Analysis of ore-controlling structures and mineralization prediction of the Guocheng gold deposit in the northeastern margin of the Jiaolai Basin
-
摘要:
胶东半岛是中国最大的金矿矿集区,也是全球第三大金矿富集区。区内绝大部分金矿床形成于早白垩世,受北东—北北东走向正断层控制,然而,该区大型金矿床主要分布于胶西北,胶东东部金矿探明储量相对较少。郭城金矿是位于胶莱盆地东北缘的一个中型金矿床,矿区内构造复杂且以断裂构造为主,矿体主要产于断层内,但分布规律性较差,控矿规律有待深入研究。文章通过详细的地表和井下构造调查发现,矿体受控于逆冲断裂系统,主要赋存于荆山群大理岩和牧牛山花岗岩内。精细构造解析表明,矿区经历了多期次的缩短和伸展变形:第一期北西—南东向挤压作用形成了矿区北东向主断层及一系列次级断层;第二期北西—南东向伸展作用导致北东向中基性岩墙群侵位、以土堆断裂为代表的正断层发育,以及北东向先存断层的伸展活化;第三期为北东—南西向缩短变形,形成了一系列破矿断层和先存断层的再活动。该研究厘定了北东向断层为主要控矿断层,建立了含矿断层与郭城断裂、后夼东断裂间的耦合关系,提出了容矿构造属于北东向主断裂下盘的张剪性次级构造。该结论也预测了后夼东断裂下盘的工程空白区存在潜在矿体,并得到钻探工程的成功验证。结合前期研究成果发现,郭城金矿床尽管也形成于早白垩世,但其控矿构造特征与胶西北金矿床具有明显的差异,指示胶东半岛金成矿期的伸展变形具有明显的不均一性。因此,成矿前北西—南东向挤压作用形成的逆冲断裂系统在胶东东部地区也是一种重要的控矿构造。
Abstract:Objective The Jiaodong Peninsula is the largest gold metallogenic province in China and represents the third-largest gold enrichment region globally. Most gold deposits in this area formed during the Early Cretaceous and are significantly controlled by NNE–NE trending normal faults. Notably, there are more limited gold reserves from the east of the Jiaodong Peninsula compared with those from the northwestern region. The Guocheng gold deposit with a medium size is located in the northeast of the Jiaolai Basin and develops complex fault structures. These gold ore bodies are mainly hosted within faults but show poor distribution regularity. Thus, it is necessary to determine the ore-controlling structures.
Methods Through detailed surface and underground geological investigations and structural analysis, this study reveals that ore bodies are primarily controlled by a thrust-faulting system and are mainly hosted within marbles of the Jingshan Group and Muniushan granitic pluton.
Results Precise structural analysis reveals that the study area had undergone at least three-stage tectonic activities. The first stage (D1) was driven by nearly NW–SE compression and formed NE-trending faults and a series of associated secondary faults. The second stage (D2) involved the NW–SE extension, which developed numerous NE-trending intermediate-basic dike swarms and resulted in the development of the Tudui faults and extensional reactivation of NE-trending faults. During the third stage (D3), the nearly NE-SW compression formed some post-ore-formation structures, including new reverse faults and reactivated pre-existing structures.
Conclusion This study identifies NE-trending faults as principal ore-controlling structures, and proposes the coupling relationships between ore-bearing faults and the Guocheng and Houkuangdong faults. These main ore-bearing structures belong to the tensional-shear secondary faults in the footwalls of the Guocheng and Houkuangdong faults. The conclusion predicts that there are potential ore bodies in the footwall of the Houkuangdong Fault, which is also further confirmed by the drilling project. [Significance] Although the Guocheng gold deposit was also formed in the Early Cretaceous, the ore-controlling structures in this region are obviously different from the northwestern of the Jiaodong Peninsula, suggesting the heterogeneity of extension deformation in the Jiaodong Peninsula during the mineralization stage. Therefore, the thrust-faulting system may be one of the key ore-controlling structures in the east of the Jiaodong Peninsula.
