中国地质科学院地质力学研究所
中国地质学会
主办

赣南珠坑钨矿赋矿花岗岩独居石年龄、地球化学特征及成因探究

高原, 王颖, 王海, 徐喆, 张勇, 周渝, 张芳荣, 孙超, 贺彬, 张思远, 张福神. 2025. 赣南珠坑钨矿赋矿花岗岩独居石年龄、地球化学特征及成因探究. 地质力学学报, 31(2): 325-339. doi: 10.12090/j.issn.1006-6616.2024083
引用本文: 高原, 王颖, 王海, 徐喆, 张勇, 周渝, 张芳荣, 孙超, 贺彬, 张思远, 张福神. 2025. 赣南珠坑钨矿赋矿花岗岩独居石年龄、地球化学特征及成因探究. 地质力学学报, 31(2): 325-339. doi: 10.12090/j.issn.1006-6616.2024083
GAO Yuan, WANG Ying, WANG Hai, XU Zhe, ZHANG Yong, ZHOU Yu, ZHANG Fangrong, SUN Chao, HE Bin, ZHANG Siyuan, ZHANG Fushen. 2025. Monazite U-Pb age, geochemistry, and genesis of ore-bearing granites in the Zhukeng tungsten deposit, southern Jiangxi Province. Journal of Geomechanics, 31(2): 325-339. doi: 10.12090/j.issn.1006-6616.2024083
Citation: GAO Yuan, WANG Ying, WANG Hai, XU Zhe, ZHANG Yong, ZHOU Yu, ZHANG Fangrong, SUN Chao, HE Bin, ZHANG Siyuan, ZHANG Fushen. 2025. Monazite U-Pb age, geochemistry, and genesis of ore-bearing granites in the Zhukeng tungsten deposit, southern Jiangxi Province. Journal of Geomechanics, 31(2): 325-339. doi: 10.12090/j.issn.1006-6616.2024083

赣南珠坑钨矿赋矿花岗岩独居石年龄、地球化学特征及成因探究

  • 基金项目: 东华理工大学核资源与环境国家重点实验室开放基金项目(2022NRE09);江西省关键矿产资源勘查与开发重点实验室开放基金(GHKC2024KF08);放射性地质与勘探技术国防重点学科实验室开放基金(2022RGET08);国家自然科学基金项目(42062006);江西省自然科学基金项目(20232BAB213065);江西省地质局科技研究项目(2022JXDZKJKY02);江西省“科技+地质”联合计划项目(2023KDG01003);江西省地质局青年科学技术带头人培养计划项目(2022JXDZKJRC04)
详细信息
    作者简介: 高原(1985—),男,硕士,高级工程师,主要从事区域地质矿产调查、矿产勘查相关工作。Email:382173369@ qq.com
    通讯作者: 王海(1990—),男,博士,助理研究员,主要从事矿床学和找矿预测研究工作。Email: wanghai_90s@163.com
  • 中图分类号: P584;P597

Monazite U-Pb age, geochemistry, and genesis of ore-bearing granites in the Zhukeng tungsten deposit, southern Jiangxi Province

  • Fund Project: This research is financially supported by the Open Fund Project of the State Key Laboratory of Nuclear Resources and Environment of East China University of Technology (Grant No. 2022NRE09), the Open Fund Project of Jiangxi Province Key Laboratory of Exploration and Development of Critical Mineral Resources (Grant No. GHKC2024KF08), the Open Fund Project of the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (Grant No. 2022RGET08), the National Natural Science Foundation of China (Grant No. 42062006), the Jiangxi Provincial Natural Science Foundation (Grant No. 20232BAB213065), the Jiangxi Provincial Geological Bureau of Science and Technology Research Project (Grant No. 2022JXDZKJKY02), the Jiangxi Province's Science−Technology and Geology Joint Project (Grant No. 2023KDG01003) and the Training Program for the Young Talents in Science and Technology from the Jiangxi Provincial Bureau of Geology (Grant No. 2022JXDZKJRC04).
More Information
  • 珠坑岩体为赣南地区与钨矿和铌钽矿密切相关的由二云母花岗岩−白云母花岗岩构成的复式岩体。通过对赣南广昌县珠坑钨矿赋矿岩体白云母花岗岩、二云母花岗岩开展系统的岩石地球化学分析和成岩时代研究,结合区域成岩成矿研究结果,探讨岩体成因和构造背景。LA-ICP-MS分析结果显示,细粒白云母花岗岩中的独居石206Pb/238U加权平均年龄为156.7±1.3 Ma,主量元素具有典型的富硅(SiO2含量为65.54%~74.95%)、富碱(Na2O+K2O含量为8.48%~12.85%)、高铝(A/CNK介于1.10~1.22)和贫Mg特征,稀土元素总量(ΣREE)介于61.12×10−6~173.98×10−6,显示弱富集轻稀土,稀土元素配分曲线呈弱右倾,具有明显的负铕异常,Rb、Ta、Th、Pb、Nd、Hf富集,Ba、Nb、Sr和Ti亏损,属于高分异S型花岗岩;二云母花岗岩中的独居石206Pb/238U加权平均年龄为159.5±0.9 Ma,主量元素具有典型的富硅(SiO2含量在75.02%~77.03%)、富碱(Na2O+K2O含量为5.92%~8.58%)、高铝(A/CNK=1.14~1.65)和贫Mg特征,稀土总量ΣREE介于106.86×10−6~124.24×10−6,显示轻稀土富集,稀土配分曲线呈右倾斜,具有明显负铕异常;Rb、Ta、Th、Pb、Nd、Hf富集,Ba、Nb、Sr和Ti亏损,属于高分异S型花岗岩。综合年代学和岩石地球化学特征,珠坑钨矿花岗岩侵位时代为晚侏罗世,为俯冲背景下大规模花岗质岩浆活动作用产物。

