中国地质科学院地质力学研究所
中国地质学会
主办

类岩材料力学特性非弹性变形模型构建综合研究

特莫娜娃·玛丽亚, 斯特凡诺夫·尤里, 杜宾亚·尼基塔, 巴克耶夫·鲁斯塔姆. 2025. 类岩材料力学特性非弹性变形模型构建综合研究. 地质力学学报, 31(3): 475-490. doi: 10.12090/j.issn.1006-6616.2024094
引用本文: 特莫娜娃·玛丽亚, 斯特凡诺夫·尤里, 杜宾亚·尼基塔, 巴克耶夫·鲁斯塔姆. 2025. 类岩材料力学特性非弹性变形模型构建综合研究. 地质力学学报, 31(3): 475-490. doi: 10.12090/j.issn.1006-6616.2024094
TRIMONOVA Mariia, STEFANOV Yuri, DUBINYA Nikita, BAKEEV Rustam. 2025. A comprehensive study of the mechanical properties of rock-like materials for inelastic deformation model establishment. Journal of Geomechanics, 31(3): 475-490. doi: 10.12090/j.issn.1006-6616.2024094
Citation: TRIMONOVA Mariia, STEFANOV Yuri, DUBINYA Nikita, BAKEEV Rustam. 2025. A comprehensive study of the mechanical properties of rock-like materials for inelastic deformation model establishment. Journal of Geomechanics, 31(3): 475-490. doi: 10.12090/j.issn.1006-6616.2024094

A comprehensive study of the mechanical properties of rock-like materials for inelastic deformation model establishment

  • Fund Project: This research is financially supported by the State assignment of the Ministry of Education and Science of the Russian Federation (Grant No. 125012100531-7) and the FNI Project (Grant No. FWZZ-2022-0021).
More Information
    Corresponding author: 斯特凡诺夫·尤里(1991—),男,博士,岩石力学专业。Email:dubinya.nv@gmail.com
  • 文章旨在通过一系列标准化试验研究人造材料样品的不可逆变形行为,探究其力学特性。研究的主要思路在于制备具有既定本构行为模型的人造材料样品。借助该材料特性明确的优势,未来有望利用其对类岩石材料开展各类机械过程的可控试验,为岩石力学领域理论模型的进一步发展与验证提供有力支撑。研究制备了1组人工样品,对其进行加载试验和细致评估,以确定三轴压缩试验和单轴拉伸条件下样品的流变特性。对其中9 个样品进行了不同径向应力水平(0~5 MPa)的三轴加载试验,在控制径向应变和体积应变的情况下,将样品加载至屈服点。基于Drucker-Prager屈服面理论,系统分析了轴向−径向应力应变关系实验数据,并采用非关联塑性流动规律和盖帽模型考虑材料硬化效应。利用有限差分法对样品加载进行数值建模,为确定模型参数设置了一系列试验,通过调整数学模型参数,尽量减少模拟结果与试验数据之间的差异。试验结果显示,所建数学模型能够可靠复现所研究材料的非弹性行为,并可用于解决连续介质力学中的各类实际问题,特别是弹塑性介质中水力裂缝扩展的数值模拟。研究结果表明,在0~5 MPa的侧向荷载作用下,材料弹性极限为2~4 MPa,超出此范围即进入塑性变形阶段;当侧向荷载≥3 MPa时,材料在屈服点后会出现压密现象。从1.4 MPa侧向荷载作用的体积应变变化规律可以推断,材料在3 MPa以下的侧向荷载作用下即应开始产生压密效应。因此,在对此类材料的水力压裂过程进行建模时,必须考虑其塑性行为特征。由此得出的模型材料塑性参数可用于模拟研究岩体的弹塑性变形,包括多孔弹塑性介质中的水力裂缝扩展等过程。 文章提出的试验数据解释方法,可用于开展岩体非弹性应变累积过程的数值模拟研究。该技术途径将有效提升油气田开发优化中所用地质力学模型的可靠性。

  • 加载中
  • 图 1  典型试验结果

    Figure 1. 

