中国地质科学院地质力学研究所
中国地质学会
主办

拉脊山北缘断裂第四纪晚期分段活动的构造地貌证据

张梨君, 袁道阳, 李红强, 苏琦, 苏瑞欢, 陈艳文, 文亚猛. 2025. 拉脊山北缘断裂第四纪晚期分段活动的构造地貌证据. 地质力学学报, 31(3): 411-426. doi: 10.12090/j.issn.1006-6616.2024125
引用本文: 张梨君, 袁道阳, 李红强, 苏琦, 苏瑞欢, 陈艳文, 文亚猛. 2025. 拉脊山北缘断裂第四纪晚期分段活动的构造地貌证据. 地质力学学报, 31(3): 411-426. doi: 10.12090/j.issn.1006-6616.2024125
ZHANG Lijun, YUAN Daoyang, LI Hongqiang, SU Qi, SU Ruihuan, CHEN Yanwen, WEN Yameng. 2025. Tectonic geomorphological evidence of late Quaternary segmented activity along the northern margin fault of Lajishan. Journal of Geomechanics, 31(3): 411-426. doi: 10.12090/j.issn.1006-6616.2024125
Citation: ZHANG Lijun, YUAN Daoyang, LI Hongqiang, SU Qi, SU Ruihuan, CHEN Yanwen, WEN Yameng. 2025. Tectonic geomorphological evidence of late Quaternary segmented activity along the northern margin fault of Lajishan. Journal of Geomechanics, 31(3): 411-426. doi: 10.12090/j.issn.1006-6616.2024125

拉脊山北缘断裂第四纪晚期分段活动的构造地貌证据

  • 基金项目: 第二次青藏高原综合科学考察研究(2019QZKK0901);国家自然科学基金项目(42472267,42172227)
详细信息
    作者简介: 张梨君(1994—),女,在读硕士,主要从事活动构造与构造地貌研究。Email:220220903780@lzu.edu.cn
    通讯作者: 袁道阳(1965—),男,教授,博士生导师,主要从事活动构造与新构造研究。Email:yuandy@lzu.edu.cn
  • 中图分类号: P931.2

Tectonic geomorphological evidence of late Quaternary segmented activity along the northern margin fault of Lajishan

  • Fund Project: This research is financially supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0901) and the National Natural Science Foundation of China (Grant Nos. 42472267 and 42172227)
More Information
  • 拉脊山−积石山造山带是青藏高原东北缘向北东方向挤压扩展的重要弧形构造带,由拉脊山南缘断裂和拉脊山北缘断裂2条挤压逆冲断裂带共同控制。晚新生代以来,拉脊山地区构造活动强烈,形成了显著的盆−山耦合构造地貌格局,是利用构造地貌学方法研究其地貌发育演化规律和构造活动的理想地区。文章基于30 m分辨率的数字高程模型(DEM)数据,使用ArcGIS和MatLab平台以及插件工具和开源代码包,提取了拉脊山北缘(包含积石山东缘)断裂上盘105条中、小河道的河流陡峭指数(Ksn),同时提取断裂沿线54个流域的面积−高程积分(HI)。从河道的Ksn分布结果来看,整个拉脊山北缘断裂隆升速率呈自西向东总体升高的趋势,但在拉脊山北缘断裂中段出现低值,推测与日月山右旋走滑断裂的向东推挤作用在该段减弱有关,这也揭示出该区域构造活动的复杂性、差异性和分段性。通过对Ksn统计分析得到明显的分段结果,认为拉脊山北缘东段−积石山段隆升速率最快,构造活动性最强。根据拉脊山北缘流域HI空间分布特征显示,拉脊山北缘断裂山前盆地内部存在多处高值区。结合地质调查和石油勘探剖面综合解释结果,表明拉脊山北缘断裂第四纪晚期除了自身继续活动之外,已向北东延展到西宁−民和盆地和临夏盆地内部,表现为逆断裂−褶皱变形特征,这与西宁−民和盆地内部10余次中—强地震的发生有密切关联,这种构造活动的迁移特征及其地震活动值得关注。

  • 加载中
  • 图 1  拉脊山−积石山地区活动构造图

    Figure 1. 