  • 加载中
  • 图 1  广昌—石城构造地质图

    Figure 1. 

    图 2  珠坑钨矿矿区地质简图(据戴浩橦等,2023修改)

    Figure 2. 

    图 3  珠坑钨矿典型赋矿岩石特征及显微照片

    Figure 3. 

    图 4  珠坑钨矿花岗岩体中独居石背散射(BSE)电子图像

    Figure 4. 

    图 5  珠坑钨矿花岗岩中独居石Tera-Wasserburg谐和图和206Pb/238U加权平均年龄图

    Figure 5. 

    图 6  珠坑花岗岩体主量元素图解

    Figure 6. 

    图 7  珠坑钨矿花岗岩岩体C1球粒陨石标准化稀土元素配分曲线,及微量元素原始地幔标准化蛛网图

    Figure 7. 

    图 8  珠坑钨矿花岗岩岩石类型判别图(Whalen et al.,1989)

    Figure 8. 

    图 9  (Ta+Yb)-Rb和(Y+Nb)-Rb构造环境判别图解(Pearce,1996

    Figure 9. 

    表 1  珠坑钨矿床花岗岩中独居石LA-ICP-MS U-Pb定年结果

    Table 1.  LA-ICP-MS U-Pb dating of monazite from granites in the Zhukeng tungsten deposit