    图 2  综合试验结果

    Figure 2. 

    图 3  室内试验中获得的应力与应变关系示例

    Figure 3. 

    图 4  Drucker-Prager屈服面参数的测定

    Figure 4. 

    图 5  试验过程中塑性变形张量第一不变量的增量与剪切塑性变形强度增量的关系

    Figure 5. 

    图 6  “巴西劈裂法 ”测试后破裂试样

    Figure 6. 

    图 7  不同围压条件下轴向应力与轴向应变(红线)、径向应变(绿线)和体积应变(蓝线)的关系

    Figure 7. 

    图 8  数值模型网格划分

    Figure 8. 

    表 1  试验约束条件

    Table 1.  Confining conditions in a series of experiments

    Test set
    conditions
    1 2 3 4 5 6 7 8 9
    Radial stress/MPa 0.1 0.1 0.1 0.1 0.7 1.0 1.4 3.0 5.0
    Peak axial stress/MPa 4.4 4.5 4.6 5.5 6.1 5.9 6.4 6.3 5.4
    Volumetric strain after complete unloading/% −1.0 −0.9 −2.2 −1.3 −0.1 −0.3 0.0 0.5 1.7
    下载: 导出CSV

    表 2  “巴西劈裂法”测试结果

    Table 2.  Results of the “”Brazilian” test

    Sample
    number
    Breaking force
    P/ kN
    Uniaxial tensile
    strength UTS/MPa
    1 1.7 0.6
    2 2.6 1.0
    3 2.0 0.8
    4 2.1 0.8
    5 1.8 0.7
    6 2.3 0.9
    下载: 导出CSV

    表 3  特定材料特性

    Table 3.  Specific material properties

    Calculation
    number
    Density/
    (g/cm3)
    Shear modulus/
    MPa
    Compression
    modulus/MPa
    Initial cohesion/
    MPa
    Hardening
    coefficient
    Dilation
    coefficient
    Critical
    strain
    Internal friction
    coefficient
    σ0, MPa ε*
    1 1.66 1276 2586 1.028 1.34 0.09 0.0029 0.46
    2 1.66 1517 1980 0.775 1.48 0.09 0.0028 0.68 5.5 0.5
    下载: 导出CSV
  • AMOUR F, HAJIABADI M R, NICK H M, 2023. Impact of uncertainties associated with the choice of the yield stress on the prediction of subsurface reservoir compaction: a field study[J]. International Journal of Rock Mechanics and Mining Sciences, 161: 105280. doi: 10.1016/j.ijrmms.2022.105280

    BÉSUELLE P, DESRUES J, RAYNAUD S, 2000. Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell[J]. International Journal of Rock Mechanics and Mining Sciences, 37(8): 1223-1237. doi: 10.1016/S1365-1609(00)00057-5

    BIENIAWSKI Z T, 1967. Mechanism of brittle fracture of rock: part I—theory of the fracture process[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4(4): 395-406.

    CASSIANI G, BROVELLI A, HUECKEL T, 2017. A strain-rate-dependent modified Cam-Clay model for the simulation of soil/rock compaction[J]. Geomechanics for Energy and the Environment, 11: 42-51. doi: 10.1016/j.gete.2017.07.001

    CHEN Z L, SHI H Z, XIONG C, et al., 2023. Effects of mineralogical composition on uniaxial compressive strengths of sedimentary rocks[J]. Petroleum Science, 20(5): 3062-3073. doi: 10.1016/j.petsci.2023.03.028

    DE PATER C J, CLEARY M P, QUINN T S, et al., 1994. Experimental verification of dimensional analysis for hydraulic fracturing[J]. SPE Production & Facilities, 9(4): 230-238.

