• 集群首页
  • 关于我们
  • 期刊群

南极新生代海陆格局变迁对全球气候变化的影响

Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change

  • 摘要: 南极大陆记录了新生代以来地质演化中多次重大地质事件,包括大陆生长、裂解和离散、全球冷却和大陆尺度南极冰盖的发展等。尽管非常重要,但至今关于南极大陆新生代地质演化仍有诸多争论。文章主要针对塔斯曼通道和德雷克海峡贯通过程,系统总结并分析了南极洲、南美洲和澳大利亚的构造、岩浆和沉积演化历史。始新世晚期至渐新世早期开始发育的南极环极洋流(ACC)受德雷克海峡和塔斯曼通道扩张程度的控制。综合分析和对比研究表明,~34 Ma全球气候从"暖室"到"冷室"的转变与ACC开始的时间一致,表明构造通道的打开控制了ACC的发育,进而对全球气候产生了重要影响。最后,简要总结了南极作为一个完整的地球系统,其新生代地质演化如何控制海陆格局的变迁,并提出未来研究需要解决的关键问题。

     

    Abstract: Antarctica recorded a Cenozoic geologic history of continental growth, breakup and dispersal, global cooling and the development of continental-scale Antarctic ice sheet. Despite the importance of Antarctica, there has not been an integrated view of the Cenozoic tectonic evolution of the region as a whole. In this Review, we identify the Tasmania gateway and Drake Passage, and present their overlapping and interconnected tectonic, magmatic and sedimentary history of Antarctica, South America and Australia. Antarctic Circumpolar Current (ACC), which occurred in the late Eocene to early Oligocene, was most impacted by the opening history of Drake Passage and the Tasmania gateway. Our comprehensive analysis and contrastive study show that the beginning of ACC corresponds to the transition from "warmhouse" to "coolhouse" phase at 34 Ma, indicating the development of ACC was controlled by the tectonic gateways, which in turn affected global climate. We conclude by briefly summarizing the Cenozoic geologic history of the Antarctic system as a whole, and how it provides insight into continent-ocean configuration patterns and what key topics must be addressed by future research are disscussed as well.

     

/

返回文章
返回