Genesis of the gneissic biotite granite in Lanhe, northern Guangdong: Constraints from zircon U–Pb geochronology, Hf isotopes, and geochemistry
-
摘要:
粤北澜河岩体位于诸广山岩体东南缘,主要岩石类型为片麻状黑云母花岗岩,其岩石成因尚未厘定。因此,对澜河片麻状黑云母花岗岩开展了LA-ICP-MS锆石U-Pb年代学、岩石地球化学和锆石Hf同位素研究。U-Pb定年结果显示澜河片麻状黑云母花岗岩的侵位年龄为427±2 Ma,为加里东期岩浆活动的产物。岩石地球化学特征显示其SiO2含量为71.53%~75.41%,具有较高的全碱含量(K2O+Na2O=7.57%~8.23%)和A/CNK值(1.00~1.06),富集Rb、Th、U、K,亏损Ba、Y、Nb、Ta、Sr、Yb等元素,LREE/HREE为9.49~28.15,Eu负异常明显(δEu=0.21~0.76)。样品的锆石εHf(t)均为负值(−11.8~−5.2),对应二阶段Hf模式年龄(tDM2)值为2129~1806 Ma。该结果表明澜河片麻状黑云母花岗岩为高分异I型花岗岩,主要由地壳变质砂岩和变质泥岩部分熔融形成,可能是古元古代基底在新元古代—早古生代多期改造后的产物。综合研究认为澜河片麻状黑云母花岗岩形成于华南早古生代的同碰撞构造环境。结合区域地质资料,澜河岩体可能是华南加里东期造山运动从挤压增厚向后碰撞伸展的转变的产物,这一转变可能与华南内部的构造重组或外部板块的俯冲碰撞有关。
Abstract:Objective The Lanhe pluton in northern Guangdong is located at the southeastern margin of the Zhuguangshan Complex and is primarily composed of gneissic biotite granite; its petrogenesis has not yet been determined.
Methods This study applied LA–ICP–MS zircon U–Pb geochronology, whole-rock geochemistry, and zircon Hf isotope analyses to the Lanhe gneissic biotite granite.
Results U–Pb dating indicates that the emplacement age of the Lanhe gneissic biotite granite is 427 ± 2 Ma, representing a product of the Caledonian magmatic activity. The geochemical characteristics show that the granite has SiO2 contents ranging from 71.53% to 75.41%, high total alkali contents (K2O + Na2O = 7.57%–8.23%), and high A/CNK values (1.00–1.06). It is enriched in Rb, Th, U, and K, but depleted in Ba, Y, Nb, Ta, Sr, and Yb. The LREE/HREE ratios range from 9.49 to 28.15, with significant Eu negative anomalies (δEu = 0.21–0.76). The zircon εHf(t) values of the samples are all negative (–11.8 to –5.2), with corresponding tDM2 values of 1806–2129 Ma.
Conclusion Based on the geochemical and isotopic characteristics, the Lanhe gneissic biotite granite is identified as a highly fractionated I-type granite, primarily formed by partial melting of crustal metasedimentary rocks, including metagraywacke and metapelite. It is likely a product of the multi-stage reworking of the Paleoproterozoic basement during the Neoproterozoic to Early Paleozoic. The comprehensive study suggests that the Lanhe gneissic biotite granite formed in a syn-collisional tectonic setting during the Early Paleozoic in South China. [Significance] Integrated with the Zhuguang magmatic system and regional geological data, the Lanhe pluton likely represents a product of the transition from compressional thickening to post-collisional extension during the Caledonian Orogeny in South China. This transition may have been associated with intracontinental tectonic reorganization or external subduction–collision processes.
-
Key words:
- Lanhe pluton /
- zircon U–Pb Dating /
- geochemistry /
- granite /
- tectonic environment
-
-
图 7 澜河片麻状黑云母花岗岩微量元素和稀土元素图解(标准化数据引自Sun and McDonough,1989)
Figure 7.
