Analysis of historical seismic parameters based on geological hazards from the Xiaonanhai earthquake
-
摘要:
小南海地震作为重庆地区震级最大的历史地震事件,其地震学参数解析对区域地震危险性评价及抗震设防标准制定具有重要科学意义。针对历史地震研究受限于观测资料缺失的瓶颈问题,文章提出了一种通过典型地震遗迹反演地震参数的方法,系统重建了小南海历史地震参数。对地震地质灾害遗迹高精度遥感解译与现场调查的结果显示小南海地震触发的滑坡群具有显著近南北向优势展布特征,与历史记载的有感范围椭圆长轴方向近似一致,这指示该地震的发震构造可能为北北西向仰头山断层。通过地质灾害体的高精度遥感解译,获得滑坡朝向、堆积物的滑动方向和展布特征,研究发现多个滑坡体的堆积物都具有向南东方向运动特征,据此推断地震动力学过程以南东向错动为主。结合鲁甸地震的地质灾害分布特征与发震构造之间的关系,以及渝东南地震成因机理,研究成果论证了地震学参数的合理性。研究创新性揭示该地震具有“岩溶−构造”复合致灾机制:在北西—南东向构造应力持续作用下,沿断裂带或优势节理方向发育的串珠状岩溶洞穴形成天然弱化带,导致应力集中,发生左旋走滑兼逆冲性质的错动,最终引发兼具构造地震与岩溶塌陷特征的特殊震例。该成果为历史地震参数重建提供了 “地质遗迹−动力学反演”新方法,对岩溶地区地震危险性评估具有重要指导价值。
Abstract:Objective As the largest historical seismic event in the Chongqing region, the Xiaonanhai Earthquake holds significant scientific value for deciphering seismogenic parameters to inform regional seismic hazard assessment and anti-seismic fortification standards. This study addresses the critical challenge of scarce observational data in historical earthquake research.
Methods A novel methodology for inverting seismic parameters through characteristic earthquake relics has been developed, systematically reconstructing the historical seismic parameters of the Xiaonanhai Earthquake. The interpretation of high-precision remote sensing and field investigations of seismically induced geo-hazards reveal a dominant near-N–S spatial distribution of the landslide clusters triggered by the Xiaonanhai Earthquake, consistent with the elliptical major axis direction of historically documented felt areas.
Results This spatial congruence suggests that the NNW-striking Yangtoushan Fault is the seismogenic fault. Detailed remote sensing analyses of landslide orientations, sliding directions, and deposit distributions demonstrate, for the first time, coherent SE-directed motion features across multiple landslide masses, indicating a southeastward coseismic rupture propagation. A comparative analysis of the spatial correlation between geo-hazards and seismogenic structures observed in the Ludian Earthquake, coupled with seismotectonic mechanisms in southeastern Chongqing, further validates the rationality of the derived seismic parameters.
Conclusion This study innovatively identifies a "karst–tectonic" composite mechanism: Under persistent NW–SE tectonic stress, bead-like karst caves developed along the fault zone or dominant joint directions form natural weakening zones, inducing stress concentration and ultimately triggering left-lateral strike-slip motion with thrust components. This dual mechanism explains the unique seismic characteristics blending tectonic rupture and karst collapse. [Significance] The proposed "geo-morphodynamic inversion" methodology advances the reconstruction of historical earthquake parameters and provides critical insights for the evaluation of seismic risk in karst terrains.
