et al., 1978. First diamond finds in Alpine-type ultrabasic rocks in the Northeastern USSR[J]. Doklady Earth Sciences, 241:179-182.

    SUN W D, HAWKESWORTH C J, YAO C, et al., 2018. Carbonated mantle domains at the base of the Earth's transition zone[J]. Chemical Geology, 478:69-75. doi: 10.1016/j.chemgeo.2017.08.001

    TANG M, CHEN K, RUDNICK R L, 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 351(6271):372-375. doi: 10.1126/science.aad5513

    TAYLOR W R, MILLEDGE H J, GRIFFIN B J, et al., 1995. Characteristics of microdiamonds from ultramafic massifs in Tibet:authentic ophiolitic diamonds or contamination? Sixth international kimberlite conference; extended abstracts[R]. Proceedings of the International Kimberlite Conference, 6:623-624.

    TIAN Y Z, YANG J S, ROBINSON P T, et al., 2015. Diamond discovered in High-Al chromitites of the sartohay ophiolite, Xinjiang province, China[J]. Acta Geologica Sinica (English Edition), 89(2):332-340. doi: 10.1111/1755-6724.12433

    TORSVIK T H, BURKE K, STEINBERGER B, et al., 2010. Diamonds sampled by plumes from the core-mantle boundary[J]. Nature, 466(7304):352-355. doi: 10.1038/nature09216

    TRUMBULL R B, YANG J S, ROBINSON P T, et al., 2009. The carbon isotope composition of natural SiC (moissanite) from the Earth's mantle:New discoveries from ophiolites[J]. Lithos, 113(3-4):612-620. doi: 10.1016/j.lithos.2009.06.033

    WU W W, YANG J S, MA C Q, et al., 2017. Discovery and significance of diamonds and Moissanites in Chromitite within the Skenderbeu massif of the Mirdita zone Ophiolite, west Albaznia[J]. Acta Geologica Sinica (English Edition), 91(3):882-897. doi: 10.1111/1755-6724.13316

    WU Y, XU M J, JIN Z M, et al., 2016. Experimental constraints on the formation of the Tibetan podiform chromitites[J]. Lithos, 245:109-117. doi: 10.1016/j.lithos.2015.08.005

    XIAO W J, HUANG B C, HAN C M, et al., 2010. A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18(2-3):253-273. doi: 10.1016/j.gr.2010.01.007

    XIONG F H, YANG J S, ROBINSON P T, et al., 2017. Diamonds discovered from High-Cr Podiform chromitites of Bulqiza, eastern Mirdita Ophiolite, Albania[J]. Acta Geologica Sinica (English Edition), 91(2):455-468. doi: 10.1111/1755-6724.13111

    XU X Z, YANG J S, BA D Z, et al., 2008. Diamond discovered from the Kangjinla chromitite in the Yarlung Zangbo ophiolite belt, Tibet[J]. Acta Petrologica Sinica, 24(7)7:1453-1462. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807003

    XU X Z, YANG J S, CHEN S Y, et al., 2009. Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet[J]. Journal of Earth Sciences, 20(2):284-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx-e200902008

    XU X Z, YANG J S, ROBINSON P T, et al., 2015. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 27(2):686-700. doi: 10.1016/j.gr.2014.05.010

    YAMAMOTO S, KOMIYA T, HIROSE K, et al., 2009. Coesite and clinopyroxene exsolution lamellae in chromites:In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 109(3-4):314-322. doi: 10.1016/j.lithos.2008.05.003

    YANG J S, DILEK Y, ROBINSON P T, 2014a. Diamonds in ophiolites:a little-known diamond occurrence[J]. Elements, 10:123-126.

    YANG J S, DOBRZHINETSKAYA L, BAI W J, et al., 2007. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 35(10):875-878. doi: 10.1130/G23766A.1

    YANG J S, LIAN D Y, ROBINSON P T, et al., 2019a. Comment on "A shallow origin for diamonds in ophiolitic chromitites"[J]. Geology, 47(8):e475-e475. DOI:10.1130/G46446C.1.

    YANG J S, MENG F C, XU X Z, et al., 2015a. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 27(2):459-485. doi: 10.1016/j.gr.2014.07.004

    YANG J S, PEARCE J, DILEK Y, 2016. Probing the Troodos ophiolite:IGCP-649 workshop and field excursion held in Agros-Cyprus[J]. Acta Geologica Sinica (English Edition), 90(3):1041-1044. doi: 10.1111/1755-6724.12744

    YANG J S, QIU T, CASTRO A I L, 2017. Report on the third IGCP-649 international workshop on the mayarí-baracoa ophiolites and chromitites, cuba[J]. Acta Geologica Sinica (English Edition), 91(6):2305-2309. doi: 10.1111/1755-6724.13466

    YANG J S, ROBINSON P T, DILEK Y, 2015b. Diamond-bearing ophiolites and their geological occurrence[J]. Episodes, 38(4):344-364. doi: 10.18814/epiiugs/2015/v38i4/82430