表 1 澜河岩体LA-ICP-MS 锆石U-Pb同位素定年分析结果
Table 1. LA–ICP–MS zircon U–Pb isotopic data of the Lanhe pluton
测点号 U Th Pb 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U /(×10−6) 同位素比值 2σ 同位素比值 2σ 同位素比值 2σ 年龄/Ma 2σ 年龄/Ma 2σ 21ZG03-1-1 274 72 22 0.0581 0.0037 0.5479 0.0349 0.0684 0.0016 444 23 426 9 21ZG03-1-2 419 47 32 0.0541 0.0032 0.5128 0.0349 0.0686 0.0020 420 23 428 12 21ZG03-1-3 534 56 40 0.0549 0.0033 0.5301 0.0354 0.0688 0.0026 432 23 429 16 21ZG03-1-4 654 36 49 0.0535 0.0026 0.5048 0.0256 0.0684 0.0014 415 17 427 8 21ZG03-1-5 488 57 37 0.0537 0.0035 0.4952 0.0304 0.0673 0.0016 408 21 420 9 21ZG03-1-6 208 55 16 0.0500 0.0036 0.4733 0.0368 0.0688 0.0023 393 25 429 14 21ZG03-1-7 785 52 59 0.0522 0.0023 0.4957 0.0234 0.0687 0.0014 409 16 429 9 21ZG03-1-8 547 69 42 0.0546 0.0028 0.5105 0.0280 0.0676 0.0013 419 19 422 8 21ZG03-1-9 485 70 37 0.0537 0.0028 0.4975 0.0264 0.0673 0.0017 410 18 420 10 21ZG03-1-10 923 88 69 0.0531 0.0026 0.5053 0.0262 0.0690 0.0018 415 18 430 11 21ZG03-1-11 1401 120 107 0.0527 0.0023 0.4952 0.0218 0.0681 0.0012 408 15 425 7 21ZG03-1-12 961 269 77 0.0543 0.0026 0.5137 0.0255 0.0686 0.0017 421 17 428 10 21ZG03-1-13 448 60 34 0.0541 0.0034 0.5035 0.0312 0.0676 0.0017 414 21 422 10 21ZG03-1-14 754 60 57 0.0519 0.0027 0.4906 0.0270 0.0685 0.0017 405 18 427 10 21ZG03-1-15 519 66 39 0.0514 0.0027 0.4778 0.0249 0.0675 0.0016 397 17 421 10 21ZG03-1-16 654 751 62 0.0539 0.0025 0.5082 0.0266 0.0682 0.0018 417 18 425 11 21ZG03-1-17 1194 77 90 0.0531 0.0021 0.5070 0.0242 0.0690 0.0018 416 16 430 11 21ZG03-1-18 765 58 60 0.0540 0.0023 0.5299 0.0249 0.0710 0.0016 432 17 442 10 21ZG03-1-19 582 54 47 0.0572 0.0026 0.5538 0.0274 0.0701 0.0018 448 18 437 11 21ZG03-1-20 367 57 29 0.0550 0.0033 0.5168 0.0315 0.0680 0.0014 423 21 424 9 21ZG03-1-21 727 90 57 0.0542 0.0024 0.5176 0.0248 0.0691 0.0014 424 17 430 8 21ZG03-1-22 790 43 59 0.0529 0.0028 0.5141 0.0276 0.0706 0.0019 421 18 440 12 21ZG03-1-23 576 97 46 0.0550 0.0026 0.5156 0.0248 0.0679 0.0011 422 17 424 7 21ZG03-1-24 1148 124 88 0.0543 0.0021 0.5152 0.0225 0.0688 0.0018 422 15 429 11 21ZG03-1-25 906 86 69 0.0551 0.0023 0.5231 0.0247 0.0687 0.0018 427 16 429 11 21ZG03-1-26 399 44 30 0.0570 0.0031 0.5457 0.0339 0.0692 0.0019 442 22 431 12 21ZG03-1-27 749 63 58 0.0545 0.0027 0.5149 0.0254 0.0686 0.0012 422 17 428 7 表 2 澜河岩体主量(%)和微量元素(×10−6)组成
Table 2. Major (%) and trace element (×10−6 ) contents of the granites of the Lanhe pluton
岩性 黑云母花岗岩 样品编号 21ZG03-1 21ZG03-2 21ZG03-3 21ZG03-4 21ZG03-5 样品编号 21ZG03-1 21ZG03-2 21ZG03-3 21ZG03-4 21ZG03-5 SiO2 73.81 71.53 75.41 72.43 73.28 Pr 11.38 15.54 4.93 12.42 10.69 TiO2 0.28 0.40 0.20 0.32 0.28 Sr 86.49 78.10 75.91 55.22 117.78 Al2O3 13.68 14.04 11.93 13.17 13.39 Nd 44.08 58.15 18.15 45.65 37.68 TFe2O3 2.21 3.10 1.57 2.25 1.80 Zr 145.20 177.07 61.26 158.05 153.42 MnO 0.02 0.03 0.02 0.06 0.02 Hf 4.71 5.57 2.07 5.17 5.10 MgO 0.50 0.69 0.36 0.50 0.45 Sm 8.59 11.63 3.81 11.31 5.86 CaO 1.71 1.70 1.15 1.34 1.51 Eu 0.82 0.84 0.80 0.80 1.24 Na2O 2.73 2.74 2.25 2.65 2.32 Y 8.31 10.28 7.57 23.87 6.09 K2O 4.85 5.27 5.64 5.36 5.92 Yb 0.45 0.58 0.50 1.42 0.44 P2O5 0.04 0.04 0.04 0.05 0.05 Lu 0.07 0.08 0.07 0.23 0.07 LOI 0.59 0.57 1.02 1.39 0.55 Gd 6.44 8.73 3.29 10.99 3.64 SUM 100.41 100.10 99.58 99.52 99.53 Tb 0.66 0.87 0.37 1.40 0.37 Na2O+K2O 7.57 8.01 7.89 8.02 8.23 Dy 2.55 3.05 1.77 5.95 