Apatite fission-track study of the volcanic rock area in southeast Zhejiang Province and its geological significance
-
摘要:
中国东南沿海诸省发育了一条长约1200 km的巨型流纹质火山岩带,其中浙江是流纹质火山岩保存面积最大、各类型火山岩构造最完好的省份。目前,浙江省流纹质火山岩的年代学、岩石学、地球化学及矿床学特征已有大量研究,但其后期的抬升剥露历史缺乏系统约束。文章以浙江省东南部雁荡山与神仙居2处复活破火山为研究对象,对其中心相侵入岩开展磷灰石裂变径迹年代学分析与HeFTy热史模拟。结果表明,浙江省东南部雁荡山与神仙居中心相侵入岩的磷灰石裂变径迹年龄多数集中于40~31 Ma,且峰值为33 Ma,部分分布于50~41 Ma,仅少量分布于61~51 Ma;热史模拟结果显示,雁荡山与神仙居地区在始新世早期(约52~48 Ma)至渐新世最早期(34~32 Ma)经历了1期快速抬升冷却事件,该抬升冷却事件早期受控于伊泽那崎−太平洋板块洋脊的俯冲,晚期则由印度−欧亚大陆碰撞汇聚的远程效应与太平洋板块俯冲后撤的共同驱动。研究结果可为浙东南地区新生代大地构造和区域地貌演化提供重要的低温热年代学约束。
Abstract:Objective As an essential component of the East Asian continental margin, the southeastern coastal region of China records a complex history of regional tectonics, magmatism, and geomorphological features associated with the subduction of the Paleo-Pacific/Pacific Plate. This region serves as an ideal window for studying ocean–continent interactions related to subduction zones. During the Cretaceous period, influenced by the rollback of the Paleo-Pacific Plate, a giant rhyolitic volcanic belt approximately 1200 km in length developed along the southeastern coast of China. Among the provinces in this region, Zhejiang hosts the largest preserved area of rhyolitic volcanic rocks and retains the most well-preserved volcanic structures. Previous studies have extensively investigated the geochronology, petrology, geochemistry, and metallogenesis of these rhyolitic volcanic rocks; however, their uplift and cooling history has been largely overlooked.
Methods This study conducted apatite fission track dating and HeFTy thermal history modeling on the central facies intrusive rocks (quartz syenite, syenite and monzonite) of the calderas in the Yandang Mountain and Shenxianju areas.
Results All the apatite fission track dates from the Yandang Mountain and Shenxianju areas show chi-squared probability P(χ2) ≥ 0.05, indicating that the fission track dates of all specimens follow a Poisson distribution and belong to a single age population. Twenty of the total thirty-two specimens from the Yandang Mountain area yielded apatite fission track ages (pooled age and central age) between 40 Ma and 31 Ma, seven of the thirty-two specimens gave apatite fission track ages between 50 Ma to 41 Ma, with only five of the thirty-two specimens yielding apatite fission track ages ranging from 61 Ma to 51 Ma. For the Shenxianju area, the apatite fission track ages are predominantly (sixteen of the twenty-six specimens) distributed between 40 Ma and 31 Ma, with some specimens (eight of the twenty-six specimens) showing ages ranging from 50 Ma to 41 Ma and a few of them (two of the twenty-six specimens) yielding ages between 61 Ma and 51 Ma. Furthermore, the single-grain apatite fission track ages of the specimens from both the Yandang Mountain and Shenxianju areas show a unimodal distribution with a peak at 33 Ma. The mean confined track lengths of the specimens from the Yandang Mountain area vary between ~11.12 μm and ~14.09 μm with unimodal track length distributions. Specimens from the Shenxianju area yielded mean confined track lengths of ~11.11 to ~14.44 μm, also showing a unimodal track length distribution pattern. The mean Dpar values of specimens from the Yandang Mountain area range from 0.78 μm to 1.04 μm, while those from the Shenxianju area display mean Dpar values varying from 0.86 μm to 1.12 μm. The HeFTy thermal history modeling reveals a rapid exhumation and cooling event occurring from the early-Eocene to the earliest Oligocene for both the Yangdang Mountain (48 Ma to 33 Ma) and Shenxianju (52 Ma to 32 Ma) areas. The cooling rates of this event vary from ca. 8 ℃/Myr to 20 ℃/Myr for Yandang Mountain area and ca. 5 ℃/Myr to 16 ℃/Myr for Shenxianju area respectively.
Conclusion Our new apatite fission track dating and HeFTy thermal history modeling results help identify an exhumation and cooling event in the Yangdang Mountain and Shenxianju areas during the early-Eocene to the earliest Oligocene epoch. Based on the results of this study and regional tectonic setting analysis, the early-Eocene to the earliest Oligocene exhumation and cooling event in the study areas is interpreted as being initially controlled by the subduction of the Izanagi-Pacific Plate ridge and later driven by the combined effects of the India-Eurasia continental collision and the rollback of the Pacific Plate.
Significance This study provides important low-temperature thermal geochronological constraints on the Phanerozoic regional tectonic and geomorphological evolution of southeastern Zhejiang province.
-
-
图 6 始新世早期—渐新世最早期东南沿海及其周边地区大地构造模式简图(据Tian et al.,2025修改)
Figure 6.