-
-
表 1 区域地层岩性汇总表
Table 1. Summary of the regional stratigraphic lithology
界 系 统 地层代号 厚度/m 岩性 上古生界 二叠系 上统 P2c, P2w 192~241 含硅质灰岩和炭质页岩互层 下统 P1m, P1q, P1l 236~547 中厚层灰岩底部夹页岩 石炭系 中统 C2l 0~6 灰色中厚层白云岩 泥盆系 上统 D3s 0~92 泥质灰岩和石英砂岩 下古生界 志留系 中统 S2lr 805~1147 粉砂岩和泥岩、页岩 下统 S1ln 320~612 黄绿色和黑色泥岩页岩 奥陶系 上统 O3w, O3l 2.8~26 泥灰岩、钙质页岩和粉砂岩 中统 O2b, O2s 28~80 龟裂纹灰岩和泥质灰岩 下统 O1d, O1h, O1f, O1n 315~447 厚层灰岩、白云岩及页岩 寒武系 上统 ∈3m, ∈3g 389~412 厚层状灰岩、白云岩 中统 ∈2p, ∈2m 593~941 厚层状灰岩、白云岩 下统 ∈1s, ∈1t, ∈1sp, ∈1s, ∈1m 584~886 厚层状灰岩、白云岩夹砂岩 表 2 区域断层汇总表(据韦清海,1975;丁仁杰和李克昌,2004修改)
Table 2. Summary of regional faults (modified from Wei, 1975; Ding and Li, 2004)
代号 断层名称 长度/km 走向 倾向 倾角/(°) 断层特征 备注 F1 马喇湖正断层 37 N10E NW 50~70 可见较平整的断面,未见擦痕,角砾岩棱角分明,大小悬殊,无定向排列 张性 F2 龙潭坝正断层 32.5 N30~45E SE 65~70 断层带宽100~200m,断裂岩石破碎,未见方解石化 张性 F3 筲箕滩逆断层 39 N39E NW 70~76 构造角砾岩发育,细小微圆,糜棱岩化,构造透镜体附片理和牵引褶曲发育 压扭性 F4 仰头山逆滑断层 12 350 SW 70~80 破碎带发育,主要为碎裂岩、角砾岩、方解石脉和方解石团块组成 逆滑左行平移 F5 活龙坪断层 6 N30E NW 30~40 断层两盘挤压比较强烈,挠曲发育 压扭性/张性 F6 龙咀河正断层 54 N30~70~30E NW 50 断裂带宽20 m,局部角砾岩发育。糜棱岩发育地段可见断层泥和构造透镜体 张扭性 F7 大沙溪逆断层 35 N30E NW 28~45 断层两盘挤压强烈,形成一系列褶皱及倒转褶皱,片理发育,并平行于断裂面 压扭性 F8 郁山正断层 53 N40~30E NW 50~90 断裂带宽30~50 m,断面不平整,角砾岩发育,棱角分明,大小悬殊,杂乱无章 张扭性 F9 胜地坝逆断层 32.5 N15~50E NW 35~80 两盘岩石具重结晶和褪色现象,断裂面发育糜棱岩及构造透镜体,片理发育 压扭性 表 3 重庆辖区M≥4.5级地震汇总表
Table 3. Summary of M≥4.5 earthquakes in Chongqing
时间 坐标/地点 震级 深度/km 备注 1853-09-09 N 30.0°,E 106.8°/统景 41/2 / 1854-12-24 N 29.6°,E 107.0°/南川 51/2 2次4级余震,震中烈度为Ⅶ 1855秋 N29.8°,E 108.6°/彭水 43/4 1856-06-10 N29.2°,E 108.8°/黔江 61/4 2~8 震中烈度Ⅸ度 1880-03-22 N29.4°,E 107.2°/南川 41/2 1989-11-20 N29.92°,E 106.88°/统景 5.2、5.4 5 双震,震前有2次4级双震 1997-08-13 N29.43°,E 105.52°/荣昌 5.2 7.9 地震序列为前-主-余型序列 1999-08-17 N29.35°,E 105.58°/荣昌 5.0 12 地震序列为主-余型序列 2001-06-23 N29.52°,E 105.48°/荣昌 4.9 12 地震序列为主-余型序列 2010-09-10 N29.38°,E 105.43°/荣昌 4.5 6 2016-12-27 N29.42°,E105.54°/荣昌 4.9 8 2017-11-23 N29.42°,E105.54°/武隆 5.0 10 -
[1] CUI Y L, PAN J W, HU J H, et al., 2021. Landslides triggered by the 1970 Tonghai MS7.7 earthquake and their distribution characteristics[J]. IOP Conference Series: Earth and Environmental Science, 861(5): 052011. doi: 10.1088/1755-1315/861/5/052011
[2] DING R J, LI K C, 2004. Chongqing earthquake research[M]. Beijing: Seismological Press. (in Chinese)