1.51 K2O/Na2O 1.78 1.93 2.51 2.02 2.55 Ho 0.33 0.43 0.28 0.87 0.23 A/NK 1.40 1.37 1.21 1.29 1.31 Er 0.65 0.83 0.66 1.95 0.54 A/CNK 1.06 1.05 1.00 1.04 1.03 Tm 0.07 0.09 0.08 0.23 0.07 CaO/Na2O 0.63 0.62 0.51 0.51 0.65 ΣREE 219.93 292.45 95.01 241.80 200.34 Al2O3/TiO2 48.68 34.83 59.96 41.80 47.47 LREE 208.71 277.79 87.99 218.76 193.47 Rb 186.46 238.32 205.64 208.07 224.03 HREE 11.22 14.66 7.02 23.04 6.87 Ba 489.10 459.74 503.00 461.83 639.68 LREE/HREE 18.60 18.94 12.53 9.49 28.15 Th 37.22 51.46 13.93 33.28 63.43 LaN/YbN 70.10 72.23 25.82 22.44 69.84 U 2.92 4.16 2.02 4.01 3.58 δEu 0.32 0.24 0.68 0.21 0.76 Nb 11.26 14.67 8.31 10.55 6.62 TZr℃ 758.37 771.32 695.06 767.49 762.36 Ta 0.31 0.44 0.21 0.29 0.21 La 46.72 61.61 19.17 46.85 45.14 Ce 97.11 130.02 41.12 101.73 92.87 -
[1] ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1-3): 51-73. doi: 10.1016/S0024-4937(99)00052-3
[2] BATCHELOR R A, BOWDEN P, 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1-4): 43-55.
[3] BOUVIER A, VERVOORT J D, PATCHETT P J, 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters, 273(1-2): 48-57. doi: 10.1016/j.jpgl.2008.06.010
[4] CAI D W, TANG Y, ZHANG H, et al., 2017. Petrogenesis and tectonic setting of the Devonian Xiqin A-type granite in the northeastern Cathaysia Block, SE China[J]. Journal of Asian Earth Sciences, 141: 43-58.
[5] CAWOOD P A, ZHAO G C, YAO J L, et al., 2018. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 186: 173-194. doi: 10.1016/j.earscirev.2017.06.001
[6] CHAPPELL B W, WHITE A J R, 1974. Two contrasting granite types[J]. Pacific Geology, 8: 173-174.
[7] CHAPPELL B W, WHITE A J R, 2001. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 48(4): 489-499.
[8] CHARVET J, SHU L S, FAURE M, et al., 2010. Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 39(4): 309-330.
[9] CHEN B L, GAO Y, WANG Y, et al., 2024. Denudation and preservation of the Changjiang uranium ore field in North Guangdong, China: revealed by apatite fission track thermochronology[J]. Geotectonica et Metallogenia, 48(5): 911-927. (in Chinese with English abstract
[10] CHEN B L, PEI Y R, 2025. Analysis of ore-controlling structure of Lujing uranium ore field in Hunan-Jiangxi border[J]. Acta Geologica Sinica, 1-25. (in Chinese with English abstract
[11] COLEMAN R G, PETERMAN Z E, 1975. Oceanic plagiogranite[J]. Journal of Geophysical Research, 80(8): 1099-1108.
[12] DENG F L, 1987. Isotopic geochronology of the southern Zhuguangshan granite batholith[J]. Geochimica, 16(2): 141-152. (in Chinese with English abstract
[13] DENG P, REN J S, LING H F, et al., 2011. Yanshanian granite batholiths of southern Zhuguang mountian: SHRIMP zircon U-Pb dating and tectonic implications[J]. Geological Review, 57(6): 881-888. (in Chinese with English abstract
[14] DENG P, REN J S, LING H F, et al., 2012. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China[J]. Chinese Science Bulletin, 57(13): 1542-1552. doi: 10.1007/s11434-011-4951-8
[15] DOUCE A E P, HARRIS N, 1998. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 39(4): 689-710. doi: 10.1093/petroj/39.4.689
[16] FENG S J, ZHAO K D, LING H F, et al., 2014. Geochronology, elemental and Nd–Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: Constraints on petrogenesis and post-collisional extension of the Wuyi–Yunkai orogeny[J]. Lithos, 206-207: 1-18.