-
-
表 1 郭城金矿构造期次与演化一览表
Table 1. List of tectonic periods and evolution of the Guocheng gold deposit
构造期次 变形时代 构造变形 古应力方向 构造背景 D1 150~135 Ma 郭城断裂和不同矿体的容矿断层 北西—南东向挤压 伊佐奈岐板块北西向低角度俯冲 D21 128~116 Ma 含金流体迁移和沉淀成矿 北西—南东向缩短向伸展转换 古太平洋板块俯冲方向改变 D22 118~114 Ma 土堆断裂等破矿正断层、郭城断裂伸展活动、
中基性岩墙群北西—南东向伸展 古太平洋板块后撤 D3 65~55 Ma 容矿断层再活动和切割岩墙的逆冲断层等 北东—南西向挤压 伊佐奈岐和古太平洋板块间的洋脊俯冲 -
[1] CHEN B H, DENG J, JI X Z, 2022. Time limit of gold mineralization in Muping-Rushan Belt, eastern Jiaodong Peninsula, China: evidence from muscovite Ar-Ar dating[J]. Minerals, 12(3): 278. doi: 10.3390/min12030278
[2] CHEN B L, 2024. Structural generation and its application in ore-prospecting: take hydrothermal uranium deposits in South China as an example[J]. Acta Geologica Sinica, 98(7): 2173-2192. (in Chinese with English abstract
[3] CHEN Y L, LI H, WANG W, et al., 2024. Tectonic transition during the Jurassic-Cretaceous in the Jiaodong Peninsula, North China: insights from asynchronous adakitic and A-type granitic plutons[J]. International Geology Review, 66(9): 1743-1764. doi: 10.1080/00206814.2023.2250846
[4] CHENG N N, LIU Q, HOU Q L, et al., 2018. Discussions on the stress-chemical process of gold precipitation and metallogenic mechanism in shear zone type gold deposits[J]. Acta Petrologica Sinica, 34(7): 2165-2180. (in Chinese with English abstract
[5] CHENG N N, HOU Q L, SHI M Y, et al., 2019. New insight into the genetic mechanism of shear zone type gold deposits from Muping-Rushan Metallogenic Belt (Jiaodong Peninsula of eastern China)[J]. Minerals, 9(12): 775. doi: 10.3390/min9120775
[6] CHENG S B, LIU Z J, WANG Q F, et al., 2017. SHRIMP zircon U–Pb dating and Hf isotope analyses of the Muniushan Monzogranite, Guocheng, Jiaobei Terrane, China: implications for the tectonic evolution of the Jiao–Liao–Ji Belt, North China Craton[J]. Precambrian Research, 301: 36-48. doi: 10.1016/j.precamres.2017.09.002
[7] DENG J, YANG L Q, LI R H, et al., 2019. Regional structural control on the distribution of world-class gold deposits: an overview from the Giant Jiaodong Gold Province, China[J]. Geological Journal, 54(1): 378-391. doi: 10.1002/gj.3186
[8] DENG J, YANG L Q, GROVES D I, et al., 2020a. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China[J]. Earth-Science Reviews, 208: 103274. doi: 10.1016/j.earscirev.2020.103274
[9] DENG J, QIU K F, WANG Q F, et al., 2020b. In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold Province, eastern China[J]. Economic Geology, 115(3): 671-685. doi: 10.5382/econgeo.4711
[10] DENG J, WANG Q F, ZHANG L, et al., 2023. Metallogenetic model of Jiaodong-type gold deposits, eastern China[J]. Science China Earth Sciences, 66(10): 2287-2310. doi: 10.1007/s11430-022-1136-4
[11] GOLDFARB R J, SANTOSH M, 2014. The dilemma of the Jiaodong gold deposits: are they unique?[J]. Geoscience Frontiers, 5(2): 139-153. doi: 10.1016/j.gsf.2013.11.001
[12] GOLDFARB R J, MAO J W, QIU K F, et al., 2021. The great Yanshanian metallogenic event of eastern Asia: consequences from one hundred million years of plate margin geodynamics[J]. Gondwana Research, 100: 223-250. doi: 10.1016/j.gr.2021.02.020