[3] GAO Y P, LIU J, HAN L F, et al., 2023. Discussion on the magnitude or intensity limitation of paleoearthquake events[J]. Journal of Geomechanics, 29(5): 704-719. (in Chinese with English abstract
[4] GONG L W, DENG Z H, CHEN L J, et al., 2019. Analyses of finite element model based on station’s tectonic environment: taking Qianjiang station for example[J]. Acta Seismologica Sinica, 41(1): 80-91. (in Chinese with English abstract
[5] GONG L W, CHEN L J, GUO W Y, et al. , 2021. Mechanism of borehole strain precursor anomaly at Fengjie station: results from stress transfer in regional stress field[J]. China Earthquake Engineering Journal, 43(5): 1087-1094, 1102. (in Chinese with English abstract
[6] HE H X, LI S J, LIU M, et al., 2016. Research on landslide spatial distribution in Ludian earthquake disaster area[J]. Journal of Catastrophology, 31(1): 92-95. (in Chinese with English abstract
[7] HE X L, XU C, 2022. Spatial distribution and tectonic significance of the landslides triggered by the 2021 Ms6.4 Yangbi earthquake, Yunnan, China[J]. Frontiers in Earth Science, 10: 1030417. doi: 10.3389/feart.2022.1030417
[8] HE X L, XU C, QI W W, et al., 2024. Contrasting landslides distribution patterns and seismic rupture processes of 2014 Jinggu and Ludian earthquakes, China[J]. Scientific Reports, 14(1): 28470. doi: 10.1038/s41598-024-79682-8
[9] HUANG Q S, 2014. Research on formation mechanism and dynamic characteristics of Xiao Nanhai landslides induced by earthquake[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract
[10] HUANG Y D, XU C, HE X L, et al., 2025. Landslides induced by the 2023 Jishishan Ms6.2 earthquake (NW China): spatial distribution characteristics and implication for the seismogenic fault[J]. npj Natural Hazards, 2: 14. doi: 10.1038/s44304-025-00064-9
[11] LI C P, TANG M Y, GUO W Y, et al., 2019. Relocation of the 23 November 2017 Wulong MS5.0 earthquake sequence and analysis of its seismogenic fault[J]. Seismology and Geology, 41(3): 603-618. (in Chinese with English abstract
[12] LI L J, 1997. Neotectonism in the juncture of Sichuan, Guizhou and Hunan[J]. Acta Geologica Sichuan, 17(2): 110-114. (in Chinese with English abstract
[13] LI Y L, YU H Y, WANG M, et al., 2025. The physics-based deterministic scenarios for earthquake hazards and losses of the Zhujiangkou fault in Southern China[J]. Acta Geologica Sichuan Hazards, 2: 6.