    测点号 元素含量/×10−6
    Th/U 同位素比值 年龄/Ma
    Th U 207Pb/206Pb ±2σ 207Pb/235U ±2σ 206Pb/238U ±2σ 207Pb/235U ±2σ 206Pb/238U ±2σ
    22ZK01 Mn
    22ZK01-1 49487 2738 18 0.0503 0.0042 0.1702 0.0140 0.0246 0.0008 159.6 12.0 156.7 4.8
    22ZK01-3 141827 6396 22 0.0485 0.0022 0.1624 0.0086 0.0242 0.0006 152.8 7.5 154.1 4.0
    22ZK01-6 127159 5295 24 0.0479 0.0028 0.1630 0.0098 0.0247 0.0006 153.4 8.5 157.1 3.6
    22ZK01-7 109783 4417 25 0.0485 0.0026 0.1651 0.0095 0.0246 0.0006 155.1 8.3 156.8 4.0
    22ZK01-8 73144 5468 13 0.0780 0.0046 0.2698 0.0167 0.0251 0.0007 242.6 13.0 159.6 4.2
    22ZK01-9 104244 4769 22 0.0562 0.0040 0.1928 0.0137 0.0248 0.0006 179.0 12 .0 158.2 3.5
    22ZK01-10 83859 4321 19 0.0470 0.0029 0.1601 0.0096 0.0247 0.0006 150.8 8.4 157.4 3.6
    22ZK01-11 77157 3223 24 0.0602 0.0045 0.2135 0.0163 0.0257 0.0007 196.5 14 .0 163.5 4.2
    22ZK01-12 52965 3755 14 0.0596 0.0049 0.2073 0.0180 0.0251 0.0008 191.3 15.0 160.1 4.9
    22ZK01-14 190005 6199 31 0.0487 0.0026 0.1623 0.0087 0.0242 0.0006 152.7 7.6 154.1 4.1
    22ZK01-15 50266 2789 18 0.0483 0.0034 0.1645 0.0109 0.0248 0.0007 154.6 9.5 158.2 4.4
    22ZK01-17 68132 4579 15 0.0508 0.0028 0.1718 0.0107 0.0244 0.0006 161.0 9.3 155.3 3.9
    22ZK01-18 54822 2738 20 0.0500 0.0029 0.1723 0.0098 0.0250 0.0007 161.4 8.5 159.4 4.5
    22ZK01-19 57463 4366 13 0.0496 0.0026 0.1678 0.0087 0.0245 0.0006 157.5 7.5 156.3 3.8
    22ZK01-20 87754 10828 8 0.0486 0.0020 0.1594 0.0066 0.0238 0.0005 150.2 5.7 151.7 3.2
    22ZK01-21 77647 4496 17 0.0499 0.0028 0.1674 0.0094 0.0243 0.0007 157.1 8.1 155.0 4.1
    22ZK01-22 83390 5524 15 0.0907 0.0077 0.3036 0.0231 0.0245 0.0007 269.2 18.0 156.2 4.6
    22ZK01-23 63875 4967 13 0.0491 0.0028 0.1677 0.0093 0.0248 0.0006 157.4 8.1 157.8 3.8
    22ZK01-24 92367 4980 19 0.0493 0.0030 0.1644 0.0117 0.0241 0.0008 154.5 10.0 153.3 4.9
    22ZK13 Mn
    22ZK13-1 92418 4349 21 0.0473 0.0027 0.1633 0.0090 0.0251 0.0007 153.6 7.8 159.5 4.3
    22ZK13-2 68539 3173 22 0.0507 0.0034 0.1756 0.0120 0.0251 0.0006 164.2 10.0 159.8 3.8
    22ZK13-3 90313 5008 18 0.0487 0.0031 0.1641 0.0114 0.0243 0.0007 154.2 10.0 155.1 4.2
    22ZK13-5 142814 5535 26 0.0489 0.0025 0.1673 0.0101 0.0247 0.0006 157.1 8.8 157.3 3.8
    22ZK13-6 71800 3431 21 0.0484 0.0037 0.1655 0.0119 0.0249 0.0007 155.5 10.0 158.7 4.4
    22ZK13-7 138315 6736 21 0.0472 0.0024 0.1598 0.0079 0.0246 0.0007 150.6 6.9 156.8 4.2
    22ZK13-8 97270 4266 23 0.0453 0.0026 0.1571 0.0094 0.0252 0.0006 148.2 8.2 160.2 4.0
    22ZK13-9 70874 2998 24 0.0482 0.0037 0.1691 0.0135 0.0254 0.0008 158.7 12.0 161.9 5.2
    22ZK13-10 122693 6382 19 0.0827 0.0115 0.3008 0.0477 0.0255 0.0009 267.0 37.0 162.4 5.5
    22ZK13-11 117956 6247 19 0.0482 0.0027 0.1652 0.0079 0.0250 0.0007 155.2 6.9 159.4 4.7
    22ZK13-12 14790 2305 6 0.0600 0.0045 0.2127 0.0158 0.0257 0.0007 195.8 13.0 163.8 4.7
    22ZK13-13 96254 4551 21 0.0485 0.0028 0.1689 0.0091 0.0254 0.0007 158.5 7.9 161.5 4.4
    22ZK13-14 74173 3637 20 0.0490 0.0029 0.1684 0.0101 0.0249 0.0006 158.1 8.8 158.8 3.7
    22ZK13-15 90316 3706 24 0.0520 0.0035 0.1804 0.0117 0.0252 0.0007 168.4 10.0 160.6 4.2
    22ZK13-16 43503 2313 19 0.0485 0.0045 0.1666 0.0144 0.0250 0.0007 156.4 13.0 158.9 4.5
    22ZK13-17 57767 2544 23 0.0517 0.0033 0.1807 0.0119 0.0253 0.0007 168.7 10.0 161.4 4.7
    22ZK13-18 87092 3769 23 0.0459 0.0028 0.1564 0.0105 0.0247 0.0007 147.6 9.2 157.0 4.5
    22ZK13-19 85551 4319 20 0.0463 0.0031 0.1598 0.0101 0.0251 0.0007 150.5 8.9 160.0 4.2
    22ZK13-20 112206 5464 21 0.0494 0.0029 0.1699 0.0104 0.0249 0.0006 159.4 9.0 158.7 3.7
    22ZK13-21 127992 5537 23 0.0888 0.0051 0.3122 0.0185 0.0255 0.0007 275.9 14.0 162.1 4.5
    22ZK13-22 50133 1902 26 0.0492 0.0046 0.1671 0.0147 0.0248 0.0006 156.9 13.0 157.6 4.0
    22ZK13-23 83610 3777 22 0.0509 0.0034 0.1766 0.0126 0.0251 0.0007 165.2 11.0 159.6 4.3
    22ZK13-24 60311 3043 20 0.0483 0.0034 0.1688 0.0120 0.0254 0.0007 158.4 10.0 161.8 4.4
    下载: 导出CSV

    表 2  珠坑钨矿花岗岩体主量元素含量(%)

    Table 2.  Major element compositions (%) of granites from the Zhukeng tungsten deposit