[17] GAO S, LUO T C, ZHANG B R, et al., 1999. Structure and composition of the continental crust in East China[J]. Science in China Series D: Earth Sciences, 42(2): 129-140. doi: 10.1007/BF02878511
[18] GRIFFIN W L, WANG X, JACKSON S E, et al., 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3-4): 237-269.
[19] GUAN Y L, YUAN C, SUN M, et al., 2014. I-type granitoids in the eastern Yangtze Block: implications for the Early Paleozoic intracontinental orogeny in South China[J]. Lithos, 206-207: 34-51.
[20] GUO C L, LIU Z K, 2021. Caledonian granites in South China: the geological and geochemical characteristics on their petrogenesis and mineralization[J]. Journal of Earth Sciences and Environment, 43(6): 927-961. (in Chinese with English abstract
[21] HARRIS N B W, PEARCE J A, TINDLE A G, 1986. Geochemical characteristics of collision zone magmatism[J]. Geological Society, London, Special Publications, 19(1): 67-81.
[22] HU R Z, BI X W, SU W C, et al., 2004. The relationship between uranium metallogenesis and crustal extension during the Cretaceous-Tertiary in South China[J]. Earth Science Frontiers, 11(1): 153-160 (in Chinese with English abstract).
[23] HU R Z, BI X W, ZHOU M F, et al., 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the cretaceous to tertiary[J]. Economic Geology, 103(3): 583-598.
[24] HU R Z, LUO J C, CHEN Y W, et al., 2019. Several progresses in the study of uranium deposits in South China[J]. Acta Petrologica Sinica, 35(9): 2625-2636. (in Chinese with English abstract).
[25] HUA R M, ZHANG W L, CHEN P R, et al., 2013. Relationship between Caledonian granitoids and large-scale mineralization in South China[J]. Geological Journal of China Universities, 19(1): 1-11. (in Chinese with English abstract
[26] HUANG G L, CAO H J, LING H F, et al., 2012. Zircon SHRIMP U-Pb age, geochemistry and genesis of the Youdong granite in northern Guangdong[J]. Acta Geologica Sinica, 86(4): 577-586. (in Chinese with English abstract
[27] HUANG G L, LIU X Y, SUN L Q, et al., 2014. Zircon U-Pb dating, geochemical characteristic and genesis of the Changjiang granite in northern Guangdong[J]. Acta Geologica Sinica, 88(5): 836-849. (in Chinese with English abstract
[28] HUANG X L, YU Y, LI J, et al., 2013. Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: middle-lower crustal melting during orogenic collapse[J]. Lithos, 177: 268-284. doi: 10.1016/j.lithos.2013.07.002
[29] Institute of Geochemistry, Chinese Academy of Sciences, Isotope Geochronology Laboratory, 1972. Study on isotopic ages of granites in the Nanling Mountains and adjacent regions[J]. Geochemistry, 1(2): 119-134.
[30] JENSEN B B, 1973. Patterns of trace element partitioning[J]. Geochimica et Cosmochimica Acta, 37(10): 2227-2242. doi: 10.1016/0016-7037(73)90101-4
[31] KONG H, LI H, WU Q H, et al., 2018. Co-development of Jurassic I-type and A-type granites in southern Hunan, South China: Dual control by plate subduction and intraplate mantle upwelling[J]. Geochemistry, 78(4): 500-520. doi: 10.1016/j.chemer.2018.08.002
[32] LI F R, PAN J Y, ZHONG F J, et al. , 2025. Petrogenesis and uranium mineralization potential of granites of the Xiaoshan deposit in the Lujing uranium ore field, Jiangxi province[J]. Geoscience, 1-29. (in Chinese with English abstract
[33] LI L M, LIN S F, XING G F, et al., 2022. Identification of ca. 520 Ma mid-ocean-ridge-type Ophiolite suite in the inner Cathaysia block, South China: evidence from shearing-type oceanic Plagiogranite[J]. GSA Bulletin, 134(7-8): 1701-1720. doi: 10.1130/B36088.1
[34] LI X H, 1993. On the genesis of caledonian granitoid rocks at Wanyangshan and Zhuguangshan, Southeast China: evidence from trace elements and rare-earth elements geochemistry[J]. Geochimica, 22(1): 35-44. (in Chinese with English abstract
[35] LI X H, HU R Z, RAO B, 1997. Geochronology and geochemistry of cretaceous mafic dikes from northern Guangdong, se China[J]. Geochimica, 26(2): 14-31. (in Chinese with English abstract
[36] LI X H, LI W X, LI Z X, et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1-2): 117-128. doi: 10.1016/j.precamres.2009.07.004
[37] LI X H, LI Z X, LI W X, 2014. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia block, South China: a synthesis[J]. Gondwana Research, 25(3): 1202-1215. doi: 10.1016/j.gr.2014.01.003
[38] LI Z X, LI X H, WARTHO J A, et al., 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure–temperature conditions[J]. GSA Bulletin, 122(5-6): 772-793. doi: 10.1130/B30021.1
[39] LIN S F, XING G F, DAVIS D W, et al., 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 46(4): 319-322. doi: 10.1130/G39806.1
[40] LIU M H, SHI Y, TANG Y L, et al., 2021. Petrogenesis and tectonic significance of Caledonian I-type Granitoids in southeast Guangxi, South China[J]. Earth Science, 46(11): 3965-3992. (in Chinese with English abstract
[41] LIU S F, PENG S B, KUSKY T, et al., 2018. Origin and tectonic implications of an early Paleozoic (460-440Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, South China[J]. Lithos, 322: 104-128. doi: 10.1016/j.lithos.2018.10.006
[42] LIU Y D, SU X L, CHENG H Y, et al., 2022. Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance[J]. Journal of Geomechanics, 28(2): 237-256. (in Chinese with English abstract
[43] LOISELLE M C, WONES D R, 1979. Characteristics of anorogenic granites[J]. Geological society of America, Abstracts with Programs, 11: 468.