[13] GROVES D I, SANTOSH M, DENG J, et al., 2020a. A holistic model for the origin of orogenic gold deposits and its implications for exploration[J]. Mineralium Deposita, 55(2): 275-292. doi: 10.1007/s00126-019-00877-5
[14] GROVES D I, ZHANG L, SANTOSH M, 2020b. Subduction, mantle metasomatism, and gold: a dynamic and genetic conjunction[J]. GSA Bulletin, 132(7-8): 1419-1426. doi: 10.1130/B35379.1
[15] GUO L N, GOLDFARB R J, WANG Z L, et al., 2017. A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: do they differ?[J]. Ore Geology Reviews, 88: 511-533. doi: 10.1016/j.oregeorev.2016.12.003
[16] GUO P, SANTOSH M, LI S R, 2013. Geodynamics of gold metallogeny in the Shandong Province, NE China: an integrated geological, geophysical and geochemical perspective[J]. Gondwana Research, 24(3-4): 1172-1202. doi: 10.1016/j.gr.2013.02.004
[17] GUO T, LU G X, 2007. System analysis of ore-controlling structure in the northwestern Jiaodong gold metallogenic belt[J]. Journal of Geomechanics, 13(2): 119-130. (in Chinese with English abstract
[18] JI L, DENG J, LIU J L, et al., 2025. Change in the direction of Early Cretaceous tectonic extension in eastern North China Craton as the result of Paleo-Pacific/Eurasian plate interaction[J]. Geoscience Frontiers, 16(1): 101965. doi: 10.1016/j.gsf.2024.101965
[19] LI H, LING M X, DING X, et al., 2014. The geochemical characteristics of Haiyang A-type granite complex in Shandong, eastern China[J]. Lithos, 200-201: 142-156. doi: 10.1016/j.lithos.2014.04.014
[20] LI H M, WEI J H, WANG Q, et al., 2010. Isotopic composition features and ore-forming mechanism of the Tudui-Shawang Gold Deposit in Shandong Province[J]. Acta Geoscientica Sinica, 31(6): 791-802. (in Chinese with English abstract
[21] LI J, ZHANG L P, LI C Y, et al., 2020. Rb-Sr isochron age of the Guocheng gold deposit in the Jiaodong Peninsula, Shandong[J]. Geology in China, 47(3): 894-895. (in Chinese with English abstract
[22] LI J H, CAWOOD P A, RATSCHBACHER L, et al., 2020. Building Southeast China in the late Mesozoic: insights from alternating episodes of shortening and extension along the Lianhuashan fault zone[J]. Earth-Science Reviews, 201: 103056. doi: 10.1016/j.earscirev.2019.103056
[23] LI J W, PAULO V, ZHOU M F, et al., 2006. Geochronology of the Pengjiakuang and Rushan Gold Deposits, Eastern Jiaodong Gold Province, Northeastern China: Implications for Regional Mineralization and Geodynamic Setting[J]. Economic Geology, 101(5): 1023-1038. doi: 10.2113/gsecongeo.101.5.1023
[24] LI X H, FAN H R, ZHU R X, et al., 2022. In-situ monazite Nd and pyrite S isotopes as fingerprints for the source of ore-forming fluids in the Jiaodong gold province[J]. Ore Geology Reviews, 147: 104965. doi: 10.1016/j.oregeorev.2022.104965
[25] LI Y F, LI H K, CHEN G D, et al., 2019. On the Compression-extensional tectonic environment and gold mineralization in the Jiaodong Area, Shandong Province[J]. Geotectonica et Metallogenia, 43(6): 1117-1132. (in Chinese with English abstract
[26] LIN W, XU D R, HOU Q L, et al., 2019. Early cretaceous extensional dome and related polymetallic mineralization in the central and eastern China[J]. Geotectonica et Metallogenia, 43(3): 409-430. (in Chinese with English abstract