    样号 22ZK01 22ZK02 22ZK03 22ZK04 22ZK05 22ZK06 22ZK07 22ZK08 22ZK09 22ZK10 22ZK11 22ZK12 22ZK13 22ZK14 22ZK15 22ZK17 22ZK18 22ZK19
    岩性 细粒白云母花岗岩 中细粒二云母花岗岩 云英岩
    SiO2 74.68 74.95 74.83 75.81 65.54 68.58 65.66 66.14 75.30 75.02 75.34 75.41 75.51 76.92 77.03 58.57 56.46 64.18
    TiO2 0.03 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.06
    Al2O3 14.97 14.61 14.68 14.19 19.74 18.51 18.55 19.00 13.88 14.09 13.84 13.69 13.84 12.93 12.32 22.39 26.54 21.39
    FeO 0.42 0.47 0.28 0.34 0.21 0.17 0.27 0.16 0.36 0.39 0.38 0.46 0.39 0.52 0.60 2.74 1.99 1.55
    MnO 0.09 0.10 0.08 0.09 0.05 0.04 0.05 0.04 0.12 0.10 0.12 0.16 0.13 0.21 0.10 1.41 0.34 0.28
    MgO 0.03 0.04 0.04 0.03 0.03 0.03 0.04 0.03 0.06 0.05 0.05 0.06 0.06 0.10 0.12 0.09 0.07 0.21
    CaO 0.19 0.20 0.11 0.17 0.77 0.72 0.80 0.58 0.50 0.45 0.44 0.52 0.43 0.54 0.84 1.32 0.03 0.03
    Na2O 5.05 4.46 4.68 4.73 5.42 7.85 3.48 4.87 4.40 4.00 4.26 3.62 4.35 2.86 0.50 0.40 0.42 0.29
    K2O 3.45 4.12 4.24 3.75 6.53 2.78 8.95 7.98 4.15 4.45 4.32 4.47 4.17 4.07 5.42 7.20 8.62 7.17
    P2O5 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01
    DI 95.40 95.36 96.36 96.16 93.07 94.55 93.4 95.32 95.10 94.72 95.40 94.03 95.25 92.60 89.46 72.03 77.21 81.26
    Na2O/K2O 1.46 1.08 1.10 1.26 0.83 2.82 0.39 0.61 1.06 0.90 0.99 0.81 1.04 0.70 0.09 0.06 0.05 0.04
    Na2O+K2O 8.50 8.58 8.92 8.48 11.95 10.63 12.43 12.85 8.55 8.45 8.58 8.09 8.52 6.93 5.92 7.60 9.04 7.46
    烧失量 0.92 0.90 0.78 0.69 1.33 1.02 1.38 1.03 0.91 1.17 0.94 1.11 0.80 1.37 1.88 3.72 3.95 3.27
    A/CNK 1.22 1.22 1.18 1.18 1.18 1.12 1.15 1.10 1.14 1.19 1.14 1.21 1.15 1.35 1.65 2.31 2.64 2.58
    A/NK 1.24 1.24 1.19 1.20 1.23 1.16 1.20 1.14 1.18 1.23 1.18 1.27 1.18 1.42 1.84 2.64 2.64 2.59
    注:DI为分异指数;A/CNK=Al2O3/(CaO+Na2O+K2O);A/NK=Al2O3/(Na2O+K2O)
    下载: 导出CSV

    表 3  珠坑矿区花岗岩体微量元素分析(×10−6)结果

    Table 3.  Trace element compositions (×10−6) of granites from the Zhukeng tungsten deposit