    DRUCKER D C, PRAGER W, 1952. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 10(2): 157-165. doi: 10.1090/qam/48291

    ESCRIBANO D E, NASH D F T, DIAMBRA A, 2019. Local and global volumetric strain comparison in sand specimens subjected to drained cyclic and monotonic triaxial compression loading[J]. Geotechnical Testing Journal, 42(4): 1006-1030. doi: 10.1520/GTJ20170054

    FU J W, LABUZ J F, GUO M D, et al., 2022. Experimental and numerical investigations on hydraulic fracture growth using rock-like resin material containing an injecting inner pre-crack[J]. Journal of Petroleum Science and Engineering, 213: 110424. doi: 10.1016/j.petrol.2022.110424

    GARAGASH D I, 2019. Cohesive-zone effects in hydraulic fracture propagation[J]. Journal of the Mechanics and Physics of Solids, 133: 103727. doi: 10.1016/j.jmps.2019.103727

    GARAGASH I A, DUBINYA N V, RUSINA O A, et al., 2018. Estimation of rock strength properties from triaxial test data[J]. Geophysical Research, 19(3): 57-72.

    GARAVAND A, STEFANOV Y P, REBETSKY Y L, et al., 2020. Numerical modeling of plastic deformation and failure around a wellbore in compaction and dilation modes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 44(6): 823-850. doi: 10.1002/nag.3041

    GRUESCHOW E, RUDNICKI J W, 2005. Elliptic yield cap constitutive modeling for high porosity sandstone[J]. International Journal of Solids and Structures, 42(16-17): 4574-4587. doi: 10.1016/j.ijsolstr.2005.02.001

    HAJIABADI M R, NICK H M, 2020. A modified strain rate dependent constitutive model for chalk and porous rock[J]. International Journal of Rock Mechanics and Mining Sciences, 134: 104406. doi: 10.1016/j.ijrmms.2020.104406

    HE W H, CHEN K Y, HAYATDAVOUDI A, et al., 2019. Effects of clay content, cement and mineral composition characteristics on sandstone rock strength and deformability behaviors[J]. Journal of Petroleum Science and Engineering, 176: 962-969. doi: 10.1016/j.petrol.2019.02.016

    JIAO Y, ZUO Y J, WEN Z J, et al., 2024. Crack-tip propagation laws and energy evolution of fractured sandstone[J]. Engineering Failure Analysis, 166: 108832. doi: 10.1016/j.engfailanal.2024.108832

    JIN Y J, MENG L D, LYU D Y, et al., 2023. Risk assessment of fault reactivation considering the heterogeneity of friction strength in the BZ34-2 oilfield, Huanghekou Sag, Bohai Bay basin, China[J]. Petroleum Science, 20(5): 2695-2708. doi: 10.1016/j.petsci.2023.06.007

    LIU S L, LI P F, HU K, et al., 2023. Constitutive modeling of brittle–ductile transition in porous rocks: formulation, identification and simulation[J]. Acta Mechanica, 234(5): 2103-2121. doi: 10.1007/s00707-023-03489-3

    LYAKHOVSKY V, PANTELEEV I, SHALEV E, et al., 2022. A new anisotropic poroelasticity model to describe damage accumulation during cyclic triaxial loading of rock[J]. Geophysical Journal International, 230(1): 179-201. doi: 10.1093/gji/ggac062

    MA S, LI G M, ZHANG Y J, et al., 2024. Propagation behavior of coal crack induced by liquid CO2 phase change blasting considering blasting pressure effects[J]. PLoS One, 19(1): e0313360.