[27] LU H Z, ARCHAMBAULT G, LI Y S, et al., 2007. Structural geochemistry of gold mineralization in the Linglong-Jiaojia district, Shandong Province, China[J]. Chinese Journal of Geochemistry, 26(3): 215-234. doi: 10.1007/s11631-007-0215-3
[28] MAO J W, LI H M, WANG Y T, et al., 2005. The relationship between mantle-derived fluid and gold ore-formation in the eastern Shandong Peninsula: evidences from D-O-C-S isotopes[J]. Acta Geologica Sinica, 79(6): 839-857. (in Chinese with English abstract
[29] NI J L, LIU J L, TANG X L, et al., 2013. The Wulian metamorphic core complex: a newly discovered metamorphic core complex along the Sulu orogenic belt, eastern China[J]. Journal of Earth Science, 24(3): 297-313. doi: 10.1007/s12583-013-0330-5
[30] NI J L, WANG R J, LIU J L, et al., 2024. Paleo-Pacific plate subduction direction change (122−118 Ma): insight from late kinematic plutons in the Wulian metamorphic core complex, Jiaodong Peninsula, eastern China[J]. GSA Bulletin, 136(9-10): 3705-3734. doi: 10.1130/B37080.1
[31] ROBERTS R G, 1987. Ore deposit models #11. Archean lode gold deposits[J]. Geoscience Canada, 14(1): 37-52.
[32] SONG M C, LIN S Y, YANG L Q, et al., 2020. Metallogenic model of Jiaodong Peninsula gold deposits[J]. Mineral Deposits, 39(2): 215-236. (in Chinese with English abstract
[33] SONG M C, DING Z J, LIU X D, et al., 2022a. Structural controls on the Jiaodong type gold deposits and metallogenic model[J]. Acta Geologica Sinica, 96(5): 1774-1802. (in Chinese with English abstract
[34] SONG M C, YANG L Q, FAN H R, et al., 2022b. Current progress of metallogenic research and deep prospecting of gold deposits in the Jiaodong Peniusula during 10 years for Exploration Breakthrough Strategic Action[J]. Geological Bulletin of China, 41(6): 903-935. (in Chinese with English abstract
[35] TAN J, WEI J H, GUO L L, et al., 2008. LA-ICP-MS zircon U-Pb dating and phenocryst EPMA of dikes, Guocheng, Jiaodong Peninsula: implications for North China Craton lithosphere evolution[J]. Science in China Series D: Earth Sciences, 51(10): 1483-1500. doi: 10.1007/s11430-008-0079-3
[36] TAN J, WEI J H, LI Y J, et al., 2015. Origin and geodynamic significance of fault-hosted massive sulfide gold deposits from the Guocheng–Liaoshang metallogenic belt, eastern Jiaodong Peninsula: Rb–Sr dating, and H–O–S–Pb isotopic constraints[J]. Ore Geology Reviews, 65: 687-700. doi: 10.1016/j.oregeorev.2014.06.007
[37] WAN T F, 1995. Evolution of Tancheng-Lujiang fault zone and paleostress fields[J]. Earth Science, 20(5): 526-534. (in Chinese with English abstract
[38] WANG Y S, ZHU G, SONG C Z, et al., 2006. 40Ar-39Ar geochronology records of transition from strike-slip to extension in the Tan-Lu Fault zone on eastern terminal of the Dabie Mountains[J]. Chinese Journal of Geology, 41(2): 242-255. (in Chinese with English abstract
[39] WU C, CHEN H Y, CHIARADIA M, et al., 2024. Linking Pacific Plate formation and Early Cretaceous metallogenic response on the circum-Pacific continental margins[J]. GSA Bulletin, 136(1-2): 171-183.