[14] LIU J L, XU C, ZHAO B B, et al., 2025. Deformation slope extraction and influencing factor analysis using LT-1 satellite data: a case study of Chongqing and surrounding areas, China[J]. Remote Sensing, 17(1): 156. doi: 10.3390/rs17010156
[15] LIU S W, DING Z X, ZHANG J S, 1981. Investigation of the 1856 Dalu Dam earthquake in Xianfeng County, Hubei Province[J]. Crustal Deformation and Earthquake(2): 69-81. (in Chinese with English abstract
[16] LIU Y L, 2009. Study on Quaternary tectonic movements and seismogeology in Qianjiang area of Chongqing municipality[D]. Guangzhou: Sun Yat-sen University. (in Chinese with English abstract
[17] LU Y K, ZHANG J G, SONG L J, et al., 2014. Analysis on intensity distribution and seismic disaster characteristics of building of Yunnan Ludian MS6.5 earthquake in 2014[J]. Journal of Seismological Research, 37(4): 549-557. (in Chinese with English abstract
[18] MA S Y, SHAO X Y, XU C, et al., 2025. Topographic location and connectivity to channel of earthquake-and rainfall-induced landslides in Loess Plateau area[J]. Scientific Reports, 15(1): 628. doi: 10.1038/s41598-024-84885-0
[19] QIN J, WANG Z J, WANG H C, et al., 2018. Discussion on the epicentral intensity and magnitude of the 1856 Qianjiang-Xianfeng earthquake[J]. Earthquake Research in China, 34(3): 551-564. (in Chinese with English abstract
[20] QIU Z D, GUO C B, WU R A, et al., 2024a. Development Characteristics and Stability Evaluation of the Shadingmai Large-scale Ancient Landslide in the Upper Reaches of Jinsha River, Tibetan Plateau[J]. Geoscience, 38(02): 451-463.
[21] QIU Z D, GUO C B, YANG Z H, et al., 2024b. Spatial structure characteristics and formation mechanism of the ancient Deda landslide elucidated using the microtremor survey method in Sichuan Province, China[J]. Journal of Geomechanics, 30(6): 906-920. (in Chinese with English abstract
[22] SHEN T, WANG Y S, WU L K, 2014. Discrete element simulation analysis of formation mechanism of Xiaonanhai landslide in Chongqing city[J]. Rock and Soil Mechanics, 35(S2): 667-675. (in Chinese with English abstract
[23] SUN D, QIN L, MENG M H, et al., 2024. Analysis of the development characteristics of co-seismic geological hazards and their controlling factors in the Maerkang MS6.0 earthquake swarm, Sichuan, on June 10, 2022[J]. Journal of Geomechanics, 30(3): 443-461. (in Chinese with English abstract
[24] WANG J P, LI Y S, ZHANG C, 2016. Dynamics mechanism of low-intensity earthquake triggered the collapse of the soft rock: Xiao Nanhai seismic landslide in Chongqing of China as an example[J]. Mountain Research, 34(2): 200-207. (in Chinese with English abstract
[25] WANG M, SHEN Z K, 2020. Present‐day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. doi: 10.1029/2019JB018774
[26] WANG Z J, QIN J, WANG H C, et al. , 2018. Understanding the activity of the Qianjiang fault zone from the historical earthquakes in Qianjiang[J]. Earthquake Research in Sichuan(2): 5-12. (in Chinese with English abstract
[27] WANG Z J, QIN J, LI C P, et al., 2019. Discussion on the causes of the 1856 Xiaonanhai, Chongqing earthquake disaster[J]. China Earthquake Engineering Journal, 41(3): 813-822. (in Chinese with English abstract
[28] WEI Q H, 1975. Regional geological survey report of the Qianjiang sheet (1: 200, 000) (Report No. 107)[M]. Chengdu: Sichuan Bureau of Geology. (in Chinese)