    MAHETAJI M, BRAHMA J, 2024. A critical review of rock failure criteria: a scope of machine learning approach[J]. Engineering Failure Analysis, 159: 107998 doi: 10.1016/j.engfailanal.2024.107998

    NIKOLAEVSKII V N, 1971. Governing equations of plastic deformation of a granular medium: PMM vol. 35, n $\mathop = \limits^ \circ $6, 1971, pp. 1070–1082[J]. Journal of Applied Mathematics and Mechanics, 35(6): 1017-1029. doi: 10.1016/0021-8928(71)90106-7

    NOVIKOVA E V, TRIMONOVA M A, DUBINYA N V, et al., 2023. Estimation of breakdown pressure in laboratory experiments on hydraulic fracturing[J]. Materials Physics and Mechanics, 51(5): 52-65.

    OMAR T, SADREKARIMI A, 2015. Effect of triaxial specimen size on engineering design and analysis[J]. International Journal of Geo-Engineering, 6(1): 5. doi: 10.1186/s40703-015-0006-3

    OMLIN S, RÄSS L, PODLADCHIKOV Y Y, 2018. Simulation of three-dimensional viscoelastic deformation coupled to porous fluid flow[J]. Tectonophysics, 746: 695-701. doi: 10.1016/j.tecto.2017.08.012

    RONG G, LIU G, HOU D, et al., 2013. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model[J]. The Scientific World Journal, 2013: 589215. doi: 10.1155/2013/589215

    SATHAR S, REEVES H J, CUSS R J, et al., 2012. The role of stress history on the flow of fluids through fractures[J]. Mineralogical Magazine, 76(8): 3165-3177. doi: 10.1180/minmag.2012.076.8.30

    SCHWAB D R, BIDGOLI T S, TAYLOR M H, 2017. Characterizing the potential for injection-induced fault reactivation through subsurface structural mapping and stress field analysis, Wellington Field, Sumner County, Kansas[J]. Journal of Geophysical Research: Solid Earth, 122(12): 10132-10154.

    STEFANOV Y P, CHERTOV M A, AIDAGULOV G R, et al., 2011. Dynamics of inelastic deformation of porous rocks and formation of localized compaction zones studied by numerical modeling[J]. Journal of the Mechanics and Physics of Solids, 59(11): 2323-2340. doi: 10.1016/j.jmps.2011.08.002

    STEFANOV Y P, BAKEEV R A, 2015. Formation of flower structures in a geological layer at a strike-slip displacement in the basement[J]. Izvestiya, Physics of the Solid Earth, 51(4): 535-547. doi: 10.1134/S1069351315040114

    STEFANOV Y P, 2018. Some nonlinear rock behavior effects[J]. Physical Mesomechanics, 21(3): 234-241. doi: 10.1134/S1029959918030074

    STEFANOV Y P, ZHARASBAEVA D K, 2022. Loading diagrams and parameters of the model of elastic-pseudoplastic deformation of black shale rocks of the Bazhenov formation[J]. Russian Journal of Geophysical Technologies(3): 13-24. (in Russian

    STEFANOV Y P, 2023. Constitutive model of rock, nonlinearity and localization[J]. Reviews on Advanced Materials and Technologies, 5(3): 30-38. doi: 10.17586/2687-0568-2023-5-3-30-38

    SUN C, BORGOMANO J V M, FORTIN J, et al., 2020. Effect of pore collapse and grain crushing on the frequency dependence of elastic wave velocities in a porous sandstone[J]. Rock Mechanics and Rock Engineering, 53(11): 5081-5093. doi: 10.1007/s00603-020-02213-0

    SUN W J, WANG L B, WANG Y Q, 2017. Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review[J]. Frontiers of Structural and Civil Engineering, 11(3): 322-328. doi: 10.1007/s11709-017-0387-9

    TAN X, KONIETZKY H, FRÜHWIRT T, 2015. Numerical simulation of triaxial compression test for brittle rock sample using a modified constitutive law considering degradation and dilation behavior[J]. Journal of Central South University, 22(8): 3097-3107. doi: 10.1007/s11771-015-2846-6

    TANG Y L, LI J C, WANG D P, et al., 2024. An energy-driven crushing-plasticity coupling model for grain crushing in porous rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 183: 105931. doi: 10.1016/j.ijrmms.2024.105931

    TRIMONOVA M, BARYSHNIKOV N, ZENCHENKO E, et al. , 2017. The study of the unstable fracure propagation in the injection well: numerical and laboratory modeling[C]//Proceedings of SPE Russian Petroleum Technology Conference. Moscow: SPE: 187822-MS.