[40] WU C L, XU T, AI Y S, et al., 2021a. Crustal azimuthal anisotropy in the Jiaodong Peninsula: evidence for the suture between the North China Craton and South China Block[J]. Physics of the Earth and Planetary Interiors, 314: 106705. doi: 10.1016/j.pepi.2021.106705
[41] WU J H, CHEN Y L, ZHENG C Y, et al., 2021b. Genesis of the Longkou–Tudui gold deposit, Jiaodong Peninsula, eastern China: constraints from zircon U-Pb dating, fluid inclusion studies and C–H–O–S stable isotopes[J]. Ore Geology Reviews, 139: 104449. doi: 10.1016/j.oregeorev.2021.104449
[42] WU X D, ZHU G, YIN H, et al., 2020. Origin of low-angle ductile/brittle detachments: examples from the cretaceous Linglong metamorphic core complex in eastern China[J]. Tectonics, 39(9): e2020TC006132. doi: 10.1029/2020TC006132
[43] XIA Z M, LIU J L, NI J L, et al., 2016. Structure, evolution and regional tectonic implications of the Queshan metamorphic core complex in eastern Jiaodong Peninsula of China[J]. Science China Earth Sciences, 59(5): 997-1013. doi: 10.1007/s11430-015-5259-3
[44] XIE G Z, ZHANG L P, LI J, et al., 2022. Genesis of high Ba-Sr Yashan intrusion from the Jiaodong Peninsula, eastern China: implications for the destruction of the North China craton[J]. Journal of Earth Science, 33(3): 567-580. doi: 10.1007/s12583-021-1587-8
[45] YANG K F, ZHU J T, CHENG S H, et al., 2017. Structural controls of the sanshandao gold deposit in the northwestern Jiaodong District, China[J]. Geotectonica et Metallogenia, 41(2): 272-282. (in Chinese with English abstract
[46] YANG L Q, DENG J, SONG M C, et al., 2019. Structure control on formation and localization of giant deposits: an example of Jiaodong gold deposits in China[J]. Geotectonica et Metallogenia, 43(3): 431-446. (in Chinese with English abstract
[47] YANG L Q, DENG J, ZHANG L, et al., 2024. Jiaodong-type gold deposit[J]. Acta Petrologica Sinica, 40(6): 1691-1711. (in Chinese with English abstract doi: 10.18654/1000-0569/2024.06.01
[48] YANG L Q, DENG J, ZHANG L, et al., 2024. Mantle-rooted fluid pathways and world-class gold mineralization in the giant Jiaodong gold province: insights from integrated deep seismic reflection and tectonics[J]. Earth-Science Reviews, 255: 104862. doi: 10.1016/j.earscirev.2024.104862
[49] YANG X A, ZHAO G C SONG Y B, et al., 2011. Characteristics of ore-controlling detachment fault and future prospecting in the Muping-Rushan Metallogenic Belt, eastern Shandong Province[J]. Geotectonica et Metallogenia, 35(3): 339-347. (in Chinese with English abstract
[50] YANG Y S, LI Y Y, DENG X H, et al., 2021. Structural controls on the gold mineralization at the eastern margin of the North China Craton: constraints from gravity and magnetic data from the Liaodong and Jiaodong Peninsulae[J]. Ore Geology Reviews, 139: 104522. doi: 10.1016/j.oregeorev.2021.104522
[51] YU X F, SHAN W, XIONG Y X, et al., 2018. Deep structural framework and genetic analysis of gold concentration areas in the northwestern Jiaodong Peninsula, China: a new understanding based on high-resolution reflective seismic survey[J]. Acta Geologica Sinica - English Edition, 92(5): 1823-1840. doi: 10.1111/1755-6724.13679
[52] YU X W, WANG L M, LIU H D, et al., 2023. The relationship between Mesozoic granite, gold deposits and the division of metallogenic period in eastern Shandong[J]. Acta Geologica Sinica, 97(6): 1848-1873. (in Chinese with English abstract
[53] ZHAI M G, ZHU R X, LIU J M, et al., 2003. Time range of Mesozoic tectonic regime inversion in eastern North China Block[J]. Science in China Series D: Earth Sciences, 47(2): 151-159.