    图 2  拉脊山北缘区域Ksn空间分布图

    Figure 2. 

    图 3  拉脊山北缘Ksn分布散点图

    Figure 3. 

    图 4  拉脊山北缘HI空间分布特征

    Figure 4. 

    图 5  拉脊山北缘流域HI分布规律图

    Figure 5. 

    图 6  Ksn、HI与年均降雨量和高程起伏曲线对比图

    Figure 6. 

    图 7  拉脊山−积石山Ksn、HI和岩性分布图

    Figure 7. 

    图 8  拉脊山北缘断裂西段构造活动的地貌学证据(位置见图1)

    Figure 8. 

    图 9  拉脊山北缘断裂中段构造活动的地貌证据(位置见图1)

    Figure 9. 

    图 10  拉脊山北缘东段−积石山段构造活动的地貌证据

    Figure 10. 

    图 11  拉脊山北缘典型地质剖面图

    Figure 11. 

    表 1  拉脊山北缘中、小流域HI计算结果

    Table 1.  Results of HI calculation of the small and middle watershed on the northern margin of Lajishan

    流域编号 流域面积/km2 HI 流域编号 流域面积/km2 HI 流域编号 流域面积/km2 HI
    1 12.57 0.39 19 68.42 0.43 37 49.07 0.29
    2 55.52 0.32 20 12.59 0.38 38 20.21 0.47
    3 25.87 0.45 21 86.79 0.43 39 10.52 0.28
    4 87.83 0.34 22 27.40 0.29 40 56.54 0.44
    5 94.08 0.41 23 11.58 0.27 41 11.88 0.44
    6 31.98 0.25 24 36.07 0.31 42 58.05 0.28
    7 55.46 0.37 25 35.08 0.29 43 35.90 0.35
    8 99.22 0.46 26 32.61 0.32 44 23.60 0.32
    9 23.00 0.36 27 113.03 0.43 45 32.28 0.38
    10 26.02 0.33 28 21.16 0.38 46 18.32 0.55
    11 24.88 0.22 29 11.84 0.33 47 20.48 0.51
    12 53.99 0.33 30 52.60 0.37 48 44.19 0.37
    13 64.66 0.34 31 49.46 0.26 49 27.49 0.35
    14 43.72 0.21 32 93.74 0.35 50 27.51 0.52
    15 46.15 0.25 33 98.44 0.33 51 20.09 0.46
    16 48.24 0.39 34 78.43 0.40 52 22.57 0.26
    17 18.32 0.35 35 14.51 0.27 53 10.21 0.45
    18 6.98 0.44 36 47.76 0.37 54 45.76 0.28
    下载: 导出CSV
  • [1]

    BURBANK, PINTER, 1999. Landscape evolution: the interactions of tectonics and surface processes[J]. Basin Research, 11(1): 1-6. doi: 10.1046/j.1365-2117.1999.00089.x

    [2]

    CHANG Z Y, WANG J, BAI S B, et al. , 2014. Research on landform classification based on DEM data: taking West Qinling as an example[J]. Soil and Water Conservation in China(4): 56-59. (in Chinese)

    [3]

    CHANG Z Y, WANG J, BAI S B, et al., 2015. Comparison of hypsometric integral methods[J]. Journal of Arid Land Resources and Environment, 29(3): 171-175. (in Chinese with English abstract

    [4]

    CLARK M K, SCHOENBOHM L M, ROYDEN L H, et al., 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 23(1): TC1006.

    [5]

    DUVALL A, KIRBY E, BURBANK D, 2004. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California[J]. Journal of Geophysical Research: Earth Surface, 109(F3): F03002.