    YANG J S, SHEN T T, 2018b. IGCP-649 project held 2018 international workshop and field trip in Brisbane, Australia and New Caledonia[J]. Episodes, 41(4):259-265. doi: 10.18814/epiiugs/2018/v41i4/005

    YANG J S, SHEN T T, ZHANG C, et al., 2019b. Preface:introduction of IGCP 649 project-diamonds and recycled mantle[J]. Journal of Earth Science, 30(3):429-430. doi: 10.1007/s12583-019-1229-6

    YANG J S, SIMAKOV S K, MOE K, et al., 2020. Comment on "Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites:Assessing the role of contamination by synthetic materials" by Litasov et al., 2019[J]. Gondwana Research, 79:301-303. doi: 10.1016/j.gr.2019.09.010

    YANG J S, TRUMBULL R B, ROBINSON P T, et al., 2018a. Comment on "Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes"[J]. Geochemical Perspectives Letters, 8:6-7. DOI:10.7185/geochemlet.1820.

    YANG J S, XU X Z, BAI W J, et al., 2014b. Features of diamond in ophiolite[J]. Acta Petrologica Sinica, 30(8):2113-2124. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201408001

    YANG J S, XU X Z, LI Y, et al., 2011a. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet:A proposal for a new type of diamond occurrence[J]. Acta Petrologica Sinica, 27(11):3171-3178. (in Chinese with English abstract)

    YANG J S, XU X Z, LI Y, et al., 2011b. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet and its implications[J]. Acta Petrologica Sinica, 27(11):3207-3222. (in Chinese with English abstract)

    YANG J S, XU X Z, ZHANG Z M, et al., 2013. Ophiolite-type diamond and deep genesis of chromitite[J]. Acta Geoscientia Sinica, 34(6):643-653. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201306001

    ZHANG R Y, SHAU Y H, YANG J S, et al., 2017a. Discovery of clinoenstatite in the Luobusa ophiolitic mantle peridotite recovered from a drill hole, Tibet[J]. Journal of Asian Earth Sciences, 145:605-612. doi: 10.1016/j.jseaes.2017.07.003

    ZHANG R Y, YANG J S, ERNST W G, et al., 2016. Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet:New insights into the deep upper mantle and mantle transition zone[J]. American Mineralogist, 101(5-6):1285-1294

    ZHANG Y F, JIN Z M, GRIFFIN W L, et al., 2017b. High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites[J]. Earth and Planetary Science Letters, 463:151-158. doi: 10.1016/j.epsl.2017.01.036

    ZHAO P D, OHTANI E, 2009. Deep slab subduction and dehydration and their geodynamic consequences:evidence from seismology and mineral physics[J]. Gondwana Research, 16(3-4):401-413. doi: 10.1016/j.gr.2009.01.005

    ZHOU M F, ROBINSON P T, MALPAS J, et al., 1996. Podiform chromitites in the Luobusa Ophiolite (southern Tibet):implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 37(1):3-21. doi: 10.1093/petrology/37.1.3

    ZHOU M F, ROBINSON P T, SU B X, et al., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits:The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26(1):262-283. doi: 10.1016/j.gr.2013.12.011

    李三忠, 曹现志, 王光增, 等, 2019.太平洋板块中-新生代构造演化及板块重建[J].地质力学学报, 25(5):642-677. DOI:10.12090/j.issn.1006-6616.2019.25.05.060. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190504&journal_id=dzlxxb

    连东洋, 杨经绥, 刘飞, 等. 2019.金刚石分类, 组成特征以及我国金刚石研究展望[J].地球科学, 044(010):P.3409-3453.

    卢焕章, 2019.地球中的流体和穿越层圈构造[J].地质力学学报, 25(6):1003-1012. DOI:10.12090/j.issn.1006-6616.2019.25.06.083. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190601&journal_id=dzlxxb

    切切斯特钻石公司考察团, 1997.西藏罗布莎和东巧地幔橄榄岩中不存在原生或残留的金刚石.西藏地质, (1):103-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199701067024

    徐向珍, 杨经绥, 巴登珠, 等, 2008.雅鲁藏布江蛇绿岩带的康金拉铬铁矿中发现金刚石.岩石学报, 24(7):1453-1462. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807003

    杨经绥, 徐向珍, 李源, 等, 2011a.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石:蛇绿岩型金刚石分类的提出.岩石学报, 27(11):3171-3178. doi: 10.1016/S1002-0160(11)60127-6

    杨经绥, 徐向珍, 李源, 等, 2011b.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石及其意义.岩石学报, 27(11):3207-3222.

    杨经绥, 徐向珍, 张仲明, 等, 2013.蛇绿岩型金刚石和铬铁矿深部成因.地球学报, 34(6):643-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201306001

    杨经绥, 徐向珍, 白文吉, 等, 2014b.蛇绿岩型金刚石的特征.岩石学报, 30(8):2113-2124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201408001

  • 加载中

(8)

计量
  • 文章访问数:  2440
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2020-08-10
修回日期:  2020-09-07
刊出日期:  2020-10-25

目录