[44] LUDWIG K R, 2003. ISOPLOT 3.00: a geochronological toolkit for Microsoft excel[M]. Berkeley: Berkeley Geochronology Center: 1-70.
[45] MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[46] MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
[47] NARDI L V S, FORMOSO M L L, MÜLLER I F, et al., 2013. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes[J]. Chemical Geology, 335: 1-7. doi: 10.1016/j.chemgeo.2012.10.043
[48] PEARCE J A, HARRIS N B W, TINDLE A G, 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
[49] PECCERILLO A, TAYLOR S R, 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
[50] PENG S B, JIN Z M, LIU Y H, et al., 2006. Petrochemistry, chronology and tectonic setting of strong peraluminous anatectic granitoids in Yunkai orogenic belt, western Guangdong province, China[J]. Earth Science—Journal of China University of Geosciences, 31(1): 110-120. (in Chinese with English abstract
[51] PENG S B, LIU S F, LIN M S, et al., 2016a. Early Paleozoic subduction in Cathaysia (I): new evidence from Nuodong ophiolite[J]. Earth Science, 41(5): 765-778. (in Chinese with English abstract
[52] PENG S B, LIU S F, LIN M S, et al., 2016b. Early Paleozoic subduction in Cathaysia (Ⅱ): new evidence from the Dashuang high Magnesian-Magnesian andesite[J]. Earth Science, 41(6): 931-947. (in Chinese with English abstract
[53] PLANK T, LANGMUIR C H, 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2
[54] QIU X F, ZHAO X M, YANG H M, et al., 2018. Petrogenesis of the Early Palaeozoic granitoids from the Yunkai massif, South China block: implications for a tectonic transition from compression to extension during the Caledonian orogenic event[J]. Geological Magazine, 155(8): 1776-1792. doi: 10.1017/S0016756817000796
[55] SHU L S, 2006. Predevonian tectonic evolution of South China: from Cathaysian block to Caledonian period folded orogenic belt[J]. Geological Journal of China Universities, 12(4): 418-431. (in Chinese with English abstract
[56] SHU L S, FAURE M, JIANG S Y, et al., 2006. SHRIMP zircon U-Pb age, litho- and biostratigraphic analyses of the Huaiyu domain in South China-Evidence for a Neoproterozoic orogen, not late Paleozoic-early Mesozoic collision[J]. Episodes, 29(4): 244-252. doi: 10.18814/epiiugs/2006/v29i4/002
[57] SHU L S, FAURE M, YU J H, et al., 2011. Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 187(3-4): 263-276. doi: 10.1016/j.precamres.2011.03.003
[58] SHU L S, 2012. An analysis of principal features of tectonic evolution in South China block[J]. Geological Bulletin of China, 31(7): 1035-1053. (in Chinese with English abstract
[59] SHU L S, JAHN B M, CHARVET J, et al., 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 314(1): 154-186. doi: 10.2475/01.2014.05
[60] SHU L S, WANG B, CAWOOD P A, et al., 2015. Early Paleozoic and early Mesozoic intraplate tectonic and magmatic events in the Cathaysia block, South China[J]. Tectonics, 34(8): 1600-1621. doi: 10.1002/2015TC003835
[61] SHU L S, SONG M J, YAO J L, 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China: COMMENT[J]. Geology, 46(6): e445. doi: 10.1130/G40213C.1
[62] SHU L S, CHEN X Y, LOU F S, 2020. Pre-Jurassic tectonics of the South China[J]. Acta Geologica Sinica, 94(2): 333-360. (in Chinese with English abstract
[63] SLÁMA J, KOŠLER J, CONDON D J, et al., 2008. Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
[64] SÖDERLUND J, 2004. Building theories of project management: past research, questions for the future[J]. International Journal of Project Management, 22(3): 183-191. doi: 10.1016/S0263-7863(03)00070-X
[65] SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[66] SUN T, 2006. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 25(3): 332-335. (in Chinese with English abstract
[67] SYLVESTER P J, 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
[68] TAYLOR S R, MCLENNAN S M, 1985. The continental crust: its composition and evolution[M]. Oxford: Blackwell Scientific Publications: 312.