[29] XU C, XU X W, SHEN L L, et al., 2014. Inventory of landslides triggered by the 2014 MS6.5 Ludian earthquake and its implications on several earthquake parameters[J]. Seismology and Geology, 36(4): 1186-1203. (in Chinese with English abstract
[30] XU C, 2015. Utilizing coseismic landslides to analyze the source and rupturing process of the 2014 Ludian earthquake[J]. Journal of Engineering Geology, 23(4): 755-759. (in Chinese with English abstract
[31] YIN G Y, ZHANG H, GONG L W, et al., 2024. Seismic and geological evidence of hidden faults in the Yinpan reservoir area based on a dense seismic array[J]. Science China Earth Sciences, 67(7): 2401-2407. doi: 10.1007/s11430-023-1361-4
[32] YIN Z Q, XU Y Q, CHEN H Q, et al., 2016. The development and distribution characteristics of geohazards induced by august 3, 2014 Ludian earthquake and comparison with Jinggu and Yingjiang earthquakes[J]. Acta Geologica Sinica, 90(6): 1086-1097. (in Chinese with English abstract
[33] ZHANG S S, HU X L, ZHANG G C, et al., 2024. Formation and catastrophic evolution of giant landslides in the alpine canyon area of Western China[J]. Journal of Geomechanics, 30(5): 795-810. (in Chinese with English abstract
[34] ZHANG Y Q, LI X, XIE Y Q, et al., 2016. Analysis on seismotectonic background and earthquake hazard characteristic in Zhaotong, Yunnan: taking Ludian MS6.5 earthquake and Yiliang MS5.7、5.6 earthquake as examples[J]. Journal of Seismological Research, 39(2): 270-278. (in Chinese with English abstract
[35] ZENG, MA Z G, ZHAO C, et al., 2023. Multi-Source Remote Sensing Recognition of Reactivation Characteristics of An Ancient Landslide Group at Taipingqiao in the Dadu River Catchment, Eastern Tibetan Plateau[J]. Geoscience, 37(04): 994-1003.
[36] ZHOU Q, WU G, 2015. Seismic landslides and seismogenic structure of the 2014 Ludian MS6.5 earthquake[J]. Seismology and Geology, 37(1): 269-278. (in Chinese with English abstract
[37] ZHOU X, ZHOU Q, GAO S P, 2018. Investigation to landslides triggered by the 1856 Qianjiang-Xianfeng (Daluba) earthquake and their generation mechanisms[J]. Seismology and Geology, 40(2): 410-425. (in Chinese with English abstract
[38] ZHOU X, ZHOU Q, GAO S P, et al., 2020. Restoration of the original topography of the Xiaonanhai landslide in Chongqing and calculation of its volume[J]. Seismology and Geology, 42(4): 936-954. (in Chinese with English abstract
[39] 丁仁杰,李克昌,2004. 重庆地震研究[M]. 北京:地震出版社.
[40] 高云鹏,刘静,韩龙飞,等,2023. 古地震事件震级或强度大小限定的讨论[J]. 地质力学学报,29(5):704-719. doi: 10.12090/j.issn.1006-6616.2023034
[41] 龚丽文,邓志辉,陈丽娟,等,2019. 基于台址构造环境的有限元建模分析:以黔江台为例[J]. 地震学报,41(1):80-91. doi: 10.11939/jass.20170133
[42] 龚丽文,陈丽娟,郭卫英,等,2021. 奉节钻孔应变前兆异常机理分析:区域应力场应力传递的结果[J]. 地震工程学报,43(5):1087-1094,1102. doi: 10.3969/j.issn.1000-0844.2021.05.1087
[43] 和海霞,李素菊,刘明,等,2016. 云南鲁甸6.5级地震灾区滑坡分布特征研判分析[J]. 灾害学,31(1):92-95. doi: 10.3969/j.issn.1000-811X.2016.01.019
[44] 黄青松,2014. 小南海地震滑坡的成因机制及动力学特性研究[D]. 成都:成都理工大学.
[45] 李翠平,唐茂云,郭卫英,等,2019. 2017年11月23日重庆武隆MS5.0地震序列重定位及发震断层分析[J]. 地震地质,41(3):603-618. doi: 10.3969/j.issn.0253-4967.2019.03.005
[46] 李伦炯,1997. 川黔湘毗邻区的新构造运动[J]. 四川地质学报,17(2):110-114.
[47] 刘锁旺,丁忠孝,张俊山,1981. 1856年湖北咸丰县大路坝地震考察[J]. 地壳形变与地震(2):69-81.
[48] 刘玉亮,2009. 重庆黔江地区第四纪构造活动与地震地质研究[D]. 广州:中山大学.