[54] ZHAI M G, 2019. Tectonic evolution of the north China craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract
[55] ZHAI Y S, LÜ G X, 2002. Transition of tectonic and dynamic regime and mineralization[J]. Acta Geoscientia Sinica, 23(2): 97-102. (in Chinese with English abstract
[56] ZHANG B, LIU S F, LIN C F, et al., 2020c. Reconstruction of the stress regime in the Jiaolai Basin, East Asian margin, as decoded from fault-slip analysis[J]. Journal of Structural Geology, 141: 104190. doi: 10.1016/j.jsg.2020.104190
[57] ZHANG B, LIU S F, LIN C F, et al., 2024. Northward expansion of the Jiaolai Basin during the Early Cretaceous: insights from source-to-sink reconstruction[J]. Basin Research, 36(1): e12856. doi: 10.1111/bre.12856
[58] ZHANG J, QU J F, ZHANG B H, et al., 2020d. Mesozoic intraplate deformation of the central North China Craton: mechanism and tectonic setting[J]. Journal of Asian Earth Sciences, 192: 104269. doi: 10.1016/j.jseaes.2020.104269
[59] ZHANG J, ZHANG B H, ZHAO H, et al., 2025. Characteristics of paleo-stress field of eastern-central Chinese continent and their tectonic implication[J]. Acta Geologica Sinica, 99(1): 78-103. (in Chinese with English abstract
[60] ZHANG L, WEINBERG R F, YANG L Q, et al., 2020a. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: a focused event at 120 ± 2 Ma during cooling of pregold granite intrusions[J]. Economic Geology, 115(2): 415-441. doi: 10.5382/econgeo.4716
[61] ZHANG L C, SHEN Y C, LIU T B, et al., 2003. 40Ar/39Ar and Rb-Sr isochron dating of the gold deposits on northern margin of the Jiaolai Basin, Shandong, China[J]. Science in China Series D: Earth Sciences, 46(7): 708-718. doi: 10.1360/03yd9062
[62] ZHANG P J, SONG M C, LIU D H, et al., 2015. Features of deep-seated gold orebodies of No. 171 lode and structural ore-controlling action in Linglong gold orefield, Shandong Peninsula[J]. Mineral Deposits, 34(5): 855-873. (in Chinese with English abstract
[63] ZHANG Y Q, DONG S W, SHI W, 2003. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China[J]. Tectonophysics, 363(3-4): 243-258. doi: 10.1016/S0040-1951(03)00039-8
[64] ZHANG Y Q, LI J L, ZHANG T, et al., 2007. Late mesozoic kinematic history of the Muping—Jimo Fault Zone in Jiaodong Peninsula, Shandong Province, East China[J]. Acta Geologica Sinica, 53(3): 289-300. (in Chinese with English abstract
[65] ZHANG Y Q, LI J L, ZHANG T, et al., 2008. Cretaceous to paleocene tectono-sedimentary evolution of the Jiaolai Basin and the contiguous areas of the Shandong Peninsula (North China) and its geodynamic implications[J]. Acta Geologica Sinica, 82(9): 1229-1257. (in Chinese with English abstract
[66] ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5): 613-641. (in Chinese with English abstract