[69] WANG L J, ZHANG K X, LIN S F, et al., 2022. Origin and age of the Shenshan tectonic mélange in the Jiangshan-Shaoxing-Pingxiang fault and late early Paleozoic juxtaposition of the Yangtze block and the West Cathaysia Terrane, South China[J]. GSA Bulletin, 134(1-2): 113-129. doi: 10.1130/B35963.1
[70] WANG L J, LIN S F, XIAO W J, 2023. Yangtze and Cathaysia blocks of South China: their separate positions in Gondwana until early Paleozoic juxtaposition[J]. Geology, 51(8): 723-727.
[71] WANG L J, LIN S F, XIAO W J, et al., 2024. Identifying and characterizing missing source Orogens for Syn-Orogenic basins based on detrital accessory mineral U-Pb geochronology and trace element geochemistry[J]. Geology, 52(8): 577-582. doi: 10.1130/G52212.1
[72] WANG L K, ZHANG Y Q, LIU S X, 1975. Multiple emplacements and some geochemical characteristics of the Zhuguangshan granitic batholith, Southern China[J]. Geochimica, 4(3): 189-201. (in Chinese with English abstract
[73] WANG L L, 2015. Geochemistry and petrogenesis of early Paleozoic-Mesozoic granites in Ganzhou, Jiangxi Province, South China block[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
[74] WANG X L, ZHOU J C, GRIFIIN W L, et al., 2014. Geochemical zonation across a Neoproterozoic orogenic belt: isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 242: 154-171. doi: 10.1016/j.precamres.2013.12.023
[75] WANG Y J, ZHANG A M, FAN W M, et al., 2011. Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai domains[J]. Lithos, 127(1-2): 239-260. doi: 10.1016/j.lithos.2011.07.027
[76] WANG Y J, FAN W M, ZHANG G W, et al., 2013. Phanerozoic tectonics of the South China block: key observations and controversies[J]. Gondwana Research, 23(4): 1273-1305. doi: 10.1016/j.gr.2012.02.019
[77] WATSON E B, HARRISON T M, 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X
[78] WHALEN J B, CURRIE K L, CHAPPELL B W, 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
[79] WIEDENBECK MAPC, ALLÉ P, CORFU F, et al., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
[80] WU F Y, LI X H, YANG J H, et al., 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217-1238. (in Chinese with English abstract
[81] WU Y B, ZHENG Y F, 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1007/BF03184122
[82] XIA Y, XU X S, NIU Y L, et al., 2018. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: the magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 309: 56-87. doi: 10.1016/j.precamres.2017.02.020
[83] XIN Y J, LI J H, RATSCHBACHER L, et al., 2020. Early Devonian (415-400 Ma) a-type granitoids and diabases in the Wuyishan, eastern Cathaysia: a signal of crustal extension coeval with the separation of South China from Gondwana[J]. GSA Bulletin, 132(11-12): 2295-2317. doi: 10.1130/B35412.1
[84] XU W J, XU X S, 2015. Early Paleozoic intracontinental felsic magmatism in the South China Block: petrogenesis and geodynamics[J]. Lithos, 234-235: 79-92. doi: 10.1016/j.lithos.2015.08.006
[85] XU W J, 2017. The petrogenesis of early Paleozoic intracontinental magmatism in the Zhuguang-Wanyang Mts district, Cathaysia block[D]. Nanjing: Nanjing University. (in Chinese with English abstract
[86] XU Y J, CAWOOD P A, DU Y S, 2016. Intraplate orogenesis in response to Gondwana Assembly: Kwangsian Orogeny, South China[J]. American Journal of Science, 316(4): 329-362. doi: 10.2475/04.2016.02
[87] YU J H, O’REILLY S Y, WANG L J, et al., 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J]. Precambrian Research, 181(1-4): 97-114. doi: 10.1016/j.precamres.2010.05.016