表 1 磷灰石裂变径迹分析样品采样信息表
Table 1. Elevation, location and lithology of the samples for apatite fission track analysis
样品号 取样高程 采样点位坐标 岩性 北纬 东经 雁荡山百岗尖地区 BGJ-1、BGJ-2、BGJ-3 1107 m 28°22′19.2″ 121°03′32.0″ 石英正长岩 BGJ-4、BGJ-5、BGJ-6 1072 m 28°22′20.8″ 121°03′35″ 石英正长岩 BGJ-7、 BGJ-9 1054 m 28°22′22.0″ 121°03′34.0″ 石英正长岩 BGJ-10、BGJ-11 1034 m 28°22′22.9″ 121°03′35.2″ 石英正长岩 BGJ-13、BGJ-14、BGJ-15 1013 m 28°22′23.4″ 121°03′37.5″ 石英正长岩 BGJ-16、BGJ-17 993 m 28°22′23.6″ 121°03′39.7″ 石英正长岩 BGJ-19、BGJ-20、BGJ-21 972 m 28°22′26.3″ 121°03′37.5″ 石英正长岩 BGJ-22、BGJ-24 951 m 28°22′25″ 121°03′39″ 石英正长岩 BGJ-25、BGJ-26、BGJ-27 930 m 28°22′24.3″ 121°03′43.8″ 石英正长岩 BGJ-28、BGJ-29、BGJ-30 909 m 28°22′25.2″ 121°03′44.0″ 石英正长岩 BGJ-32、BGJ-33 888 m 28°22′26.1″ 121°03′44.9″ 石英正长岩 BGJ-36 867 m 28°22′18.2″ 121°03′47.1″ 石英正长岩 BGJ-40、BGJ-41、BGJ-42 831 m 28°22′10.6″ 121°03′49.7″ 石英正长岩 神仙居淡竹地区 DZ-1、DZ-2、DZ-3 252 m 28°34′44″ 120°35′16″ 微细粒二长岩 DZ-4、DZ-5、DZ-6 272 m 28°34′38″ 120°35′28″ 细粒正长岩 DZ-7、DZ-8、DZ-9 288 m 28°34′34″ 120°36′10″ 细粒正长岩 DZ-10、DZ-11、DZ-12 290 m 28°34′33″ 120°36′12″ 微细粒二长岩 DZ-13、DZ-14、DZ-15 257 m 28°34′37″ 120°35′32″ 细粒正长岩 DZ-17 290 m 28°33′47″ 120°35′25″ 细粒正长岩 DZ-21 329 m 28°33′28″ 120°35′25″ 细粒正长岩 DZ-22、DZ-23、DZ-24 346 m 28°33′23″ 120°35′28″ 细粒正长岩 DZ-25、DZ-26、DZ-27 460 m 28°32′55″ 120°35′28″ 细粒正长岩 DZ-29、DZ-30 481 m 28°32′51″ 120°35′28″ 细粒正长岩 DZ-31 522 m 28°32′35″ 120°35′27″ 细粒正长岩 表 2 磷灰石裂变径迹测试结果表
Table 2. Results of the apatite fission track test
样品 颗粒数 ρs/ (×105/cm−2) (Ns) ρi/ (×105/cm−2) (Ni) ρd/(×105/cm−2) (Nd) 池年龄/
Ma中心年龄/ Ma P(χ2)/% 径迹长度/
(μm ± 1SD) (N)Dpar/ μm DZ-1 20 0.397 (78) 0.560 (110) 50.249 (1004) 48.5 ± 8.7 48.5 ± 8.5 98 13.72 ± 0.59 (5) 1.10 DZ-2 23 0.469 (106) 1.022 (231) 50.520 (1017) 31.6 ± 4.9 31.6 ± 4.8 > 99 / 0.97 DZ-3 20 0.285 (56) 0.417 (82) 50.792 (1029) 47.2 ± 9.4 47.2 ± 9.4 > 99 12.63 ± 0.83 (3) 1.02 DZ-4 24 0.335 (79) 0.742 (175) 51.063 (1041) 31.4 ± 5.3 31.4 ± 5.2 > 99 / 1.00 DZ-5 21 0.300 (62) 0.664 (137) 51.334 (1054) 31.6 ± 5.8 31.6 ± 5.7 > 99 13.80 ± 0.61 (3) 1.03 DZ-6 21 0.528 (109) 1.226 (253) 51.605 (1066) 30.3 ± 4.6 30.3 ± 4.5 > 99 13.02 ± 0.96 (6) 1.04 DZ-7 22 0.638 (138) 1.221 (264) 51.877 (1078) 36.9 ± 5.4 36.9 ± 5.2 99 12.69 ± 0.93 (3) 0.98 DZ-8 20 0.336 (66) 0.651 (128) 52.148 (1091) 36.6 ± 6.6 36.6 ± 6.6 > 99 12.63 ± 0.95 (6) 1.06 DZ-9 20 0.290 (57) 0.509 (100) 52.419 (1103) 40.7 ± 7.9 40.7 ± 7.8 > 99 13.05 ± 0.50 (1) 1.02 DZ-10 25 0.354 (87) 0.798 (196) 52.690 (1115) 31.8 ± 5.2 31.8 ± 5.1 > 99 12.86 ± 0.72 (1) 1.00 DZ-11 24 0.343 (81) 0.407 (96) 52.962 (1128) 60.7 ± 11.0 61.0 ± 11.0 > 99 / 0.99 DZ-12 24 0.428 (101) 0.788 (186) 53.233 (1140) 39.3 ± 6.2 39.3 ± 6.1 > 99 14.44 ± 0.86 (2) 1.05 DZ-13 21 0.339 (70) 0.659 (136) 53.504 (1152) 37.5 ± 6.7 37.5 ± 6.6 > 99 13.09 ± 1.26 (4) 1.05 DZ-14 20 0.594 (53) 1.054 (94) 53.775 (1165) 41.3 ± 8.2 41.0 ± 8.1 > 99 13.00 ± 1.11 (3) 1.00 DZ-15 20 0.341 (47) 0.754 (104) 54.047 (1177) 33.3 ± 6.7 34.0 ± 7.0 > 99 / 1.00 DZ-17 20 0.674 (54) 1.423 (114) 54.589 (1202) 35.2 ± 6.8 35.2 ± 6.7 > 99 12.94 ± 0.16 (2) 0.86 DZ-21 20 0.462 (52) 0.932 (105) 55.674 (1251) 37.5 ± 7.4 37.5 ± 7.3 > 99 13.54 ± 0.18 (2) 0.90 DZ-22 21 0.750 (43) 1.204 (69) 55.945 (1263) 47.4 ± 10.3 47.0 ± 10.0 > 99 / 0.90 DZ-23 20 0.602 (43) l.049 (75) 56.216 (1276) 43.8 ± 9.4 43.8 ± 9.4 > 99 / 1.06 DZ-24 22 0.619 (43) 1.137 (79) 56.488 (1288) 41.8 ± 8.9 41.8 ± 8.9 99 / 1.04 DZ-25 20 0.638 (42) 0.941 (62) 56.759 (1300) 52.3 ± 11.7 52.0 ± 12.0 > 99 12.11 ± 0.67 (6) 1.12 DZ-26 23 0.577 (55) 1.029 (98) 57.030 (1312) 43.5 ± 8.5 43.5 ± 8.4 > 99 / 0.99 DZ-27 20 0.447 (54) 0.820 (99) 7.085 (5668) 36.2 ± 6.7 36.2 ± 6.7 > 99 / 0.91 DZ-29 20 0.488 (53) 0.911 (99) 7.204 (5763) 36.2 ± 6.7 36.2 ± 6.7 > 99 / 1.00 DZ-30 21 0.710 (40) 1.243 (70) 7.264 (5811) 38.9 ± 8.3 38.9 ± 8.2 > 99 12.77 ± 0.88 (4) 0.96 DZ-31 20 0.654 (46) 1.236 (87) 7.324 (5859) 36.3 ± 7.2 36.3 ± 7.1 > 99 / 1.02 BGJ-1 27 1.316 (127) 1.533 (148) 7.503 (6003) 60.2 ± 8.6 61.0 ± 9.0 41 13.23 ± 0.62 (2) 0.98 BGJ-2 20 1.078 (123) 2.007 (229) 7.563 (6050) 38.1 ± 5.1 38.1 ± 5.1 > 99 13.23 ± 1.96 (3) 1.04 BGJ-3 20 1.123 (122) 2.016 (219) 7.623 (6098) 39.8 ± 5.4 39.8 ± 5.4 > 99 12.66 ± 0.95 (1) 1.04 BGJ-4 21 0.784 (45) 1.115 (64) 7.682 (6145) 50.6 ± 10.6 51.0 ± 11.0 97 / 0.93 BGJ-5 20 0.901 (63) 1.087 (76) 7.742 (6193) 60.0 ± 11.2 60.0 ± 11.0 > 99 12.63 ± 1.62 (6) 0.98 BGJ-6 20 0.908 (55) 1.850 (112) 7.802 (6242) 35.9 ± 6.5 35.9 ± 6.5 > 99 12.36 ± 0.45 (3) 0.92 BGJ-7 21 0.649 (53) 1.347 (110) 7.862 (6289) 35.5 ± 6.5 35.5 ± 6.5 > 99 12.26 ± 0.01 (2) 0.97 BGJ-9 20 0.538 (43) 0.938 (75) 7.981 (6385) 42.9 ± 8.8 42.9 ± 8.8 > 99 12.50 ± 0.30 (3) 0.92 BGJ-10 21 0.671 (40) 1.192 (71) 8.041 (6433) 42.4 ± 9.0 42.1 ± 9.1 > 99 / 0.98 BGJ-11 20 0.675 (43) 1.130 (72) 8.101 (6481) 45.3 ± 9.4 45.3 ± 9.4 > 99 / 1.00 BGJ-13 22 0.656 (58) 1.358 (120) 8.220 (6576) 37.2 ± 6.6 37.2 ± 6.6 > 99 / 1.00 BGJ-14 25 0.760 (83) 1.850 (202) 8.280 (6624) 31.9 ± 4.8 31.9 ± 4.8 89 14.09 ± 1.08 (4) 1.03 BGJ-15 20 0.674 (54) 1.435 (115) 8.340 (6672) 36.7 ± 6.7 36.7 ± 6.6 > 99 / 0.94 BGJ-16 20 0.963 (41) 1.410 (60) 8.399 (6720) 53.7 ± 11.6 54.0 ± 12.0 > 99 / 0.88 BGJ-17 23 0.586 (60) 1.075 (110) 8.459 (6767) 43.2 ± 7.7 43.2 ± 7.6 > 99 / 0.92 BGJ-19 21 0.961 (90) 1.569 (147) 0.159 (794) 39.3 ± 6.5 39.4 ± 6.4 93 12.75 ± 