[67] ZHANG Z K, LING M X, LIN W, et al., 2020b. “Yanshanian Movement” induced by the westward subduction of the Paleo–Pacific plate[J]. Solid Earth Sciences, 5(2): 103-114. doi: 10.1016/j.sesci.2020.04.002
[68] ZHOU M L, SUN L L, LYU J Y, et al., 2024. Exploration and scientific research of the Jiaojia-type gold deposit[J]. Journal of Geomechanics, 30(5): 747-767. (in Chinese with English abstract
[69] ZHU B W, LI H, XIE Y M, et al, 2025. The effect of intermediate-basic dikes in gold mineralization: a case of Xintai gold deposit[J/OL]. Earth Science Frontiers, https://doi.org/10.13745/j.esf.sf.2024.12.126. (in Chinese with English abstract
[70] ZHU G, NIU M L, XIE C L, et al., 2010. Sinistral to normal faulting along the Tan‐Lu Fault Zone: evidence for geodynamic switching of the East China continental margin[J]. The Journal of Geology, 118(3): 277-293. doi: 10.1086/651540
[71] ZHU G, LIU C, GU C C, et al., 2018. Oceanic plate subduction history in the western Pacific Ocean: constraint from late Mesozoic evolution of the Tan-Lu Fault Zone[J]. Science China Earth Sciences, 61(4): 386-405. doi: 10.1007/s11430-017-9136-4
[72] ZHU R X, Xu Y G, Zhu G, et al., 2012. Destruction of the North China Craton[J]. Science China Earth Sciences, 55(10): 1565-1587. doi: 10.1007/s11430-012-4516-y
[73] ZHU R X, FAN H R, LI J W, et al., 2015. Decratonic gold deposits[J]. Science China Earth Sciences, 58(9): 1523-1537. doi: 10.1007/s11430-015-5139-x
[74] ZHU R X, ZHANG H F, ZHU G, et al., 2017. Craton destruction and related resources[J]. International Journal of Earth Sciences, 106(7): 2233-2257. doi: 10.1007/s00531-016-1441-x
[75] 陈柏林,2024. 构造序次及其在找矿预测中的应用:以华南热液型铀矿床为例[J]. 地质学报,98(7):2173-2192.
[76] 程南南,刘庆,侯泉林,等,2018. 剪切带型金矿中金沉淀的力化学过程与成矿机理探讨[J]. 岩石学报,34(7):2165-2180.
[77] 邓军,王庆飞,张良,等,2023. 胶东型金矿成因模型[J]. 中国科学:地球科学,53(10):2323-2347.
[78] 郭涛,吕古贤,2007. 胶东西北部金成矿带控矿构造系统分析[J]. 地质力学学报,13(2):119-130. doi: 10.3969/j.issn.1006-6616.2007.02.005
[79] 李红梅,魏俊浩,王启,等,2010. 山东土堆-沙旺金矿床同位素组成特征及矿床成因讨论[J]. 地球学报,31(6):791-802.
[80] 李杰,张丽鹏,李聪颖,等,2020. 胶东郭城金矿床黄铁矿Rb-Sr等时线年龄[J]. 中国地质,47(3):894-895. doi: 10.12029/gc20200330
[81] 李逸凡,李洪奎,陈国栋,等,2019. 论山东胶东金矿形成的挤压—伸展构造环境[J]. 大地构造与成矿学,43(6):1117-1132.
[82] 林伟,许德如,侯泉林,等,2019. 中国大陆中东部早白垩世伸展穹隆构造与多金属成矿[J]. 大地构造与成矿学,43(3):409-430.
[83] 毛景文,李厚民,王义天,等,2005. 地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J]. 地质学报,79(6):839-857. doi: 10.3321/j.issn:0001-5717.2005.06.013
[84] 宋明春,林少一,杨立强,等,2020. 胶东金矿成矿模式[J]. 矿床地质,39(2):215-236.
[85] 宋明春,丁正江,刘向东,等,2022a. 胶东型金矿床断裂控矿及成矿模式[J]. 地质学报,96(5):1774-1802.
[86] 宋明春,杨立强,范宏瑞,等,2022b. 找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展[J]. 地质通报,41(6):903-935.
[87] 谭俊,魏俊浩,郭玲利,等,2008. 胶东郭城地区脉岩锆石LA-ICP-MS U-Pb定年及斑晶EPMA研究:对岩石圈演化的启示[J]. 中国科学 D辑:地球科学,38(8):913-929.
