A preliminary study on the Mesozoic massive gold metallogenic mechanism of the deep-large fault coupling with critical water in the Jiaodong area, China
-
摘要:
通过对胶东金矿地质背景和成矿特征研究的总结与分析,依据热液矿床水相变控矿理论,探索胶东地区高密度聚集巨量金矿的原因。研究发现,两期次降压驱动成矿物质运动和临界水的(温度和压力都达到水临界值时的水,下同)特殊性质是两个重要因素。在此基础上,文章提出胶东巨量金聚集成矿的深大断裂-临界成矿机制,即"一饼加一刀"的成矿机制:老变质岩提供丰富的成矿物源是基础;早期大型点状降压形成酸性侵入杂岩体和各类岩脉等,其伴生的长时间、巨量临界水促使成矿物质活化迁移;晚期大型线状断裂降压造成较短时间内成矿物质的沉淀,若断裂是张开的不连续空间则矿石以充填结构为主,若破碎带是连续空间时矿石则以蚀变交代结构为主。丰富的金源,两期次不同性质的降压,临界水的独特性质,是胶东巨量金矿聚集的主要因素。
Abstract:This study aims to study the reason why a huge accumulation of gold deposits occurred in the Jiaodong area. We summarized and analyzed the geological background and metallogenic characteristics of the Jiaodong gold deposits. In parallel, we highlighted the importance of depressurization-driven movement of ore-forming materials at two stages and the special properties of critical water (water at the critical value of both temperature and pressure, the same below) based on the theory of water phase change controlling metallogenesis in hydrothermal deposits. The above analysis results allow us to propose the Mesozoic massive gold metallogenic mechanism of deep-large fault coupling with critical water in the Jiaodong area, that is, the metallogenic mechanism of "one cake plus one knife". The old metamorphic rocks provide abundant ore-forming materials. In the early stage, a large-scale point-like depressurization results in acid intrusive complexes and various dykes, which were accompanied by a large amount of critical water over a long time to promote the activation and migration of ore-forming materials; In the late stage, the depressurization of the large linear fault caused the precipitation of ore-forming materials in a short time. The faults with open discontinuous space are dominated by ore-filling structures, while the fracture zones with continuous space are dominated by mineralized alteration with metasomatic structures. Abundant gold in metamorphic rocks, two stages of depressurization with different properties and unique properties of critical water are the main factors for the accumulation of massive gold deposits in the Jiaodong area.
-
-
图 1 胶东金矿集区地质简图(据王建等,2020)
Figure 1.
图 2 玲珑金矿田主要矿体分布图(据高海东等,2020)
Figure 2.
-
CAO J J, HU R Z, LIANG Z R, et al., 2009. TEM observation of geogas-carried particles from the Changkeng concealed gold deposit, Guangdong Province, South China[J]. Journal of Geochemical Exploration, 101(3): 247-253. doi: 10.1016/j.gexplo.2008.09.001
CHEN Y C, PEI R F, WANG D H, et al., 2020. Four-dimensional metallogeny in earth system and study trends of mineral deposits: a discussion on minerogenetic series (Ⅶ)[J]. Mineral Deposits, 39(5): 745-753. (in Chinese with English abstract)
CHEN Y J, PIRAJNO F, LAI Y, et al., 2004. Metallogenic time and tectonic setting of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 20(4): 907-922. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200404013.htm
DENG J, YANG L Q, LIU W, et al., 2001. Gold origin and fluid ore-forming effect of Zhao-Ye Ore Deposits Concentrating Area in Jiaodong, Shandong, China[J]. Chinese Journal of Geology, 36(3): 257-268. (in Chinese with English abstract) http://www.researchgate.net/publication/289187173_Gold_origin_and_fluid_ore-forming_effect_of_Zhao-ye_ore_deposits_in_Jiaodong_Shandong_China
FAN H R, HU F F, YANG J H, et al., 2005. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong province[J]. Acta Petrologica Sinica, 21(5): 1317-1328. (in Chinese with English abstract)
GAO H D, HU B Q, LÜ G X, et al., 2020. Geochemical characteristics and deep prediction of tectonic alteration rocks in No. 50 vein of the Linglong gold deposit, Shandong Province[J]. Geological Bulletin of China, 39(11): 1793-1806. (in Chinese with English abstract)
