中国地质科学院地质力学研究所
中国地质学会
主办

南堡凹陷地壳构造稳定性:源自地震活动时空特征的证据

张扬, 商琳, 王淼, 吴海涛, 段彬. 2025. 南堡凹陷地壳构造稳定性:源自地震活动时空特征的证据. 地质力学学报, 31(2): 313-324. doi: 10.12090/j.issn.1006-6616.2024036
引用本文: 张扬, 商琳, 王淼, 吴海涛, 段彬. 2025. 南堡凹陷地壳构造稳定性:源自地震活动时空特征的证据. 地质力学学报, 31(2): 313-324. doi: 10.12090/j.issn.1006-6616.2024036
ZHANG Yang, SHANG Lin, WANG Miao, WU Haitao, DUAN Bin. 2025. Tectonic stability of the Nanpu sag: Evidence from temporal and spatial characteristics of seismic activity. Journal of Geomechanics, 31(2): 313-324. doi: 10.12090/j.issn.1006-6616.2024036
Citation: ZHANG Yang, SHANG Lin, WANG Miao, WU Haitao, DUAN Bin. 2025. Tectonic stability of the Nanpu sag: Evidence from temporal and spatial characteristics of seismic activity. Journal of Geomechanics, 31(2): 313-324. doi: 10.12090/j.issn.1006-6616.2024036

南堡凹陷地壳构造稳定性:源自地震活动时空特征的证据

  • 基金项目: 地球深部探测与矿产资源勘查国家科技重大专项(2024ZD1000701)
详细信息
    作者简介: 张扬(1982—),女,硕士,工程师,主要从事油气田开发等研究工作。Email:zhangyang008@petrochina.com.cn
    通讯作者: 商琳(1987—),男,博士,高级工程师,主要从事油气田开发、油气藏改建储气库等研究工作。Email:shanglinsonny@163.com
  • 中图分类号: P54;P315.2

Tectonic stability of the Nanpu sag: Evidence from temporal and spatial characteristics of seismic activity

  • Fund Project: This research is financially supported by the National Science and Technology Project on Deep Earth Probe and Mineral Resources Exploration (Grant No. 2024ZD1000701).
More Information
  • 区域构造稳定性评价在重大工程的规划和建设中发挥着重要的参考作用。目前南堡凹陷作为中国海上储气库的建设地,其构造稳定性成为关注的热点。基于区域历史地震数据,总结了南堡凹陷及周边地震活动的时空分布规律,分析了唐山−河间−磁县断裂带和张家口−蓬莱断裂带的破裂模式,探讨了南堡凹陷地壳的构造稳定性。研究结果表明,南堡凹陷是活动构造带附近相对稳定的“安全岛”。区域上,南堡凹陷周缘积累的应力主要通过滦县−乐亭和宝坻−宁河等断裂带活动得以释放,周缘的地震活动对南堡凹陷内部的影响十分有限;而在南堡凹陷的内部,发育一个以蠕滑为主的大型伸展变形系统。根据现今的构造应力背景,南堡凹陷内的应力仅需要积累很小的量级就会诱发先存正断层的不稳定滑动,这意味着应力无法长期积累。因此,南堡凹陷内部不具备发生大地震的条件。

  • 加载中
  • 图 1  渤海湾盆地(灰色范围)及周缘地区活动构造纲要图

    Figure 1. 

    图 2  唐山−河间−磁县断裂带和张家口−蓬莱断裂带历史地震时间频率图

    Figure 2. 

    图 3  渤海湾盆地及其周缘不同年份地震分布图(图中红色线条为断裂/带)

    Figure 3. 

    图 4  唐山−河间−磁县断裂带和张家口−蓬莱断裂带相关的震源机制解(Chen and Nábelek,1988徐杰等,1996张宏志等,2008高彬等,2016林向东等,2017王想等,2021Zhang et al.,2022

    Figure 4. 

    图 5  断裂带破裂构造模式图

    Figure 5. 

    图 6  南堡凹陷历史地震震源深度分布图

    Figure 6. 

    图 7  南堡凹陷内历史地震分布图(地震数据来源与图1相同)

    Figure 7. 

    图 8  南堡凹陷底界构造与地震叠合图(图中地震数据来源与图1相同)

    Figure 8. 

    图 9  南堡凹陷地震剖面图(剖面位置见图8a;商琳等,2024

    Figure 9. 

    图 10  现今地应力状态下的南堡凹陷构造模式图

    Figure 10. 