    VAN DAM D B, PAPANASTASIOU P, DE PATER C J, 2002. Impact of rock plasticity on hydraulic fracture propagation and closure[J]. SPE Production & Facilities, 17(3): 149-159.

    VERMEER P A, DE BORST R, 1984. Non-associated plasticity for soils, concrete and rock[J]. Heron, 29(3): 1-64.

    VESELOVSKIY R V, DUBINYA N V, PONOMAREV A V, et al., 2022. Shared research facilities "petrophysics, geomechanics and paleomagnetism" of the Schmidt institute of physics of the earth RAS[J]. Geodynamics & Tectonophysics, 13(2): 0579.

    WANG D P, LI J C, ZOU C J, et al., 2024. The influence of morphology and the loading-unloading process on discontinuity stress states observed via photoelastic technique and its inspiration to induced seismicity[J]. International Journal of Rock Mechanics and Mining Sciences, 182: 105893. doi: 10.1016/j.ijrmms.2024.105893

    WANG J, XIE H P, MATTHAI S K, et al., 2023. The role of natural fracture activation in hydraulic fracturing for deep unconventional geo-energy reservoir stimulation[J]. Petroleum Science, 20(4): 2141-2164. doi: 10.1016/j.petsci.2023.01.007

    WENG X W, KRESSE O, CHUPRAKOV D, et al., 2014. Applying complex fracture model and integrated workflow in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 124: 468-483. doi: 10.1016/j.petrol.2014.09.021

    WILKINS M L, 1999. Computer simulation of dynamic phenomena[M]. Berlin: Springer: 1-260.

    WILLIAMS B, HEARD W, GRAHAM S, et al., 2020. Effect of specimen geometry on triaxial compressive response of high-strength concrete[J]. Construction and Building Materials, 244: 118348. doi: 10.1016/j.conbuildmat.2020.118348

    WONG T F, BAUD P, 2012. The brittle-ductile transition in porous rock: a review[J]. Journal of Structural Geology, 44: 25-53. doi: 10.1016/j.jsg.2012.07.010

    YANG P J, MIAO S J, CAI M F, et al., 2024. Real-time porosity inversion of rock based on the ultrasonic velocity and its compression-damage coupled model under triaxial compression[J]. Scientific Reports, 14(1): 29252 doi: 10.1038/s41598-024-78430-2

    YANG S Q, JING H W, WANG S Y, 2012. Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression[J]. Rock Mechanics and Rock Engineering, 45(4): 583-606. doi: 10.1007/s00603-011-0208-8

    YARUSHINA V M, PODLADCHIKOV Y Y, WANG L H, 2020. Model for (de)compaction and porosity waves in porous rocks under shear stresses[J]. Journal of Geophysical Research: Solid Earth, 125(8): e2020JB019683. doi: 10.1029/2020JB019683

    YIMSIRI S, SOGA K, 2002. A review of local strain measurement systems for triaxial testing of soils[J]. Journal of the Southeast Asian Geotechnical Society, 33(1): 41-52.

    ZHANG B C, LIANG Y N, ZOU Q L, et al., 2024. Damage and hardening evolution characteristics of sandstone under multilevel creep–fatigue loading[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1): 43. doi: 10.1007/s40948-024-00751-3

  • 加载中

(8)

(3)

计量
  • 文章访问数:  23
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2024-09-04
修回日期:  2025-04-18
录用日期:  2025-04-27
网络出版日期:  2025-05-14
刊出日期:  2025-06-28

目录