0.43 (1) 0.90 BGJ-20 22 0.710 (63) 1.183 (105) 0.159 (797) 38.7 ± 7.2 39.0 ± 7.0 > 99 / 0.91 BGJ-21 21 0.748 (52) 1.439 (100) 0.160 (801) 33.7 ± 6.6 33.7 ± 6.5 > 99 13.10 ± 0.05 (1) 0.90 BGJ-22 20 0.804 (43) 0.935 (50) 0.161 (804) 55.8 ± 12.8 56.0 ± 13.0 > 99 14.50 ± 0.53 (2) 0.78 BGJ-24 24 0.715 (77) l.374 (148) 0.162 (810) 34.1 ± 5.8 34.1 ± 5.7 99 11.12 ± 0.24 (3) 0.96 BGJ-25 20 0.807 (61) 1.720 (130) 0.163 (814) 30.9 ± 5.6 30.9 ± 5.5 99 / 0.92 BGJ-26 20 0.705 (50) 1.467 (104) 0.163 (817) 31.8 ± 6.3 31.7 ± 6.1 > 99 / 0.96 BGJ-27 20 0.666 (68) 1.264 (129) 0.164 (820) 35.0 ± 6.2 35.0 ± 6.1 > 99 13.14 ± 1.05 (1) 0.90 BGJ-28 20 0.778 (38) 1.269 (62) 0.165 (823) 40.8 ± 9.3 40.9 ± 9.2 > 99 / 0.86 BGJ-29 24 0.717 (86) 1.425 (171) 0.165 (826) 33.6 ± 5.5 33.6 ± 5.3 > 99 12.39 ± 0.36 (2) 0.80 BGJ-30 21 0.652 (53) 1.021 (83) 0.166 (830) 42.8 ± 8.6 42.9 ± 8.4 > 99 13.05 ± 0.31 (4) 0.82 BGJ-32 21 0.716 (43) 1.215 (73) 0.167 (836) 39.8 ± 8.5 39.8 ± 8.4 > 99 12.43 ± 0.52 (1) 0.95 BGJ-33 20 0.710 (47) 1.330 (88) 0.168 (839) 36.2 ± 7.4 36.3 ± 7.3 > 99 11.99 ± 0.88 (1) 0.93 BGJ-36 22 0.581 (54) 1.087 (101) 0.170 (849) 36.7 ± 7.1 37.0 ± 7.0 99 12.50 ± 1.12 (4) 0.92 BGJ-40 20 0.992 (43) 1.661 (72) 0.172 (862) 41.6 ± 8.9 41.5 ± 8.8 > 99 / 0.90 BGJ-41 22 0.765 (86) 1.744 (196) 0.173 (865) 30.7 ± 4.9 30.7 ± 4.8 > 99 14.04 ± 0.45 (1) 0.84 BGJ-42 22 0.564 (74) 1.189 (156) 0.174 (868) 33.3 ± 5.7 33.3 ± 5.6 > 99 / 0.90 注:表中Ns为自发径迹数,Ni为诱发径迹数,Nd为标准玻璃的外探测器白云母记录的径迹数;ρs、ρi、ρd分别表示与Ns、Ni、Nd相对应的径迹密度;P(χ2)为χ2检验值;N表示径迹条数;池年龄与中心年龄误差范围均以1个标准误差值(1SD)表示 -
[1] AKCIZ S, BURCHFIEL B C, CROWLEY J L, et al., 2008. Geometry, kinematics, and regional significance of the Chong Shan shear zone, eastern Himalayan Syntaxis, Yunnan, China[J]. Geosphere, 4(1): 292-314. doi: 10.1130/GES00111.1
[2] AN W, HU X M, GARZANTI E, et al., 2021. New precise dating of the India-Asia collision in the Xizang Himalaya at 61 Ma[J]. Geophysical Research Letters, 48(3): e2020GL090641. doi: 10.1029/2020GL090641
[3] CAO S Y, LIU J L, LEISS B, et al., 2011. Oligo-Miocene shearing along the Ailao Shan-Red River shear zone: constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif, SE Xizang, China[J]. Gondwana Research, 19(4): 975-993. doi: 10.1016/j.gr.2010.10.006
[4] CHEN J Y, YANG J H, ZHANG J H, et al. , 2021. Construction of a highly silicic upper crust in southeastern China: insights from the cretaceous intermediate-to-felsic rocks in eastern Zhejiang[J]. Lithos, 402-403: 106012.
[5] CURRIE, C. A. , & HYNDMAN, R. D. , 2006. The thermal structure of subduction zone back arcs. Journal of Geophysical Research: Solid Earth, 111(B8).