[88] ZHANG F F, WANG Y J, ZHANG A M, et al., 2012. Geochronological and geochemical constraints on the Petrogenesis of middle Paleozoic (Kwangsian) massive granites in the eastern South China block[J]. Lithos, 150: 188-208. doi: 10.1016/j.lithos.2012.03.011
[89] ZHANG F R, SHU L S, WANG D Z, et al., 2009. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China[J]. Earth Science Frontiers, 16(1): 248-260. (in Chinese with English abstract
[90] ZHANG F R, 2011. The geological and geochemical characteristics and its Petrogenesis for Caledonian granites in the central-southern JiangXi Province[D]. Nanjing: Nanjing University. (in Chinese with English abstract
[91] ZHANG L, CHEN Z Y, LI S R, et al., 2017. Isotope geochronology, geochemistry, and mineral chemistry of the U-bearing and barren granites from the Zhuguangshan Complex, South China: implications for petrogenesis and Uranium Mineralization[J]. Ore Geology Reviews, 91: 1040-1065. doi: 10.1016/j.oregeorev.2017.07.017
[92] ZHANG L, CHEN Z Y, LI X F, et al., 2018. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan Complex, South China: Implications for uranium mineralization[J]. Lithos, 308-309: 19-33. doi: 10.1016/j.lithos.2018.02.029
[93] ZHANG L, CHEN Z Y, WANG F Y, et al.,2021. Apatite geochemistry as an indicator of petrogenesis and uranium fertility of granites: A case study from the Zhuguangshan batholith, South China[J]. Ore Geology Reviews,128:103886.
[94] ZHANG Q, WANG Y L, JIN W J, et al., 2008. Criteria for the recognition of pre-, syn-and post-orogenic granitic rocks[J]. Geological Bulletin of China, 27(1): 1-18. (in Chinese with English abstract
[95] ZHANG Q, JIANG Y H, WANG G C, et al., 2015. Origin of Silurian gabbros and I-type granites in Central Fujian, SE China: implications for the evolution of the Early Paleozoic orogen of South China[J]. Lithos, 216-217: 285-297. doi: 10.1016/j.lithos.2015.01.002
[96] ZHANG S M, 2023. Characteristics, genesis and tectonic significance of the Zhuguangshan composite batholith, South China[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract
[97] ZHAO L, GUO F, ZHANG X B, et al., 2021. Cretaceous crustal melting records of tectonic transition from subduction to slab rollback of the Paleo-Pacific Plate in SE China[J]. Lithos, 384-385: 105985. doi: 10.1016/j.lithos.2021.105985
[98] ZHONG Y F, WANG L X, ZHAO J H, et al., 2016. Partial melting of an ancient sub-continental lithospheric mantle in the Early Paleozoic intracontinental regime and its contribution to petrogenesis of the coeval peraluminous granites in South China[J]. Lithos, 264: 224-238. doi: 10.1016/j.lithos.2016.08.026
[99] ZHOU H B, PAN J Y, ZHONG F J, et al., 2018. Genesis of fine grained biotite granite in the Changjiang uranium ore field, northern Guangdong of China, and its relation with uranium mineralization[J]. Journal of Mineralogy and Petrology, 38(1): 10-19. (in Chinese with English abstract
[100] ZHU B, 2010. The study of mantle liquid and uranium metallogenesis-take uranium ore field of south Zhuguang mountain as an example[D]. Chengdu: Chengdu University of Technology: 31-57. (in Chinese with English abstract
[101] 陈柏林,高允,王永,等,2024. 粤北长江铀矿田隆升剥露历史和矿床保存:来自磷灰石裂变径迹热年代学的启示[J]. 大地构造与成矿学,48(5):911-927.
[102] 陈柏林,裴英茹,2025. 湘赣边界鹿井铀矿田控矿构造解析[J/OL]. 地质学报,1-25.
[103] 邓访陵,1987. 诸广山花岗岩复式岩基南部的同位素地质年代学[J]. 地球化学,16(2):141-152. doi: 10.3321/j.issn:0379-1726.1987.02.005
[104] 邓平,任纪舜,凌洪飞,等,2011. 诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J]. 地质论评,57(6):881-888.
[105] 邓平,任纪舜,凌洪飞,等,2012. 诸广山南体印支期花岗岩的SHRIMP锆石U-Pb年龄及其构造意义[J]. 科学通报,57(14):1231-1241.
[106] 高山,骆庭川,张本仁,等,1999. 中国东部地壳的结构和组成[J]. 中国科学(D辑),29(3):204-213.
[107] 郭春丽,刘泽坤,2021. 华南地区加里东期花岗岩:成岩和成矿作用的地质与地球化学特征[J]. 地球科学与环境学报,43(6):927-961.