    样品号22ZK0122ZK0222ZK0322ZK0422ZK0522ZK0622ZK0722ZK0822ZK0922ZK1022ZK1122ZK1222ZK1322ZK1422ZK1522ZK1722ZK1822ZK19
    岩性细粒白云母花岗岩中细粒二云母花岗岩云英岩
    Rb897.00978.00799.00814.00837.00442.001093.00967.00702.00642.00740.00767.00768.50689.00899.001756.002019.001750.00
    Ba19.2028.6035.0025.2095.5033.50109.5084.2029.0038.1024.4025.8028.8048.8088.1070.8037.8089.50
    Th9.638.349.126.5732.208.5032.6033.7018.3017.5016.2015.9017.1018.7027.9014.9020.5013.90
    U9.4411.007.306.566.799.3912.4012.6014.9018.0014.4014.6012.6020.0012.5027.105.414.00
    Pb48.2061.4057.3038.50332.7062.80388.00149.4043.9058.9041.50100.0046.90174.40759.8048.7027.00142.10
    Sr8.389.1212.208.5626.7025.2024.7028.8011.3016.6011.3012.7012.2013.1012.206.366.056.96
    P61.1061.1052.3856.7474.2074.2096.02109.1252.3865.4752.3856.7496.0243.6534.9265.4774.2061.10
    Nb77.4057.0045.9076.1014.8039.2026.0043.9054.8061.2054.2051.7053.2065.0045.20306.8068.4047.40
    Ta56.1047.7024.3056.904.1116.308.4417.5016.6020.7017.6016.9019.2017.309.91128.6020.1013.40
    K28639.4934201.3635197.5131129.8854207.4923077.6174296.6466244.3734450.4036940.7935861.6237106.8134616.4233786.2944993.0559769.3671557.2159520.32
    La7.628.879.217.4113.405.3216.1019.4010.6013.6013.8013.1010.8011.7012.7013.8018.4020.30
    Ce22.5024.8033.4022.9035.6012.0044.6050.0028.6036.8036.2036.5029.4031.2032.3036.2047.6052.00
    Pr3.213.503.502.974.651.545.826.983.864.824.914.893.924.204.244.896.386.83
    Nd13.7015.0014.7012.4021.206.5726.7031.4017.1020.6021.2021.2017.2018.2018.5021.0027.4028.70
    Zr18.5021.9028.4030.2064.7065.5060.2063.1046.1045.4041.6038.9046.2044.4055.5039.9051.6013.90
    Hf3.522.983.654.264.605.273.565.283.273.704.473.424.123.053.5114.903.922.48
    Sm8.958.517.517.4710.204.2011.9014.608.589.659.849.908.577.997.5810.4013.3013.60
    Eu0.040.080.070.040.320.200.360.380.100.180.090.090.100.150.240.140.170.26
    Gd9.108.067.287.359.986.1510.2013.808.959.859.829.468.958.367.949.7014.9010.60
    Ti155.87143.88125.90119.9065.95101.9271.9453.96179.85167.86161.87179.85191.84215.82317.74287.76287.76383.68
    Tb1.591.431.361.361.921.491.802.521.821.871.871.771.791.841.672.033.091.56
    Dy7.157.027.556.7412.909.9811.4015.0011.4011.5011.3010.5011.0012.7011.5012.9018.207.32
    Ho0.790.911.130.832.501.752.122.661.982.011.971.781.902.382.212.232.840.96
    Er1.451.962.701.696.984.585.826.925.235.165.104.575.046.326.016.156.811.99
    Tm0.190.300.440.251.190.780.981.110.900.860.860.760.841.060.981.211.060.26
    Yb1.282.103.221.808.865.707.328.006.756.406.475.756.397.767.1210.207.301.75
    Lu0.180.300.450.251.370.871.121.211.010.940.950.850.961.111.061.561.030.23
    Y44.8041.9051.0045.8076.2056.6063.6081.4070.2067.7069.3065.0070.0080.1067.5065.4091.0039.40
    ΣREE77.7582.8492.5173.46131.0761.12146.24173.98106.87124.24124.38121.12106.86114.97114.05132.41168.48146.36
    LREE56.0260.7668.3953.1985.3729.83105.48122.7668.8485.6586.0485.6869.9973.4475.5686.43113.25121.69
    HREE21.7222.0824.1320.2745.7031.3040.7651.2238.0438.5938.3435.4436.8741.5338.4945.9855.2324.67
    LREE/HREE2.582.752.832.621.870.952.592.401.812.222.242.421.901.771.961.882.054.93
    LaN/YbN4.273.032.052.951.080.671.581.741.131.521.531.631.211.081.280.971.818.32
    δEu0.010.030.030.020.100.120.100.080.030.060.030.030.030.050.090.040.040.07
    δCe1.121.091.441.201.111.031.131.051.101.111.081.121.111.091.081.081.081.08
    下载: 导出CSV
  • [1]

    BUDZYŃ B, SLÁMA J, CORFU F, et al., 2021. TS-Mnz-A new monazite age reference material for U-Th-Pb microanalysis[J]. Chemical Geology, 572: 120195.

    [2]

    CHAPPELL B W, 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535-551.

    [3]

    CHEN J, LU J J, CHEN W F, et al., 2008. W-Sn-Nb-Ta-bearing granites in the Nanling range and their relationship to metallogengesis[J]. Geological Journal of China Universities, 14(4): 459-473. (in Chinese with English abstract

    [4]

    CHEN Y C, CHEN Z H, ZENG Z L, et al., 2013. Research on the site selection of Nanling scientific drilling-1[J]. Geology in China, 40(3): 659-670. (in Chinese with English abstract).

    [5]

    CHEN Y J, CHEN B, DUAN X X, et al., 2021. Origin of highly fractionated peraluminous granites in South China: implications for crustal anatexis and evolution[J]. Lithos, 402-403: 106145.

    [6]

    DAI H T, ZHANG Y, PAN J Y, et al., 2023. Characteristics and geological significance of muscovite in Zhukeng tungsten deposit, southern Jiangxi province[J]. Journal of East China University of Technology (Natural Science), 46(5): 472-485. (in Chinese with English abstract).

    [7]

    DANG F P, LYU C, TANG X S, et al., 2023. Geochronology and petrogeochemical characteristics of U-bearing granites in the Dongshang deposit, northwestern Jiangxi, China and its geological significance[J]. Journal of Geomechanics, 29(6): 898-914. (in Chinese with English abstract

    [8]

    FENG C Y, XU J X, ZENG Z L, et al., 2007. Zircon SHRIMP U-Pb and molybdenite Re-Os dating in Tianmenshan—Hongtaoling tungsten-tin Orefield, southern Jiangxi Province, China, and its geological implication[J]. Acta Geologica Sinica, 81(7): 952-963. (in Chinese with English abstract

    [9]

    FENG C Y, ZENG Z L, ZHANG D Q, et al., 2011. SHRIMP zircon U-Pb and molybdenite Re-Os isotopic dating of the tungsten deposits in the Tianmenshan-Hongtaoling W-Sn orefield, southern Jiangxi Province, China, and geological implications[J]. Ore Geology Reviews, 43(1): 8-25.