[6] DANIELS K A, BASTOW I D, KEIR D, et al., 2014. Thermal models of dyke intrusion during development of continent-ocean transition[J]. Earth and Planetary Science Letters, 385: 145-153. doi: 10.1016/j.jpgl.2013.09.018
[7] DING R X, MIN K, ZOU H P, 2019. Inversion of topographic evolution using low-T thermal history: a case study from coastal mountain system in southeastern China[J]. Gondwana Research, 67: 21-32. doi: 10.1016/j.gr.2018.09.009
[8] DONG S W, LI J H, GAO R, et al., 2023. Intraplate lithospheric extension revealed by seismic reflection profiling of South China[J]. Earth and Planetary Science Letters, 609: 118100. doi: 10.1016/j.jpgl.2023.118100
[9] DUAN W T, HUANG S P, TANG X Y, et al., 2017. Numerical simulation of the thermal diffusion of volcanic magmatism with ANSYS WORKBENCH[J]. Acta Petrologica Sinica, 33(1): 267-278. (in Chinese with English abstract)
[10] DUAN Z, ZHAO X L, XING G F, et al., 2015. Comparison study of petrogeneses and crust-mantle interactions between cretaceous lower and upper volcanic series in the adjacent area of Zhejiang-Fujian provinces[J]. Acta Geologica Sinica, 89(2): 319-338. (in Chinese with English abstract)
[11] FANG Y, ZOU H, BAGAS L, et al., 2020. Fluorite deposits in the Zhejiang Province, Southeast China: the possible role of extension during the late stages in the subduction of the Paleo-Pacific oceanic plate, as indicated by the Gudongkeng fluorite deposit[J]. Ore Geology Reviews, 117: 103276. doi: 10.1016/j.oregeorev.2019.103276
[12] FOURNIER M, JOLIVET L, DAVY P, et al., 2004. Backarc extension and collision: an experimental approach to the tectonics of Asia[J]. Geophysical Journal International, 157(2): 871-889. doi: 10.1111/j.1365-246X.2004.02223.x
[13] GALBRAITH R F, 1981. On statistical models for fission track counts[J]. Journal of the International Association for Mathematical Geology, 13(6): 471-478. doi: 10.1007/BF01034498
[14] GALLAGHER K, 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology[J]. Journal of Geophysical Research: Solid Earth, 117(B2): B02408.
[15] GAN H N, WANG X, WANG B, et al., 2023. Cenozoic thermal rheological evolution of the coastal cathaysia block of East Asia: geodynamic implications[J]. International Geology Review, 65(16): 2580-2593 doi: 10.1080/00206814.2022.2150899
[16] GERDES M L, BAUMGARTNER L P, PERSON M, 1998. Convective fluid flow through heterogeneous country rocks during contact metamorphism[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 23983-24003. doi: 10.1029/98JB02049
[17] GUO Z T, SUN B, ZHANG Z S, et al., 2008. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 4(3): 153-174. doi: 10.5194/cp-4-153-2008
[18] HE Z Y, XU X S, YU Y, et al., 2009. Origin of the Late Cretaceous syenite from Yandangshan, SE China, constrained by zircon U-Pb and Hf isotopes and geochemical data[J]. International Geology Review, 51(6): 556-582. doi: 10.1080/00206810902837222
[19] HU X M, GARZANTI E, MOORE T, et al., 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma)[J]. Geology, 43(10): 859-862. doi: 10.1130/G36872.1
[20] HURFORD A J, GLEADOW A J W, 1977. Calibration of fission track dating parameters[J]. Nuclear Track Detection, 1(1): 41-48. doi: 10.1016/0145-224X(77)90022-9
[21] KARAKAS O, WOTZLAW J F, GUILLONG M, et al., 2019. The pace of crustal-scale magma accretion and differentiation beneath silicic caldera volcanoes[J]. Geology, 47(8): 719-723. doi: 10.1130/G46020.1
[22] KETCHAM R A, 2005. Forward and inverse modeling of low-temperature thermochronometry data[J]. Reviews in mineralogy and geochemistry, 58(1): 275-314. doi: 10.2138/rmg.2005.58.11
[23] KETCHAM R A, CARTER A, DONELICK R A, et al., 2007. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 92(5-6): 799-810. doi: 10.2138/am.2007.2281
[24] KLEIN F, LE ROUX V, 2020. Quantifying the volume increase and chemical exchange during serpentinization[J]. Geology, 48(6): 552-556. doi: 10.1130/G47289.1
[25] LAPIERRE H, JAHN B M, CHARVET J, et al., 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China[J]. Tectonophysics, 274(4): 321-338. doi: 10.1016/S0040-1951(97)00009-7
[26] LAPIERRE H, JAHN B M, CHARVET J, et al., 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang province and their relationship with the tectonic activity in southeastern China[J]. Tectonophysics, 274(4): 321-338. doi: 10.1016/S0040-1951(97)00009-7
[27] LELOUP P H, ARNAUD N, LACASSIN R, et al., 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research: Solid Earth, 106(B4): 6683-6732. doi: 10.1029/2000JB900322
[28] LI J H, ZHANG Y Q, DONG S W, et al., 2014. Cretaceous tectonic evolution of South China: a preliminary synthesis[J]. Earth-Science Reviews, 134: 98-136. doi: 10.1016/j.earscirev.2014.03.008
[29] LI J H, SHI W, ZHANG Y Q, et al., 2016. Thermal evolution of the Hengshan extensional dome in central South China and its tectonic implications: new insights into low-angle detachment formation[J]. Gondwana Research, 35: 425-441. doi: 10.1016/j.gr.2015.06.008
[30] LI J H, DONG S W, GAO R, et al., 2022a. The thinnest crust in South China associated with the Cretaceous lithospheric extension: evidence from SINOPROBE seismic reflection profiling[J]. Tectonics, 41(8): e2022TC007240. doi: 10.1029/2022TC007240
[31] LI S Z, SUO Y H, LIU B, 2018. Submarine tectonic system (volume one)[M]. Beijing: Science Press. (in Chinese)
[32] LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract)
[33] LI S Z, SUO Y H, LI X Y, et al., 2019. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the paleo-pacific plate[J]. Earth-Science Reviews, 192: 91-137. doi: 10.1016/j.earscirev.2019.03.003
[34] LI X M, WANG Y J, TAN K X, et al., 2005. Meso-Cenozoic uplifting and exhumation on Yunkaidashan: evidence from fission track thermochronology[J]. Chinese Science Bulletin, 50(9): 903-909. doi: 10.1007/BF02897385
[35] LI X M, ZOU H P, 2017. Late Cretaceous-Cenozoic exhumation of the southeastern margin of Coastal Mountains, SE China, revealed by fission-track thermochronology: implications for the topographic evolution[J]. Solid Earth Sciences, 2(3): 79-88. doi: 10.1016/j.sesci.2017.02.001
[36] LI X Y, LI S Z, SUO Y H, et al., 2022b. High-silica rhyolites in the terminal stage of massive Cretaceous volcanism, SE China: modified crustal sources and low-pressure magma chamber[J]. Gondwana Research, 102: 133-150. doi: 10.1016/j.gr.2020.10.007
[37] LI Z X, Li X H, 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1
[38] LICHT A, VAN CAPPELLE M, ABELS H A, et al., 2014. Asian monsoons in a late Eocene greenhouse world[J]. Nature, 513(7519): 501-506. doi: 10.1038/nature13704
[39] LIN X, WU Z H, DONG Y Y, et al., 2024. The evolutionary process of Cenozoic Asian monsoon[J]. Journal of Geomechanics, 30(4): 673-690. (in Chinese with English abstract)
[40] LISKER F, VENTURA B, GLASMACHER U A, 2009. Apatite thermochronology in modern geology[M]//LISKER F, VENTURA B, GLASMACHER U A. Thermochronological methods: from palaeotemperature constraints to landscape evolution models. London: Geological Society, London, Special Publications, 324(1): 1-23.