[108] 胡瑞忠,毕献武,苏文超,等,2004. 华南白垩—第三纪地壳拉张与铀成矿的关系[J]. 地学前缘,2004,11(1):153-160. doi: 10.3321/j.issn:1005-2321.2004.01.012
[109] 胡瑞忠,骆金诚,陈佑纬,等,2019. 华南铀矿床研究若干进展[J]. 岩石学报,35(9):2625-2636. doi: 10.18654/1000-0569/2019.09.01
[110] 华仁民,张文兰,陈培荣,等,2013. 初论华南加里东花岗岩与大规模成矿作用的关系[J]. 高校地质学,19(1):1-11.
[111] 黄国龙,曹豪杰,凌洪飞,等,2012. 粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究[J]. 地质学报,86(4):57-586.
[112] 黄国龙,刘鑫扬,孙立强,等,2014. 粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究[J]. 地质学报,88(5):836-849.
[113] 李芙蓉,潘家永,钟福军,等,2025. 江西鹿井铀矿田小山矿床花岗岩成因及产铀潜力分析[J/OL]. 现代地质,1-29.
[114] 李献华,1993. 万洋山—诸广山加里东期花岗岩的形成机制:微量元素和稀土元素地球化学证据[J]. 地球化学,22(1):35-44. doi: 10.3321/j.issn:0379-1726.1993.01.005
[115] 李献华,胡瑞忠,饶冰,1997. 粤北白垩纪基性岩脉的年代学和地球化学[J]. 地球化学,26(2):14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004
[116] 刘明辉,时毓,唐远兰,等,2021. 华南桂东南地区加里东期Ⅰ型花岗岩类的岩石成因及构造意义[J]. 地球科学,46(11):3965-3992.
[117] 刘远栋,苏小浪,程海艳,等,2022. 浙南加里东期龙泉岩体年代学、地球化学特征及其地质意义[J]. 地质力学学报,28(2):237-256.
[118] 彭松柏,金振民,刘云华,等,2006. 云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景[J]. 地球科学——中国地质大学学报,31(1):110-120.
[119] 彭松柏,刘松峰,林木森,等,2016a. 华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据[J]. 地球科学,41(5):765-778.
[120] 彭松柏,刘松峰,林木森,等,2016b. 华夏早古生代俯冲作用(Ⅱ):大爽高镁—镁质安山岩新证据[J]. 地球科学,41(6):931-947.
[121] 舒良树,2006. 华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J]. 高校地质学报,12(4):418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002
[122] 舒良树,2012. 华南构造演化的基本特征[J]. 地质通报,31(7):1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
[123] 舒良树,陈祥云,楼法生,2020. 华南前侏罗纪构造[J]. 地质学报,94(2):333-360. doi: 10.3969/j.issn.0001-5717.2020.02.001
[124] 孙涛,2006. 新编华南花岗岩分布图及其说明[J]. 地质通报,25(3):332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002
[125] 王丽丽,2015. 华南赣州地区早古生代晚期—中生代花岗岩类地球化学与岩石成因[D]. 北京:中国地质大学(北京).
[126] 王联魁,张玉泉,刘师先,1975. 南岭诸广山花岗岩体的多次侵入活动和某些地球化学特征[J]. 地球化学,4(3):189-201. doi: 10.3321/j.issn:0379-1726.1975.03.004
[127] 吴福元,李献华,杨进辉,等,2007. 花岗岩成因研究的若干问题[J]. 岩石学报,23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
[128] 徐文景,2017. 华夏地块诸广-万洋山地区早古生代陆内岩浆作用与岩石成因[D]. 南京:南京大学.
[129] 张芳荣,舒良树,王德滋,等,2009. 华南东段加里东期花岗岩类形成构造背景探讨[J]. 地学前缘,16(1):248-260. doi: 10.3321/j.issn:1005-2321.2009.01.027
[130] 张芳荣,2011. 江西中—南部加里东期花岗岩地质地球化学特征及其成因[D]. 南京:南京大学.
[131] 张旗,王元龙,金惟俊,等,2008. 造山前、造山和造山后花岗岩的识别[J]. 地质通报,27(1):1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001
[132] 张素梅,2023. 华南诸广山复式岩基的特征、成因及构造意义[D]. 北京:中国地质科学院.
[133] 中国科学院贵阳地球化学研究所同位素年龄实验室,湖北地质科学研究所同位素年龄实验室,1972. 南岭及其邻区花岗岩同位素年龄的研究[J]. 地球化学,1(2):119-134.
[134] 周航兵,潘家永,钟福军,等,2018. 粤北长江铀矿田细粒黑云母花岗岩的成因及其与铀成矿关系[J]. 矿物岩石,38(1):10-19.
[135] 朱捌,2010. 地幔流体与铀成矿作用研究:以诸广山南部铀矿田为例[D]. 成都:成都理工大学:31-57.
-