HU B Q, WANG F Z, SUN Z X, et al., 2003. The pressure gradient in the lithosphere[J]. Earth Science Frontiers, 10(3): 129-133. (in Chinese with English abstract) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200312001016.htm
HU B Q, LÜ G X, WANG F Z, et al., 2008. Calculations of thermal pressure coefficients in the lithosphere[J]. Earth Science Frontiers, 15(3): 123-129. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200803010.htm
HU B Q, LÜ G X, WANG F Z, et al., 2009. The phase transition of water: one of the important factors controlling the hydrothermal mineralization[J]. Geological Review, 55(5): 722-730. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP200905015.htm
HU B Q, LÜ G X, SUN Z X, et al., 2011. The theory of water phase transitions controlling hydrothermal mineralization[J]. Geological Bulletin of China, 30(4): 565-572. (in Chinese with English abstract) http://d.wanfangdata.com.cn/periodical/zgqydz201104013
HU B Q, GAO H D, SHEN Y K, et al., 2013. Gold occurrence characteristics and their genetic significance in Dakaitou district of Linglong gold ore-deposit[J]. Journal of East China Institute of Technology, 36(4): 357-363. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HDDZ201304002.htm
HU B Q, WANG Q, LÜ G X, et al., 2017. Depressurization and related phase transition in the lithosphere[J]. Earth Science Frontiers, 24(2): 31-39. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201702008.htm
HUA R M, MAO J W, 1999. A preliminary discussion on the Mesozoic Metallogenic explosion in East China[J]. Mineral Deposits, 18(4): 300-308. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199904001.htm
LI H K, YANG F J, 2006. Type Dividion of Shangdong gold mine & its main features[J]. Shanghai Geology(4): 64-67, 18. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD200604016.htm
LI H K, SHI W G, LI Y F, et al., 2013. Study on gold mineralization ages in Jiaodong Area, Shandong Province[J]. Gold Science and Technology, 21(3): 1-9. (in Chinese with English abstract)
LI H K, YU X F, ZHUO C Y, et al., 2017. Metallogenic system of Jiaodong gold deposit in Shandong province[J]. Shandong Land and Resources, 33(7): 1-6. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDDI201707001.htm
LIANG G H, 2017. Preliminary study of the relationship between cryptoexplosion and ore-forming process from Wenchuan earthquake[J]. Acta Petrologica Sinica, 33(2): 326-338. (in Chinese with English abstract) http://www.researchgate.net/publication/319077599_Preliminary_study_of_the_relationship_between_cryptoexplosion_and_ore-forming_process_from_Wenchuan_earthquake
LIU X P, WANG X, SONG Y X, et al., 2017. The characteristics of altered surrounding rocks in Xiling extra big gold deposit, Northwest of Jiaodong[J]. Journal of East China University of Technology, 40(3): 225-236. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ201703003.htm
LYU G X, 2019. Research on tectonic dynamo-petrogenesis and metallogenesis and tectonophysicochemistry[J]. Journal of Geomechanics, 25(5): 962-980. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905025.htm
LÜ G X, LI H K, DING Z J, et al., 2016. Hydrothermal alteration metallogenesis in the determination zone of a ""magmatic core complex"" upheaval-detachment structure, Jiaodong[J]. Geoscience, 30(2): 247-262. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201602001.htm
NIU S Y, CHEN C, ZHANG J Z, et al., 2019. The thermal and dynamic process of core→mantle→crust and the Metallogenesis of Guojiadian mantle branch in northwestern Jiaodong[J]. Minerals, 9(4): 249. doi: 10.3390/min9040249
SONG M C, YI P H, CUI S X, et al., 2013. Thermal uplifting-extension ore-forming theory and its prospecting significance in Jiaodong gold deposit[J]. Shangdong Land and Resources, 29(7): 1-12. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDDI201307005.htm