[41] LIU L, XU X S, XIA Y, 2014. Cretaceous pacific plate movement beneath SE China: evidence from episodic volcanism and related intrusions[J]. Tectonophysics, 614: 170-184. doi: 10.1016/j.tecto.2013.12.007
[42] MÜLLER R D, SETON M, ZAHIROVIC S, et al., 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 44: 107-138. doi: 10.1146/annurev-earth-060115-012211
[43] REINERS P W, BRANDON M T, 2006. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 34: 419-466. doi: 10.1146/annurev.earth.34.031405.125202
[44] REN J Y, TAMAKI K, LI S T, et al., 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics, 344(3-4): 175-205. doi: 10.1016/S0040-1951(01)00271-2
[45] RUAN H H, TAO K Y, XU Z L, 1988. Volcanic structure in Kuocangshan district of Zhejiang[J]. Bull. Nanjing Inst. Geol. M. R. , Chinese Acad. Geol. Sci., 9(2): 81-94. (in Chinese with English abstract)
[46] RUAN H H, XIE J Y, TAO K Y, 1993. Circular mega Volcanic structure in Kuocangshan & it’s geological significance[J]. Volcanology & Mineral Resources, 14(4): 1-11. (in Chinese with English abstract)
[47] SCHELLART W P, CHEN Z, STRAK V, et al., 2019. Pacific subduction control on Asian continental deformation including Xizang extension and eastward extrusion tectonics[J]. Nature Communications, 10(1): 4480. doi: 10.1038/s41467-019-12337-9
[48] SETON M, FLAMENT N, WHITTAKER J, et al., 2015. Ridge subduction sparked reorganization of the Pacific plate-mantle system 60-50 million years ago[J]. Geophysical Research Letters, 42(6): 1732-1740. doi: 10.1002/2015GL063057
[49] SHUI T, XU B T, LIANG R H, et al., 1986. Shaoxing-Jiangshan paleocontinent junction zone[J]. Chinese Science Bulletin, 31(6): 444-448. (in Chinese) doi: 10.1360/csb1986-31-6-444
[50] SHUI T, 1988. Tectonic framework of the continental basement of Southeast China[J]. Science China (Series B), 31(7): 885-896.
[51] SOBEL E R, OSKIN M, BURBANK D, et al., 2006. Exhumation of basement-cored uplifts: example of the Kyrgyz Range quantified with apatite fission track thermochronology[J]. Tectonics, 25(2): TC2008.
[52] SU J B, DONG S W, ZHANG Y Q, et al., 2017. Apatite fission track geochronology of the southern Hunan province across the Shi-Hang Belt: insights into the Cenozoic dynamic topography of South China[J]. International Geology Review, 59(8): 981-995. doi: 10.1080/00206814.2016.1240049
[53] SUO Y H, LI S Z, JIN C, et al., 2019. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China[J]. Earth-Science Reviews, 196: 102884. doi: 10.1016/j.earscirev.2019.102884
[54] SUO Y H, LI S Z, CAO X Z, et al., 2020. Mesozoic-Cenozoic basin inversion and geodynamics in East China: a review[J]. Earth-Science Reviews, 210: 103357. doi: 10.1016/j.earscirev.2020.103357
[55] TANG D L K, SEWARD D, WILSON C J N, et al., 2014. Thermotectonic history of SE China since the Late Mesozoic: insights from detailed thermochronological studies of Hong Kong[J]. Journal of the Geological Society, 171(4): 591-604. doi: 10.1144/jgs2014-009
[56] TANG Z C, DONG X F, MENG X S, et al., 2018. Geochronology and geochemistry of Cretaceous rhyolites in the Shenxianju area, Zhejiang province[J]. Journal of Stratigraphy, 42(2): 167-178. (in Chinese with English abstract)
[57] TAO K Y, YU M G, XING G F, et al., 2004. The value and global comparison of the Cretaceous Mt. Yandangshan caldera geologic heritage[J]. Resources Survey & Environment, 25(4): 297-303. (in Chinese with English abstract)
[58] TAO N, LI Z X, DANIŠÍK M, et al., 2017. Thermochronological record of Middle-Late Jurassic magmatic reheating to Eocene rift-related rapid cooling in the SE South China Block[J]. Gondwana Research, 46: 191-203. doi: 10.1016/j.gr.2017.03.003
[59] TAO N, LI Z X, DANIŠÍK M, et al., 2019. Post-250 Ma thermal evolution of the central Cathaysia Block (SE China) in response to flat-slab subduction at the proto-western Pacific margin[J]. Gondwana Research, 75: 1-15. doi: 10.1016/j.gr.2019.03.019
[60] TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
[61] TIAN Z H, SUO Y H, DING X S, et al., 2025. Cenozoic surface Earth system evolution and dynamic palaeogeomorphic reconstruction from the Xizang Plateau to the western Pacific linked by the Yangtze River[J]. Journal of the Geological Society, 183(2): jgs2023-183.