    [6]

    GONG Q M, XU H Y, LI L M, 2021. Discussions on the rock abrasivity index classification[J]. Chinese Journal of Underground Space and Engineering, 17(3): 748-758 . (in Chinese with English abstract

    [7]

    HSIEH M L, KNUEPFER P L K, 2001. Middle-late Holocene river terraces in the Erhjen River Basin, southwestern Taiwan: implications of river response to climate change and active tectonic uplift[J]. Geomorphology, 38(3-4): 337-372. doi: 10.1016/S0169-555X(00)00105-7

    [8]

    HU X F, PAN B T, KIRBY E, et al., 2010. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau[J]. Chinese Science Bulletin, 55(27-28): 3205-3214. doi: 10.1007/s11434-010-4024-4

    [9]

    HU X F, PAN B T, LI Q, 2014. Principles of the stream power erosion model and its latest progress in research[J]. Journal of Lanzhou University (Natural Sciences), 50(6): 824-831. (in Chinese with English abstract

    [10]

    KE S Y, ZHANG D L, WANG W T, et al., 2021. Progress of environmental change in the northeastern Tibetan Plateau since late Pleistocene[J]. Advances in Earth Science, 36(7): 727-739. (in Chinese with English abstract

    [11]

    KIRBY E, WHIPPLE K, 2001. Quantifying differential rock-uplift rates via stream profile analysis[J]. Geology, 29(5): 415-418. doi: 10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2

    [12]

    KIRBY E, WHIPPLE K X, TANG W Q, et al., 2003. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research: Solid Earth, 108(B4): 2217.

    [13]

    LEASE, RICHARD O, BURBANK, et al., 2011. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 39(4): 359-362. doi: 10.1130/G31356.1

    [14]

    LI H Q, YUAN D Y, SU Q, et al., 2023. Geomorphic features of the Menyuan basin in the Qilian Mountains and its tectonic significance[J]. Journal of Geomechanics, 29(6): 824-841. (in Chinese with English abstract

    [15]

    LI J Z, LI L J, ZHANG T, et al., 2023. Effect of DEM data sources and resolutions on watershed flood simulations[J]. Journal of Hydroelectric Engineering, 42(3): 26-40. (in Chinese with English abstract

    [16]

    LI Z M, TIAN Q J, TU H W, 2009. Remote sensing characteristics of Lajishan fault[J]. Plateau Earthquake Research, 21(1): 26-31. (in Chinese with English abstract

    [17]

    LI Z Y, ZHANG S, YUAN X M, et al., 2024. Characteristics of disasters caused by the Jishishan MS6.2 earthquake in Gansu Province in 2023[J]. Journal of Institute of Disaster Prevention, 26(2): 43-52. (in Chinese with English abstract

    [18]

    LIANG M J, ZHOU R J, YAN L, et al., 2014. The relationships between Neotectonic activity of the middle segment of Dari fault and its geomorphological response, Qinghai Province, China[J]. Seismology and Geology, 36(1): 28-38. (in Chinese with English abstract

    [19]

    LIFTON N A, CHASE C G, 1992. Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California[J]. Geomorphology, 5(1-2): 77-114. doi: 10.1016/0169-555X(92)90059-W

    [20]

    LIU J, ZENG L S, DING L, et al., 2009. Tectonic geomorphology, active tectonics and lower crustal channel flow hypothesis of the southeastern Tibetan Plateau[J]. Chinese Journal of Geology, 44(4): 1227-1255. (in Chinese with English abstract

    [21]

    MASEK J G, ISACKS B L, GUBBELS T L, et al., 1994. Erosion and tectonics at the margins of continental plateaus[J]. Journal of Geophysical Research: Solid Earth, 99(B7): 13941-13956. doi: 10.1029/94JB00461

    [22]

    PIKE R J, WILSON S E, 1971. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis[J]. Geological Society of America Bulletin, 82(4): 1079-1084. doi: 10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2

    [23]

    SHI X M, DU Z C, 2006. Review and prospect of tectonic geomorphology in China[J]. Northwestern Seismological Journal, 28(3): 280-284. (in Chinese with English abstract

    [24]

    SNYDER N P, WHIPPLE K X, TUCKER G E, et al., 2000. Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California[J]. Geological Society of America Bulletin, 112(8): 1250-1263. doi: 10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2

    [25]

    STOCK J D, MONTGOMERY D R, 1999. Geologic constraints on bedrock river incision using the stream power law[J]. Journal of Geophysical Research: Solid Earth, 104(B3): 4983-4993. doi: 10.1029/98JB02139

    [26]