  • [1]

    CHEN Q X, 1992. An approach to assessment of regional crustal stability[J]. Quaternary Sciences, 12(4): 289-292. (in Chinese with English abstract

    [2]

    CHEN W P, NÁBELEK J, 1988. Seismogenic strike-slip faulting and the development of the North China basin[J]. Tectonics, 7(5): 975-989. doi: 10.1029/TC007i005p00975

    [3]

    CHEN Y K, REN F, ZHANG C F, et al., 2004. Characteristics of Late Quaternary activity of the Haihe buried fault in Tianjin municipality[J]. Seismology and Geology, 26(1): 111-121. (in Chinese with English abstract

    [4]

    CHOI J H, EDWARDS P, KO K, et al., 2016. Definition and classification of fault damage zones: a review and a new methodological approach[J]. Earth-Science Reviews, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006

    [5]

    COLLETTINI C, HOLDSWORTH R E, 2004. Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy[J]. Journal of the Geological Society, 161(6): 1039-1051. doi: 10.1144/0016-764903-179

    [6]

    DENG Q D, 2007. Map of active tectonics in China[M]. Beijing: Seismological Press. (in Chinese)

    [7]

    DU D, WANG G M, 2020. Evaluation of regional crustal stability in the joint area of Beijing, Tianjin and Hebei[J]. Geological Survey and Research, 43(3): 218-223. (in Chinese with English abstract

    [8]

    FENG C J, QI B S, WANG X S, et al., 2019. Study of fault activity risk in typical strong seismic regions in northern China by in-situ stress measurements and the influence on the Xiong’an New Area[J]. Earth Science Frontiers, 26(4): 170-190. (in Chinese with English abstract

    [9]

    GAO B, JIA K, ZHOU S Y, 2016. Research of locations and source parameters of historical earthquakes equal and greater than M5.0 from 1900 to 1970 in North China[J]. Chinese Journal of Geophysics, 59(11): 4089-4099. (in Chinese with English abstract

    [10]

    GAO G L, LIU W, LI C, et al., 2023. A calculation method for the storage capacity of UGS rebuilt from oil reservoirs[J]. Natural Gas Industry, 43(10): 132-140. (in Chinese with English abstract

    [11]

    HAN G M, WANG L, XIAO D Q, et al., 2021. Magmatic hydrothermal fluid genesis of zeolite in the Paleogene Kongdian formation of Zaoyuan oilfield, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 48(5): 1101-1112. doi: 10.1016/S1876-3804(21)60094-0

    [12]

    HAO M, LI Y H, ZHUANG W Q, 2019. Crustal movement and strain distribution in east Asia revealed by GPS observations[J]. Scientific Reports, 9(1): 16797. doi: 10.1038/s41598-019-53306-y

    [13]

    HU H T, 2001. The theory and method of evaluation of regional crustal stability based on concept of “safe island”[J]. Journal of Geomechanics, 7(2): 97-103. (in Chinese with English abstract

    [14]

    HU W, ZHU G, SONG L H, et al., 2013. Analysis of Quaternary activity along the Bohai segment of the Tan-Lu fault zone[J]. Earth Science Frontiers, 20(4): 137-150. (in Chinese with English abstract

    [15]

    JING Y Q, LEI C, LIU K D, et al., 2023. Deposition environment and provenance of the Palaeogene Shahejie formation in Nanpu sag: evidences from trace and rare earth element geochemistry[J]. Bulletin of Geological Science and Technology, 42(1): 350-359. (in Chinese with English abstract

    [16]

    KIM Y S, PEACOCK D C P, SANDERSON D J, 2004. Fault damage zones[J]. Journal of Structural Geology, 26(3): 503-517. doi: 10.1016/j.jsg.2003.08.002

    [17]

    LI X T, XU B, HUANG D C, et al. , 1987. Theory and method of regional crustal stability[M]. Beijing: Geological Publishing House. (in Chinese)

    [18]

    LIN X D, YUAN H Y, XU P, et al., 2017. Zonational characteristics of earthquake focal mechanism solutions in North China[J]. Chinese Journal of Geophysics, 60(12): 4589-4622. (in Chinese with English abstract

    [19]

    LIU B J, ZHANG X K, CHEN Y, et al., 2011. Research on crustal structure and active fault in the Sanhe-Pinggu earthquake (M8.0) zone based on single-fold deep seismic reflection and shallow seismic reflection profiling[J]. Chinese Journal of Geophysics, 54(5): 1251-1259. (in Chinese with English abstract

    [20]

    LIU L, SUN Y H, CHEN C, et al., 2022. Fault reactivation in No. 4 structural zone and its control on oil and gas accumulation in Nanpu sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 49(4): 824-836. doi: 10.1016/S1876-3804(22)60313-6

    [21]

    MIN Z Q, WU G, JIANG Z X, et al. , 1995. Catalogue of Chinese historic strong earthquakes from BC 2300 to AD 1911[M]. Beijing: Seismological Press. (in Chinese)

    [22]

    QIAO X, ZHOU Y, 2021. Geodetic imaging of shallow creep along the Xianshuihe fault and its frictional properties[J]. Earth and Planetary Science Letters, 567: 117001. doi: 10.1016/j.jpgl.2021.117001

    [23]

    RAN R K, WANG J B, PENG S Z, et al., 1995. Palaeoeakthquake traces along the southern boundary fault of Xuanhua Basin, Hebei Province[J]. Seismology and Geology, 17(1): 44-46. (in Chinese with English abstract

    [24]

    RAN Y K, CHEN L C, XU X W, 2001. Quantitative data about active tectonics and possible locations of strong earthquakes in the future in northwest Beijing[J]. Acta Seismologica Sinica, 23(5): 502-513. (in Chinese with English abstract

    [25]