SUN W D, 2019. The Magma Engine and the driving force of plate tectonics[J]. Chinese Science Bulletin, 64(28-29): 2988-3006. (in Chinese with English abstract) doi: 10.1360/N972019-00274
WAN T F, TEYSSIER C, ZENG H L, et al., 2001. Emplacement mechanism of Linglong granitoid complex, Shandong Peninsula, China[J]. Science in China Series D: Earth Sciences, 44(6): 535-544. doi: 10.1007/BF02876213
WAN T F, LI S Z, YANG W R, et al., 2019. Academic controversy on the mechanism and driving forces of plate movement[J]. Earth Science Frontiers, 26(6): 309-319. (in Chinese with English abstract)
WANG J, ZHU L X, MA S M, et al., 2020. Hydrothermal alteration associated with Mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit, Jiaodong gold province[J]. Geological Bulletin of China, 39(11): 1807-1826. (in Chinese with English abstract)
WANG S J, WANG L M, WAN Y S, et al., 2009. Study on intrusive rocks forming period and stages division in Ludong Area[J]. Shandong Land and Resources, 25(12): 8-20, 25. (in Chinese with English abstract) http://www.researchgate.net/publication/313219170_Study_on_intrusive_rocks_forming_period_and_stages_division_in_Ludong_area
WANG Y W, ZHU F S, GONG R T, 2002. Study on the metallogenic chronology of gold deposits in Jiaodong gold concentration zone[J]. Gold Geology, 8(4): 48-55. (in Chinese with English abstract) http://www.researchgate.net/publication/285480779_Study_on_the_metallogenic_chronology_of_gold_deposits_in_Jiaodong_gold_concentration_zone
XU Q, NI W, 2007. Nanomaterials preparation in the supercritical fluid system[J]. Progress in Chemistry, 19(9): 1419-1427. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_progress-in-chemistry_thesis/0201235593260.html
XU W G, FAN H R, YANG K F, et al., 2017. Gold Mineralizing efficiency during hydrothermal alteration of the Mesozoic Granitoids in the Northwest Jiaodong peninsula: contrasting conditions between the Guojialing and Linglong plutons[J]. Geochemistry, 77(3): 387-398. doi: 10.1016/j.chemer.2017.08.001
YAN J, CHEN J F, XIE Z, et al., 2003. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong province: new constraint on the timing of lithospheric thinning in eastern China[J]. Chinese Science Bulletin, 48(19): 2139-2144. doi: 10.1360/03wd0066
YANG L Q, DENG J, GE L S, et al., 2006. A review of the study on the metallogenic age and genesis of Jiaodong gold deposit[J]. Progress in Natural Science, 16(7): 797-802. (in Chinese)
YANG L Q, DENG J, WANG Z L, et al., 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 30(9): 2447-2467. (in Chinese with English abstract) http://www.researchgate.net/publication/279667521_Mesozoic_gold_metallogenic_system_of_the_Jiaodong_gold_province_eastern_China
YI Z B, CAO J J, JIANG T, et al., 2020. Characterization of metal-bearing particles in groundwater from the Weilasituo Zn-Cu-Ag deposit, Inner Mongolia, China: Implications for mineral exploration[J]. Ore Geology Reviews, 117: 103270. doi: 10.1016/j.oregeorev.2019.103270
YU G P, XU T, AI Y S, et al., 2020. Significance of crustal extension and magmatism to gold deposits beneath Jiaodong Peninsula, eastern North China Craton: seismic evidence from receiver function imaging with a dense array[J]. Tectonophysics, 789: 228532. doi: 10.1016/j.tecto.2020.228532
ZHAI Y S, LÜ G X, 2002. Transition of tectonic and dynamic regime and mineralization[J]. Acta Geoscientia Sinica, 23(2): 97-102. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200202000.htm
ZHANG B L, LYU G X, LIANG G H, et al., 2019. Preliminary study on deep geophysical exploration model of gold ore fields in eastern Shandong, China[J]. Journal of Geomechanics, 25(S1): 150-156. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1026.htm