    STRAHLER A N, 1952. Hypsometric (area-altitude) analysis of erosional topography[J]. GSA Bulletin, 63(11): 1117-1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2

    [27]

    SU R H, YUAN D Y, ZHENG W J, et al., 2024. Surface rupture and damage characteristics of the 2023 MS6.2 Jishishan earthquake, Gansu[J]. Chinese Journal of Geophysics, 67(9): 3454-3471. (in Chinese with English abstract

    [28]

    SUN Y Q, QIU X P, CHEN C Y, et al., 2024. GNSS and InSAR derived coseismic slip distribution of the 2023 Jishishan MS6.2 earthquake[J]. China Earthquake Engineering Journal, 46(4): 867-879. (in Chinese with English abstract

    [29]

    WANG A, WANG G C, 2005. Review on morphotectonic and its analytical methods[J]. Geological Science and Technology Information, 24(4): 7-12, 20. (in Chinese with English abstract

    [30]

    WANG E Q, ZHANG Q, BURCHFIEL C B, 2000. The Lajishan fault belt in Qinghai Province: a multi-staged uplifting structural window[J]. Scientia Geologica Sinica, 35(4): 493-500. (in Chinese with English abstract

    [31]

    WANG Z C, ZHANG P Z, ZHANG G L, et al., 2006. Tertiary tectonic activities of the north frontal fault zone of the west Qinling mountains: implications for the growth of the northeastern margin of the Qinghai-Tibetan Plateau[J]. Earth Science Frontiers, 13(4): 119-135. (in Chinese with English abstract

    [32]

    WHIPPLE K, TUCKER G E, 1999. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. doi: 10.1029/1999JB900120

    [33]

    WOBUS C, HEIMSATH A, WHIPPLE K, et al., 2005. Active out-of-sequence thrust faulting in the central Nepalese Himalaya[J]. Nature, 434(7036): 1008-1011. doi: 10.1038/nature03499

    [34]

    XIE H, LEI Z S, YUAN D Y, et al., 2014. Research on historical data of Qutan Temple earthquake in 1944 in Qinghai Province[J]. Inland Earthquake, 28(4): 305-311. (in Chinese with English abstract

    [35]

    YANG Z, 2014. The hydrological characteristics and rainfall landslides stability analysis of Menyuan Basin, Qinghai Province[D]. Xi’an: Chang’an University. (in Chinese with English abstract

    [36]

    YANG Z X, 1993. On the overthrust zone in the north margin of the Lajishan, the southern Qilian Mountains[J]. Experimental Petroleum Geology, 15(2): 138-145. (in Chinese with English abstract

    [37]

    YUAN D Y, SHI Y C, LIU B C, 1999. Study on the time scale of late quaternary hydrogenic sediments along the northeastern margin of Qinghai Xizang Plateau[J]. Seismology and Geology, 21(1): 1-8. (in Chinese with English abstract

    [38]

    YUAN D Y, 2003. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan Plateau since the Late Cenozoic time[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract

    [39]

    YUAN D Y, ZHANG P Z, LIU B C, et al., 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica, 78(2): 270-278. (in Chinese with English abstract

    [40]

    YUAN D Y. ZHANG P Z, LEI Z S, et al., 2005. A preliminary study on the new activity features of the Lajishan Mountain fault zone in Qinghai Province[J]. Earthquake Research in China, 21(1): 93-102. (in Chinese with English abstract

    [41]

    ZHANG B, 2012. The study of new activities on western segment of northern margin of western Qinling fault and Laji Shan fault[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract

    [42]

    ZHANG H P, YANG N, ZHANG Y Q, et al., 2006. Geomorphology of the Minjiang drainage system (Sichuan, China) and its structural implications[J]. Quaternary Sciences, 26(1): 126-135. (in Chinese with English abstract

    [43]

    ZHANG T Q, WANG Z, ZHANG X M, et al., 2015. Hypsometric integral analysis of the Urumqi river drainage basin and its implications for topographic evolution[J]. Quaternary Sciences, 35(1): 60-70. (in Chinese with English abstract

    [44]