[62] VERMEESCH P, 2018. IsoplotR: a free and open toolbox for geochronology[J]. Geoscience Frontiers, 9(5): 1479-1493. doi: 10.1016/j.gsf.2018.04.001
[63] WANG F, CHEN H L, BATT G E, et al., 2015. Tectonothermal history of the NE Jiangshan-Shaoxing suture zone: evidence from 40Ar/39Ar and fission-track thermochronology in the Chencai region[J]. Precambrian Research, 264: 192-203. doi: 10.1016/j.precamres.2015.04.009
[64] WANG X Y, SUO Y H, LI S Z, et al., 2020. Cenozoic uplift history and its dynamic mechanism along the eastern continental margin of South China[J]. Acta Petrologica Sinica, 36(6): 1803-1820. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.06.10
[65] WANG X Y, XU X S, ZHAO K., 2023. Petrogenesis of episodic Cretaceous volcanic-intrusive rocks in the Kuocangshan-Yandangshan Calderas in the eastern Zhejiang[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 42(5): 1062-1077. (in Chinese with English abstract)
[66] WANG Y, WANG Y J, LI S B, et al., 2020. Exhumation and landscape evolution in eastern South China since the Cretaceous: new insights from fission-track thermochronology[J]. Journal of Asian Earth Sciences, 191: 104239. doi: 10.1016/j.jseaes.2020.104239
[67] WANG Y, ZUO R G, CAO K, et al., 2022. Late Mesozoic to Cenozoic exhumation of the SE South China Block: constraints from zircon and apatite fission-track thermochronology[J]. Tectonophysics, 838: 229518. doi: 10.1016/j.tecto.2022.229518
[68] XIE Y L, WU F L, FANG X M, 2019. Middle Eocene East Asian monsoon prevalence over southern China: evidence from palynological records[J]. Global and Planetary Change, 175: 13-26. doi: 10.1016/j.gloplacha.2019.01.019
[69] XU C H, DENG Y L, BARNES C G, et al., 2023. Offshore-onshore tectonomagmatic correlations: towards a Late Mesozoic non-Andean-type Cathaysian continental margin[J]. Earth-Science Reviews, 240: 104382. doi: 10.1016/j.earscirev.2023.104382
[70] XU X S, ZHAO K, HE Z Y, et al. , 2021. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model[J]. Lithos, 402-403: 105728.
[71] YAN L L, HE Z Y, JAHN B M, et al. , 2016. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation[J]. Lithos, 266-267: 287-308.
[72] YI Y, CARTER A, XIA B, et al., 2009. A fission-track and (U–Th)/He thermochronometric study of the northern margin of the South China Sea: an example of a complex passive margin[J]. Tectonophysics, 474(3-4): 584-594. doi: 10.1016/j.tecto.2009.04.030
[73] YU M G, XING G F, SHEN J L, et al., 2006. Chronologic study on volcanic rocks in the Mt. Yandangshan world geopark[J]. Acta Geologica Sinica, 80(11): 1683-1690. (in Chinese with English abstract)
[74] YU Y W, XU B T, 1999. Stratigraphical sequence and geochronology of the upper Mesozoic volcano-sedimentary rock series in Zhejiang[J]. Journal of Stratigraphy, 23(2): 136-145. (in Chinese with English abstract)
[75] YUAN W M, MO X X, ZHANG A K, et al., 2013. Fission track thermochronology evidence for multiple periods of mineralization in the Wulonggou gold deposits, eastern Kunlun Mountains, Qinghai Province[J]. Journal of Earth Science, 24(4): 471-478. doi: 10.1007/s12583-013-0362-x
[76] ZHANG F X, ZHANG D R, 1990. The circular features on the Xianju Landsat image and its volcanic structural significances[J]. Journal of Zhejiang University (Natural Science), 24(3): 465-473. (in Chinese with English abstract)
[77] ZHANG J H, YANG J H, CHEN J Y, et al. , 2018. Genesis of late early cretaceous high-silica rhyolites in eastern Zhejiang province, Southeast China: a crystal mush origin with mantle input[J]. Lithos, 296-299: 482-495.