    [10]

    GONÇALVES G O, LANA C, SCHOLZ R, et al., 2016. An assessment of monazite from the Itambé pegmatite district for use as U–Pb isotope reference material for microanalysis and implications for the origin of the “Moacyr” monazite[J]. Chemical Geology, 424: 30-50.

    [11]

    GUO C L, LIN Z Y, WANG D H, et al., 2008. Petrologic characteristics of the granites and greisens and muscovite 40Ar/39Ar dating in the Taoxikeng tungsten polymetallic deposit, Southern Jiangxi Province[J]. Acta Geologica Sinica, 82(9): 1274-1284. (in Chinese with English abstract

    [12]

    GUO C L, CHEN Y C, LI C B, et al., 2011. Zircon SHRIMP U-Pb dating, geochemistry, Sr-Nd isotopic analysis of the late Jurassic granitoids in the Jiulongnao W-Sn-Pb-Zn ore-concentrated areas in Jiangxi Province and their geological significance[J]. Acta Geologica Sinica, 85(7): 1188-1205. (in Chinese with English abstract

    [13]

    GUO C L, CHEN Y C, ZENG Z L, et al., 2012. Petrogenesis of the Xihuashan granites in southeastern China: constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes[J]. Lithos, 148: 209-227.

    [14]

    GUO N X, ZHAO Z, GAO J F, et al., 2018. Magmatic evolution and W-Sn-U-Nb-Ta mineralization of the Mesozoic Jiulongnao granitic complex, Nanling Range, South China[J]. Ore Geology Reviews, 94: 414-434. doi: 10.1016/j.oregeorev.2018.02.015

    [15]

    GUO X F, WANG Q L, JING Y H, et al., 2022. Zircon U-Pb geochronology and Hf isotope characteristics of the Xihuashan granites in southern Jiangxi Province and their geological significance[J]. Geology and Exploration, 58(3): 585-596. (in Chinese with English abstract

    [16]

    GUO Z Q, QIN J H, WANG D H, et al., 2024. Geochronology and geochemical characteristics of magmatic rocks and their relationship with mineralization in Taoxiba deposit, southern Jiangxi Province[J]. Mineral Deposits, 43(3): 655-687. (in Chinese with English abstract

    [17]

    HU R Z, ZHOU M F, 2012. Multiple Mesozoic mineralization events in South China: an introduction to the thematic issue[J]. Mineralium Deposita, 47(6): 579-588.

    [18]

    HUA R M, CHEN P R, ZHANG W L, et al., 2005. Three major metallogenic events in Mesozoic in South China[J]. Mineral Deposits, 24(2): 99-107. (in Chinese with English abstract

    [19]

    IRVINE T N, BARAGAR W R A,1971. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences,8(5):523-548.

    [20]

    LI W, LIU C H, TAN Y, et al., 2021. Zircon U-Pb age, petro-geochemical and mineralization characteristics of Keshuling granites in southern Jiangxi Province[J]. Geological Review, 67(5): 1309-1320. (in Chinese with English abstract

    [21]

    LI W, TANG J X, LU J, et al., 2024. Geochemical characteristics, U-Pb age and Hf isotope of zircons from granite porphyry in Tieshanlong tungsten ore field, southern Jiangxi Province[J]. Geological Review, 70(1): 175-188. (in Chinese with English abstract

    [22]

    LIU J, MAO J W, YE H S, et al., 2008. Zircon LA-ICPMS U-Pb dating of Hukeng granite in Wugongshan area, Jiangxi Province and its geochemical characteristics[J]. Acta Petrologica Sinica, 24(8): 1813-1822. (in Chinese with English abstract

    [23]

    LIU X X, ZHANG J, HUANG F, et al., 2022. Tungsten deposits in southern Jiangxi Province: constraints on the origin of wolframite from in-situ U-Pb isotope dating[J]. Ore Geology Reviews, 143: 104774.

    [24]

    LIU Y S, HU Z C, GAO S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [25]

    LIU Y S, GAO S, HU Z C, et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb Dating, Hf isotopes and trace elements in zircons from mantle xenolithS[J]. Journal of Petrology, 51(1-2): 537-571.