    ZHANG W S, FENG G S, GAO S, et al., 2003. Metamorphic core complex structure and uplifting mechanism in Lajishan-Hualong area[J]. Earth Science: Journal of China University of Geosciences, 28(4): 407-413. (in Chinese with English abstract

    [45]

    ZHAO H Z, LI Y L, YANG J C, et al., 2010. Influence of area and space dependence for hypsometric integral and its geological implications[J]. Geographical Research, 29(2): 271-282. (in Chinese with English abstract

    [46]

    ZHENG D W, ZHANG P Z, WAN J L, et al., 2006. Tectonic events, climate and conglomerate: example from Jishishan Mountain and Linxia Basin[J]. Quaternary Sciences, 26(1): 63-69. (in Chinese with English abstract

    [47]

    ZHENG G Y, 2002. Study on the Tectonic Significance of Hypsometric Integral in the Frontal Basins of the Western Foothills Belt, Taiwan [D]. Kaohsiung: National Kaohsiung Normal University: 37. (in Chinese with English abstract

    [48]

    ZHU Y L, BAI D, ZHANG C, et al., 2024. Comparative analysis study of SRTM and ASTER GDEM data in Shaanxi Province based on ICESat-2[J]. Mineral Exploration, 15(5): 845-852. (in Chinese with English abstract

    [49]

    ZHUANG W Q, CUI D X, HAO M, et al., 2023. Geodetic constraints on contemporary three-dimensional crustal deformation in the Laji Shan–Jishi Shan tectonic belt[J]. Geodesy and Geodynamics, 14(6): 589-596. doi: 10.1016/j.geog.2023.03.006

    [50]

    常直杨,王建,白世彪,等,2014. 基于DEM数据的地貌分类研究:以西秦岭为例[J]. 中国水土保持(4):56-59.

    [51]

    常直杨,王建,白世彪,等,2015. 面积高程积分值计算方法的比较[J]. 干旱区资源与环境,29(3):171-175.

    [52]

    龚秋明,许弘毅,李立民,2021. 岩石磨蚀性指数分级讨论[J]. 地下空间与工程学报,17(3):748-758.

    [53]

    胡小飞,潘保田,KIRBY E,等,2010. 河道陡峭指数所反映的祁连山北翼抬升速率的东西差异[J]. 科学通报,55(23):2329-2338.

    [54]

    胡小飞,潘保田,李琼,2014. 基岩河道水力侵蚀模型原理及其最新研究进展[J]. 兰州大学学报(自然科学版),50(6):824-831.

    [55]

    柯思茵,张冬丽,王伟涛,等,2021. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展,36(7):727-739. doi: 10.11867/j.issn.1001-8166.2021.056

    [56]

    李红强,袁道阳,苏琦,等,2023. 祁连山内部门源盆地地貌特征及构造意义[J]. 地质力学学报,29(6):824-841. doi: 10.12090/j.issn.1006-6616.2023123

    [57]

    李建柱,李磊菁,张婷,等,2023. DEM数据源及分辨率对流域洪水模拟影响研究[J]. 水力发电学报,42(3):26-40. doi: 10.11660/slfdxb.20230303

    [58]

    李兆焱,张升,袁晓铭,等,2024. 2023年甘肃积石山6.2级地震灾害特征[J]. 防灾科技学院学报,26(2):43-52. doi: 10.3969/j.issn.1673-8047.2024.02.005

    [59]

    李智敏,田勤俭,屠泓为,2009. 拉脊山断裂带遥感特征研究[J]. 高原地震,21(1):26-31. doi: 10.3969/j.issn.1005-586X.2009.01.004

    [60]

    梁明剑,周荣军,闫亮,等,2014. 青海达日断裂中段构造活动与地貌发育的响应关系探讨[J]. 地震地质,36(1):28-38. doi: 10.3969/j.issn.0253-4967.2014.01.003

    [61]

    刘静,曾令森,丁林,等,2009. 青藏高原东南缘构造地貌、活动构造和下地壳流动假说[J]. 地质科学,44(4):1227-1255. doi: 10.3321/j.issn:0563-5020.2009.04.014

    [62]

    史兴民,杜忠潮,2006. 中国构造地貌学的回顾与展望[J]. 西北地震学报,28(3):280-284.