[78] ZHANG R Y, YANG F L, HU P P, et al., 2021. Cenozoic tectonic inversion in the northern depression, South Yellow Sea basin, East Asia: structural styles and driving mechanism[J]. Tectonophysics, 798: 228687. doi: 10.1016/j.tecto.2020.228687
[79] ZHANG Y Q, DONG S W, LI J H, 2019. Late Paleogene sinistral strike-slip system along east Qinling and in southern North China: implications for interaction between collision-related block trans-rotation and subduction-related back-arc extension in East China[J]. Tectonophysics, 769: 228181. doi: 10.1016/j.tecto.2019.228181
[80] Zhejiang Provincial Geological Survey Institute, 2024. Regional geology of China, Zhejiang[M]. Beijing: Geological Press. (in Chinese)
[81] ZHENG Y F, XIAO W J, ZHAO G C, 2013. Introduction to tectonics of China[J]. Gondwana Research, 23(4): 1189-1206. doi: 10.1016/j.gr.2012.10.001
[82] ZHOU J, JIN C, SUO Y H, et al., 2021. Yanshanian mineralization and geodynamic evolution in the western Pacific Margin: a review of metal deposits of Zhejiang Province, China[J]. Ore Geology Reviews, 135: 104216. doi: 10.1016/j.oregeorev.2021.104216
[83] ZHOU J, JIN C, SUO Y H, et al., 2022. The Yanshanian (Mesozoic) metallogenesis in China linked to crust-mantle interaction in the western Pacific margin: an overview from the Zhejiang Province[J]. Gondwana Research, 102: 95-132. doi: 10.1016/j.gr.2020.11.003
[84] ZHOU L Y, HUANG L Y, HUANG J J, et al. , 2013. Zhejiang geological tectonic environment and endogenetic metallic deposits[J]. Bulletin of Science and Technology, 29(1): 25-33, 41. (in Chinese with English abstract)
[85] ZHOU X M, LI W X, 2000. Origin of Late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3-4): 269-287. doi: 10.1016/S0040-1951(00)00120-7
[86] ZHOU X M, SUN T, SHEN W Z, et al., 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004
[87] ZHU W L, ZHONG K, FU X W, et al., 2019. The formation and evolution of the East China Sea Shelf Basin: a new view[J]. Earth-Science Reviews, 190: 89-111. doi: 10.1016/j.earscirev.2018.12.009
[88] 段文涛, 黄少鹏, 唐晓音, 等, 2017. 利用ANSYS WORKBENCH模拟火山岩浆活动热扩散过程[J]. 岩石学报, 33(1): 267-278.
[89] 段政, 赵希林, 邢光福, 等, 2015. 浙闽相邻区白垩纪上下火山岩系成因与壳幔作用对比研究[J]. 地质学报, 89(2): 319-338.
[90] 李三忠, 索艳慧, 刘博, 2018. 海底构造系统(上册)[M], 北京: 科学出版社.
[91] 李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677. doi: 10.12090/j.issn.1006-6616.2019.25.05.060
[92] 林旭, 吴中海, 董延钰, 等, 2024. 新生代亚洲季风的演化过程[J]. 地质力学学报, 30(4): 673-690. doi: 10.12090/j.issn.1006-6616.2023093
[93] 阮宏宏, 陶奎元, 徐忠连, 1988. 括苍山地区火山构造[J]. 中国地质科学院南京地质矿产研究所所刊, 9(2): 81-94.
[94] 阮宏宏, 谢家莹, 陶奎元, 1993. 浙江括苍山巨型环形火山构造及其地质意义[J]. 火山地质与矿产, 14(4): 1-11.
[95] 水涛, 徐步台, 梁如华, 等, 1986. 绍兴-江山古陆对接带[J]. 科学通报, 31(6): 444-448.
[96] 水涛, 1987. 中国东南大陆基底构造格局[J]. 中国科学, 17(4): 414-422.
[97] 唐增才, 董学发, 孟祥随, 等, 2018. 浙江神仙居流纹质火山岩年代学、地球化学及其地质意义[J]. 地层学杂志, 42(2): 167-178.
[98] 陶奎元, 余明刚, 邢光福, 等, 2004. 雁荡山白垩纪破火山地质遗迹价值与全球对比[J]. 资源调查与环境, 25(4): 297-303.
[99] 王新毓, 索艳慧, 李三忠, 等, 2020. 华南东部陆缘新生代隆升历史及其动力学机制[J]. 岩石学报, 36(6): 1803-1820.
[100] 王学颖, 徐夕生, 赵凯, 2023. 浙东括苍山-雁荡山破火山白垩纪多旋回火山-侵入杂岩成因研究[J]. 矿物岩石地球化学通报, 42(5): 1062-1077.
[101] 谢家莹, & 徐忠连, 1988. 括苍山地区中生代火山旋回划分. 中国地质科学院南京地质矿产研究所所刊, 9(02): 71-83.
[102] 余明刚, 邢光福, 沈加林, 等, 2006. 雁荡山世界地质公园火山岩年代学研究[J]. 地质学报, 80(11): 1683-1690. doi: 10.3321/j.issn:0001-5717.2006.11.006
[103] 俞云文, 徐步台, 1999. 浙江中生代晚期火山—沉积岩系层序和时代[J]. 地层学杂志, 23(2): 136-145. doi: 10.3969/j.issn.0253-4959.1999.02.008
[104] 张福祥, 张登荣, 1990. 仙居幅卫片上环形体的火山构造意义[J]. 浙江大学学报(自然科学版), 24(3): 465-473.
[105] 浙江省地质调查院, 2024. 中国区域地质志. 浙江志[M]. 北京: 地质出版社.
[106] 周乐尧, 黄立勇, 黄建军, 等, 2013. 浙江地质构造环境与内生金属矿床成矿初探[J]. 科技通报, 29(1): 25-33, 41. doi: 10.3969/j.issn.1001-7119.2013.01.007
-