    [26]

    MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [27]

    MAO J W, HUA R M, LI X B, 1999. A preliminary study of large-scale metallogenesis and large clusters of mineral deposits[J]. Mineral Deposits, 18(4): 291-299. (in Chinese with English abstract

    [28]

    MAO J W, XIE G Q, GUO C L, et al., 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings[J]. Geological Journal of China Universities, 14(4): 510-526. (in Chinese with English abstract

    [29]

    MAO J W, CHENG Y B, CHEN M H, et al., 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48(3): 267-294. doi: 10.1007/s00126-012-0446-z

    [30]

    MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    [31]

    NI P, PAN J Y, HAN L, et al., 2023. Tungsten and tin deposits in South China: temporal and spatial distribution, metallogenic models and prospecting directions[J]. Ore Geology Reviews, 157: 105453. doi: 10.1016/j.oregeorev.2023.105453

    [32]

    PEARCE J, 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005

    [33]

    SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]//SAUNDERS A D, NORRY M J, eds. Magmatism in the ocean basins. London: Geological Society, London, Special Publications: 42(1): 313-345.

    [34]

    SUN W D, YANG X Y, FAN W M, et al., 2012. Mesozoic large scale magmatism and mineralization in South China: preface[J]. Lithos, 150: 1-5. doi: 10.1016/j.lithos.2012.06.028

    [35]

    TAN J, WEI J H, LI Y J, et al., 2007. Some reviews on diagenesis and metallogeny of the Mesozoic crustal remelting granitoids in the Nanling region[J]. Geological Review, 53(3): 349-362. (in Chinese with English abstract

    [36]

    WANG D H, CHEN Y C, CHEN Z H, et al., 2007. Assessment on mineral resource in Nanling region and suggestion for further prospecting[J]. Acta Geologica Sinica, 81(7): 882-890. (in Chinese with English abstract

    [37]

    WANG H Y, ZHAO Z, CHEN W, et al., 2017. Geological characteristics, rock and ore forming age and prospecting of Meishuping tungsten-molybdenum deposit in Jiangxi[J]. Earth Science Frontiers, 24(5): 109-119. (in Chinese with English abstract

    [38]

    WANG L J, WANG J B, WANG Y W, et al., 2013. Geological characteristics of host granite intrusions of the W-Sn-Nb-Ta deposit, Nanling area, China[J]. Mineral Exploration, 4(6): 598-608. (in Chinese with English abstract

    [39]

    WANG R C, NI P, WANG X L, 2021. Mesozoic magmatism and mineralization in Southeastern China: an introduction[J]. Journal of Asian Earth Sciences, 219: 104921. doi: 10.1016/j.jseaes.2021.104921

    [40]

    WU F Y, LI X H, YANG J H, et al., 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217-1238. (in Chinese with English abstract

    [41]

    XU Z, ZHANG Y, PAN J Y, et al.,2023. Petrogeochemical and geochronological characteristics of Hailuoling granite-type niobium-tantalum deposit in Shicheng, Jiangxi Province and its geological significance[J]. ActaGeologicaSinical,97(6):1874-1899.(in Chinese with English abstract

    [42]

    XUE J X, LIU Z H, LIU J X, et al., 2020. Geochemistry, geochronology, Hf isotope and tectonic significance of late Jurassic Huangdi Pluton in Xiuyan, Liaodong Peninsula[J]. Earth Science, 45(6): 2030-2043. (in Chinese with English abstract

    [43]

    ZHANG Q, WANG Y, LI C D, et al., 2006. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 22(9): 2249-2269. (in Chinese with English abstract

    [44]

    ZHANG Y, PAN J Y, MA D S, 2020. Lithium element enrichment and inspiration for prospecting for rare-metal mineralization in the Dahutang tungsten deposit: constraints from mineralogy and geochemistry of hydrothermal alteration[J]. Acta Geologica Sinica, 94(11): 3321-3342. (in Chinese with English abstract

    [45]

    ZHAO Z, WANG D H, CHEN Y C, et al.,2017. Jiulongnao metallogenic model” and the demonstration of deep prospecting: the extended application of “Five levels+Basement”[J]. exploration mode. Earth Science Frontiers,24(5):08-16. (in Chinese with English abstract

    [46]

    ZHOU X M, SUN T, SHEN W Z, et al., 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004

    [47]

    ZHU J J, ZHANG L, DANG F P, et al., 2024. The genesis of intersection-type uranium deposits in south China: insights from zircon and pitchblende U-Pb geochronology and pyrite sulfur isotopes of the Egongtang uranium deposit, southern Jiangxi[J]. Applied Geochemistry, 175: 106178. doi: 10.1016/j.apgeochem.2024.106178

    [48]

    陈骏,陆建军,陈卫锋,等,2008. 南岭地区钨锡铌钽花岗岩及其成矿作用[J]. 高校地质学报,14(4):459-473. doi: 10.3969/j.issn.1006-7493.2008.04.001

    [49]

    陈毓川,陈郑辉,曾载淋,等,2013. 南岭科学钻探第一孔选址研究[J]. 中国地质,40(3):659-670. doi: 10.3969/j.issn.1000-3657.2013.03.001

    [50]

    戴浩橦,张勇,潘家永,等,2023. 赣南珠坑钨矿白云母矿物特征及其地质意义[J]. 东华理工大学学报(自然科学版),46(5):472-485. doi: 10.3969/j.issn.1674-3504.2023.05.005