    [63]

    苏瑞欢,袁道阳,郑文俊,等,2024. 2023年甘肃积石山MS6.2地震地表破裂及震害特征分析[J]. 地球物理学报,67(9):3454-3471. doi: 10.6038/cjg2024S0090

    [64]

    孙云强,邱鑫鹏,陈常勇,等,2024. GNSS和InSAR约束的2023积石山MS6.2地震同震滑动分布[J]. 地震工程学报,46(4):867-879.

    [65]

    王岸,王国灿,2005. 构造地貌及其分析方法述评[J]. 地质科技情报,24(4):7-12,20.

    [66]

    王二七,张旗,BURCHFIEL C B,2000. 青海拉鸡山:一个多阶段抬升的构造窗[J]. 地质科学,35(4):493-500. doi: 10.3321/j.issn:0563-5020.2000.04.013

    [67]

    王志才,张培震,张广良,等,2006. 西秦岭北缘构造带的新生代构造活动:兼论对青藏高原东北缘形成过程的指示意义[J]. 地学前缘,13(4):119-135. doi: 10.3321/j.issn:1005-2321.2006.04.010

    [68]

    谢虹,雷中生,袁道阳,等,2014. 1944年青海乐都瞿昙寺地震考证[J]. 内陆地震,28(4):305-311. doi: 10.3969/j.issn.1001-8956.2014.04.003

    [69]

    杨珍,2014. 青海省门源盆地水文特征与降雨型滑坡稳定性分析[D]. 西安:长安大学.

    [70]

    杨中轩,1993. 南祁连拉脊山北缘逆冲推覆构造带[J]. 石油实验地质,15(2):138-145. doi: 10.11781/sysydz199302138

    [71]

    袁道阳,石玉成,刘百篪,1999. 青藏高原东北缘地区晚第四纪水系沉积物年代标尺的初步研究[J]. 地震地质,21(1):1-8. doi: 10.3969/j.issn.0253-4967.1999.01.001

    [72]

    袁道阳,2003. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京:中国地震局地质研究所.

    [73]

    袁道阳,张培震,刘百篪,等,2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报,78(2):270-278. doi: 10.3321/j.issn:0001-5717.2004.02.017

    [74]

    袁道阳,张培震,雷中生,等,2005. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震,21(1):93-102. doi: 10.3969/j.issn.1001-4683.2005.01.010

    [75]

    张波,2012. 西秦岭北缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州:中国地震局兰州地震研究所.

    [76]

    张会平,杨农,张岳桥,等,2006. 岷江水系流域地貌特征及其构造指示意义[J]. 第四纪研究,26(1):126-135. doi: 10.3321/j.issn:1001-7410.2006.01.016

    [77]

    张天琪,王振,张晓明,等,2015. 北天山乌鲁木齐河流域面积-高程积分及其地貌意义[J]. 第四纪研究,35(1):60-70.

    [78]

    张旺生,冯光胜,高山,等,2003. 拉脊山-化隆变质核杂岩构造及其隆升机制探讨[J]. 地球科学:中国地质大学学报,28(4):407-413.

    [79]

    赵洪壮,李有利,杨景春,等,2010. 面积高度积分的面积依赖与空间分布特征[J]. 地理研究,29(2):271-282.

    [80]

    郑德文,张培震,万景林,等,2006. 构造、气候与砾岩:以积石山和临夏盆地为例[J]. 第四纪研究,26(1):63-69. doi: 10.3321/j.issn:1001-7410.2006.01.008

    [81]

    郑光佑,2002.台湾西部麓山带前缘流域面积高度积分之构造意义研究[D]. 高雄: 国立高雄师范大学.

    [82]

    朱一龙,白栋,张春,等,2024. 基于ICESat-2的陕西省SRTM和ASTER GDEM数据对比分析研究[J]. 矿产勘查,(5):845-852.

  • 加载中

(11)

(1)

计量
  • 文章访问数:  31
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2024-11-15
修回日期:  2025-03-29
录用日期:  2025-03-31
网络出版日期:  2025-03-31
刊出日期:  2025-06-28

目录