[88] 万天丰,1995. 郯庐断裂带的演化与古应力场[J]. 地球科学,20(5):526-534. doi: 10.3321/j.issn:1000-2383.1995.05.004
[89] 王勇生,朱光,宋传中,等,2006. 大别山东端郯庐断裂带由走滑向伸展运动转换的40Ar-39Ar年代学记录[J]. 地质科学,41(2):242-255. doi: 10.3321/j.issn:0563-5020.2006.02.007
[90] 夏增明,刘俊来,倪金龙,等,2016. 胶东东部鹊山变质核杂岩结构、演化及区域构造意义[J]. 中国科学:地球科学,46(3):356-373.
[91] 杨奎锋,朱继托,程胜红,等,2017. 胶东三山岛金矿构造控矿规律研究[J]. 大地构造与成矿学,41(2):272-282.
[92] 杨立强,邓军,宋明春,等,2019. 巨型矿床形成与定位的构造控制:胶东金矿集区剖析[J]. 大地构造与成矿学,43(3):431-446.
[93] 杨立强,邓军,张良,等,2024. 胶东型金矿[J]. 岩石学报,40(6):1691-1711. doi: 10.18654/1000-0569/2024.06.01
[94] 杨喜安,赵国春,宋玉波,等,2011. 胶东牟平-乳山成矿带拆离断层控矿特征及找矿方向[J]. 大地构造与成矿学,35(3):339-347. doi: 10.3969/j.issn.1001-1552.2011.03.002
[95] 于晓卫,王来明,刘汉栋,等,2023. 胶东中生代花岗岩与金矿关系及成矿期划分[J]. 地质学报,97(6):1848-1873.
[96] 翟明国,朱日祥,刘建明,等,2003. 华北东部中生代构造体制转折的关键时限[J]. 中国科学(D辑),33(10):913-920.
[97] 翟明国,2019. 华北克拉通构造演化[J]. 地质力学学报,25(5):722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063
[98] 翟裕生,吕古贤,2002. 构造动力体制转换与成矿作用[J]. 地球学报,23(2):97-102. doi: 10.3321/j.issn:1006-3021.2002.02.001
[99] 张进,张北航,赵衡,等,2025. 中国中东部中生代古构造应力场特征与背景[J]. 地质学报,99(1):78-103.
[100] 张连昌,沈远超,刘铁兵,等,2002. 山东胶莱盆地北缘金矿Ar-Ar法和Rb-Sr等时线年龄与成矿时代[J]. 中国科学(D辑),32(9):727-734.
[101] 张丕建,宋明春,刘殿浩,等,2015. 胶东玲珑金矿田171号脉深部金矿床特征及构造控矿作用[J]. 矿床地质,34(5):855-873.
[102] 张岳桥,李金良,张田,等,2007. 胶东半岛牟平—即墨断裂带晚中生代运动学转换历史[J]. 地质论评,53(3):289-300. doi: 10.3321/j.issn:0371-5736.2007.03.001
[103] 张岳桥,李金良,张田,等,2008. 胶莱盆地及其邻区白垩纪—古新世沉积构造演化历史及其区域动力学意义[J]. 地质学报,82(9):1229-1257. doi: 10.3321/j.issn:0001-5717.2008.09.007
[104] 张岳桥,董树文,2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报,25(5):613-641. doi: 10.12090/j.issn.1006-6616.2019.25.05.059
[105] 周明岭,孙亮亮,吕军阳,等,2024. 焦家式金矿勘查与研究[J]. 地质力学学报,30(5):747-767. doi: 10.12090/j.issn.1006-6616.2024061
[106] 朱博文,李欢,谢一鸣,等,2025. 中基性岩脉在金成矿过程中的作用:以鑫泰金矿为例[J/OL]. 地学前缘,https://doi.org/10.13745/j.esf.sf.2024.12.126.
[107] 朱光,刘程,顾承串,等,2018. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示[J]. 中国科学:地球科学,48(4):415-435.
[108] 朱日祥,徐义刚,朱光,等,2012. 华北克拉通破坏[J]. 中国科学:地球科学,42(8):1135-1159.
[109] 朱日祥,范宏瑞,李建威,等,2015. 克拉通破坏型金矿床[J]. 中国科学:地球科学,45(8):1153-1168.
-