陈衍景, PIRAJNO F, 赖勇, 等, 2004. 胶东矿集区大规模成矿时间和构造环境[J]. 岩石学报, 20(4): 907-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404013.htm
陈毓川, 裴荣富, 王登红, 等, 2020. 论地球系统四维成矿及矿床学研究趋向: 七论矿床的成矿系列[J]. 矿床地质, 39(5): 745-753. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202005001.htm
邓军, 杨立强, 刘伟, 等, 2001. 胶东招掖矿集区巨量金质来源和流体成矿效应[J]. 地质科学, 36(3): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103000.htm
范宏瑞, 胡芳芳, 杨进辉, 等, 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J]. 岩石学报, 21(5): 1317-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505000.htm
高海东, 胡宝群, 吕古贤, 等, 2020. 山东玲珑金矿50号脉三维构造蚀变岩地球化学特征及深部预测[J]. 地质通报, 39(11): 1793-1806. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202011012.htm
胡宝群, 王方正, 孙占学, 等, 2003. 岩石圈中的地压梯度[J]. 地学前缘, 10(3): 129-133. doi: 10.3321/j.issn:1005-2321.2003.03.012
胡宝群, 吕古贤, 王方正, 等, 2008. 岩石圈中热压系数的计算[J]. 地学前缘, 15(3): 123-129. doi: 10.3321/j.issn:1005-2321.2008.03.009
胡宝群, 吕古贤, 王方正, 等, 2009. 水的相变: 热液成矿作用的重要控制因素之一[J]. 地质论评, 55(5): 722-730. doi: 10.3321/j.issn:0371-5736.2009.05.014
胡宝群, 吕古贤, 孙占学, 等, 2011. 热液矿床水相变控矿理论初探[J]. 地质通报, 30(4): 565-572. doi: 10.3969/j.issn.1671-2552.2011.04.013
胡宝群, 高海东, 申玉科, 等, 2013. 玲珑金矿大开头矿区金的赋存特征及其成因意义[J]. 东华理工大学学报(自然科学版), 36(4): 357-363. doi: 10.3969/j.issn.1674-3504.2013.04.002
胡宝群, 王倩, 吕古贤, 等, 2017. 岩石圈中的降压作用及其相变过程[J]. 地学前缘, 24(2): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702008.htm
华仁民, 毛景文, 1999. 试论中国东部中生代成矿大爆发[J]. 矿床地质, 18(4): 300-308. doi: 10.3969/j.issn.0258-7106.1999.04.002
李洪奎, 杨锋杰, 2006. 山东金矿类型划分及其主要特征[J]. 上海地质(4): 64-67, 18. doi: 10.3969/j.issn.2095-1329.2006.04.014
李洪奎, 时文革, 李逸凡, 等, 2013. 山东胶东地区金成矿时代研究[J]. 黄金科学技术, 21(3): 1-9. doi: 10.3969/j.issn.1005-2518.2013.03.001
李洪奎, 于学峰, 禚传源, 等, 2017. 山东胶东金矿成矿理论体系[J]. 山东国土资源, 33(7): 1-6. doi: 10.3969/j.issn.1672-6979.2017.07.001
梁光河, 2017. 从汶川地震探讨隐爆与成矿过程[J]. 岩石学报, 33(2): 326-338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702002.htm
刘祥朋, 王玺, 宋英昕, 等, 2017. 胶西北西岭特大型金矿床蚀变围岩特征研究[J]. 东华理工大学学报(自然科学版), 40(3): 225-236. doi: 10.3969/j.issn.1674-3504.2017.03.003
吕古贤, 李洪奎, 丁正江, 等, 2016. 胶东地区""岩浆核杂岩""隆起-拆离带岩浆期后热液蚀变成矿[J]. 现代地质, 30(2): 247-262. doi: 10.3969/j.issn.1000-8527.2016.02.001
吕古贤, 2019. 构造动力成岩成矿和构造物理化学研究[J]. 地质力学学报, 25(5): 962-980. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190523&journal_id=dzlxxb
宋明春, 伊丕厚, 崔书学, 等, 2013. 胶东金矿""热隆-伸展""成矿理论及其找矿意义[J]. 山东国土资源, 29(7): 1-12. doi: 10.3969/j.issn.1672-6979.2013.07.001
孙卫东, 2019. ""岩浆引擎""与板块运动驱动力[J]. 科学通报, 64(28-29): 2988-3006. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z2005.htm
万天丰, 李三忠, 杨巍然, 等, 2019. 板块运动的机制与动力来源学术争鸣[J]. 地学前缘, 26(6): 309-319. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906036.htm
万天丰, TEYSSIER C, 曾华霖, 等, 2000. 山东玲珑花岗质岩体侵位机制[J]. 中国科学(D辑), 30(4): 337-344. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004000.htm
王建, 朱立新, 马生明, 等, 2020. 胶东三山岛北海域金矿床热液蚀变作用研究[J]. 地质通报, 39(11): 1807-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202011013.htm
王世进, 王来明, 万渝生, 等, 2009. 鲁东地区侵入岩形成时代和期次划分: 锆石SHRIMP U-Pb年龄的证据[J]. 山东国土资源, 25(12): 8-20, 25. doi: 10.3969/j.issn.1672-6979.2009.12.004
王义文, 朱奉三, 宫润潭, 2002. 胶东金矿集中区金矿成矿年代学研究[J]. 黄金地质, 8(4): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ200204008.htm
许群, 倪伟, 2007. 超临界流体技术制备纳米材料的研究与展望[J]. 化学进展, 19(9): 1419-1427. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200709021.htm
闫峻, 陈江峰, 谢智, 等, 2003. 鲁东晚白垩世玄武岩中的幔源捕虏体: 对中国东部岩石圈减薄时间制约的新证据[J]. 科学通报, 48(14): 1570-1574. doi: 10.3321/j.issn:0023-074X.2003.14.018
杨立强, 邓军, 葛良胜, 等, 2006. 胶东金矿成矿时代和矿床成因研究述评[J]. 自然科学进展, 16(7): 797-802. doi: 10.3321/j.issn:1002-008X.2006.07.003
杨立强, 邓军, 王中亮, 等, 2014. 胶东中生代金成矿系统[J]. 岩石学报, 30(9): 2447-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm
翟裕生, 吕古贤, 2002. 构造动力体制转换与成矿作用[J]. 地球学报, 23(2): 97-102. doi: 10.3321/j.issn:1006-3021.2002.02.001
张宝林, 吕古贤, 梁光河, 等, 2019. 胶东金矿田的深部地球物理勘查模式初步研究[J]. 地质力学学报, 25(S1): 150-156. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2019S126&journal_id=dzlxxb
-