[49] 卢永坤,张建国,宋立军,等,2014. 2014年云南鲁甸6.5级地震烈度分布与房屋震害特征[J]. 地震研究,37(4):549-557.
[50] 秦娟,王赞军,王宏超,等,2018. 关于1856年黔江-咸丰地震震中烈度与震级的探讨[J]. 中国地震,34(3):551-564.
[51] 邱振东,郭长宝,吴瑞安,等. 金沙江上游沙丁麦大型古滑坡发育特征与稳定性评价[J]. 现代地质,2024a,38(02):451-463.
[52] 邱振东,郭长宝,杨志华,等,2024b. 基于微动探测的四川德达古滑坡空间结构特征与形成机理研究[J]. 地质力学学报,30(6):906-920.
[53] 申通,王运生,吴龙科,2014. 重庆小南海滑坡形成机制离散元模拟分析[J]. 岩土力学,35(S2):667-675.
[54] 孙东,覃亮,蒙明辉,等,2024. 2022年6月10日四川马尔康MS6.0震群同震地质灾害发育特征及其控制因素分析[J]. 地质力学学报,30(3):443-461.
[55] 王金鹏,李渝生,张超,2016. 软岩区低强度地震诱发大规模滑坡的机理:以重庆小南海地震滑坡为例[J]. 山地学报,34(2):200-207.
[56] 王赞军,秦娟,王宏超,等,2018. 从黔江历史地震认识黔江断裂带活动性[J]. 四川地震(2):5-12.
[57] 王赞军,秦娟,李翠平,等,2019. 1856年重庆小南海地震地质灾害成因探讨[J]. 地震工程学报,41(3):813-822. doi: 10.3969/j.issn.1000-0844.2019.03.813
[58] 韦清海,1975. 黔江幅1:20万区域地质调查报告[R]. 成都:四川省地质局.
[59] 许冲,徐锡伟,沈玲玲,等,2014. 2014年鲁甸MS6.5地震触发滑坡编录及其对一些地震参数的指示[J]. 地震地质,36(4):1186-1203. doi: 10.3969/j.issn.0253-4967.2014.04.020
[60] 许冲,2015. 利用同震滑坡分析2014年鲁甸地震震源性质与破裂过程[J]. 工程地质学报,23(4):755-759.
[61] 殷志强,徐永强,陈红旗,等,2016. 2014年云南鲁甸地震触发地质灾害发育分布规律及与景谷、盈江地震对比研究[J]. 地质学报,90(6):1086-1097. doi: 10.3969/j.issn.0001-5717.2016.06.003
[62] 张世殊,胡新丽,章广成,等,2024. 西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展[J]. 地质力学学报,30(5):795-810. doi: 10.12090/j.issn.1006-6616.2024031
[63] 张彦琪,李西,谢英情,等,2016. 以鲁甸地震和彝良地震为例分析云南昭通地质构造与地震灾害特点[J]. 地震研究,39(2):270-278.
[64] 曾帅,马志刚,赵聪,等,2023. 青藏高原东部大渡河流域太平桥乡古滑坡群复活特征多源遥感识别[J]. 现代地质,37(04):994-1003.
[65] 周庆,吴果,2015. 鲁甸6.5级地震崩滑地质灾害分布与成因探讨[J]. 地震地质,37(1):269-278. doi: 10.3969/j.issn.0253-4967.2015.01.021
[66] 周鑫,周庆,高帅坡,2018. 1856年黔江咸丰地震(大路坝地震)崩滑体调查及其形成机制[J]. 地震地质,40(2):410-425. doi: 10.3969/j.issn.0253-4967.2018.02.009
[67] 周鑫,周庆,高帅坡,等,2020. 重庆小南海滑坡原始地形恢复及滑坡体体积计算[J]. 地震地质,42(4):936-954. doi: 10.3969/j.issn.0253-4967.2020.04.011
-