    [51]

    党飞鹏,吕川,唐湘生,等,2023. 赣西北洞上铀矿床产铀花岗岩的时代、岩石地球化学特征及其地质意义[J]. 地质力学学报,29(6):898-914. doi: 10.12090/j.issn.1006-6616.2023028

    [52]

    丰成友,许建祥,曾载淋,等,2007. 赣南天门山-红桃岭钨锡矿田成岩成矿时代精细测定及其地质意义[J]. 地质学报,81(7):952-963. doi: 10.3321/j.issn:0001-5717.2007.07.011

    [53]

    郭春丽,蔺志永,王登红,等,2008. 赣南淘锡坑钨多金属矿床花岗岩和云英岩岩石特征及云英岩中白云母40Ar/39Ar定年[J]. 地质学报,82(9):1274-1284. doi: 10.3321/j.issn:0001-5717.2008.09.009

    [54]

    郭春丽,陈毓川,黎传标,等,2011. 赣南晚侏罗世九龙脑钨锡铅锌矿集区不同成矿类型花岗岩年龄、地球化学特征对比及其地质意义[J]. 地质学报,85(7):1188-1205.

    [55]

    郭小飞,王庆龙,荆一洪,等,2022. 赣南西华山成矿花岗岩锆石U-Pb年代学和Hf同位素特征及其地质意义[J]. 地质与勘探,58(3):585-596.

    [56]

    郭志强,秦锦华,王登红,等,2024. 赣南淘锡坝矿床岩浆岩年代学、地球化学特征及其与成矿关系[J]. 矿床地质,43(3):655-687.

    [57]

    华仁民,陈培荣,张文兰,等,2005. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质,24(2):99-107. doi: 10.3969/j.issn.0258-7106.2005.02.002

    [58]

    李伟,刘翠辉,谭友,等,2021. 赣南柯树岭岩体锆石U-Pb年龄、岩石地球化学及成矿作用特征[J]. 地质论评,67(5):1309-1320.

    [59]

    李伟,唐菊兴,鲁捷,等,2024. 赣南铁山垅钨矿田花岗斑岩地球化学特征、锆石U-Pb年龄及Hf同位素特征[J]. 地质论评,70(1):175-188.

    [60]

    刘珺,毛景文,叶会寿,等,2008. 江西省武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征[J]. 岩石学报,24(8):1813-1822.

    [61]

    毛景文,华仁民,李晓波,1999. 浅议大规模成矿作用与大型矿集区[J]. 矿床地质,18(4):291-299. doi: 10.3969/j.issn.0258-7106.1999.04.001

    [62]

    毛景文,谢桂青,郭春丽,等,2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报,14(4):510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005

    [63]

    谭俊,魏俊浩,李艳军,等,2007. 南岭中生代陆壳重熔型花岗岩类成岩成矿的有关问题[J]. 地质论评,53(3):349-362. doi: 10.3321/j.issn:0371-5736.2007.03.008

    [64]

    王登红,陈毓川,陈郑辉,等,2007. 南岭地区矿产资源形势分析和找矿方向研究[J]. 地质学报,81(7):882-890. doi: 10.3321/j.issn:0001-5717.2007.07.002

    [65]

    王浩洋,赵正,陈伟,等,2017. 江西梅树坪钨钼矿床地质、成岩成矿时代与找矿方向[J]. 地学前缘,24(5):109-119.

    [66]

    王莉娟,王京彬,王玉往,等,2013. 我国南岭地区钨锡铌钽矿床成矿花岗岩主要地质特征[J]. 矿产勘查,4(6):598-608. doi: 10.3969/j.issn.1674-7801.2013.06.001

    [67]

    吴福元,李献华,杨进辉,等,2007. 花岗岩成因研究的若干问题[J]. 岩石学报,23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    [68]

    徐喆,张勇,潘家永,等,2023. 江西石城海罗岭花岗岩型铌钽矿床岩石地球化学、年代学特征及其地质意义[J]. 地质学报,97(6):1874-1899.

    [69]

    薛吉祥,刘正宏,刘杰勋,等,2020. 辽东岫岩晚侏罗世荒地岩体的地球化学、年代学与Hf同位素及构造意义[J]. 地球科学,45(6):2030-2043.

    [70]

    赵正, 王登红, 陈毓川,等,2017. “九龙脑成矿模式”及其深部找矿示范: “五层楼+地下室”勘查模型的拓展[J]. 地学前缘,24(5):8-16.

    [71]

    张旗,王焰,李承东,等,2006. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报,22(9):2249-2269. doi: 10.3321/j.issn:1000-0569.2006.09.001

  • 加载中

(9)

(3)

计量
  • 文章访问数:  28
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2024-08-06
修回日期:  2025-02-26
录用日期:  2025-02-27
网络出版日期:  2025-02-28
刊出日期:  2025-04-28

目录