Correlation of detrital zircon ages among the Nanpanjiang basin, the Babu–Cao Bang tectonic belt, and the Northern Vietnam terrane: Tectonic implications
-
摘要:
古特提斯洋的形成与演化导致了冈瓦纳大陆北缘多个陆块的裂解分离、向北漂移并最终拼贴到亚洲大陆的南侧,该洋盆的闭合形成了多条蛇绿岩带。印支造山带作为古特提斯造山带的一部分,记录了古特提斯洋的演化历史,但其洋盆位置、俯冲极性等关键科学问题仍存在争议。回答上述问题的关键在于厘定中国−越南(中越)边境地区的八布−高平构造带的构造属性和越北地块的构造归属,即八布−高平构造带是否代表开阔洋盆的缝合带,以及越北地块是华南地块的组成部分还是一个独立的小陆块。因此,通过搜集华南地块西南缘南盘江盆地、中越边境地区的八布−高平构造带和越北地块3个构造单元中的31个碎屑岩锆石年龄数据和越北地块斋江岩体的岩浆结晶−继承锆石的年龄数据,进行了锆石年龄分布直方图和概率曲线谱峰对比。研究结果发现,这些样品多具有270~250 Ma、460~420 Ma、1000~900 Ma的年龄谱峰,另外年龄数据在1800 Ma左右以及2500 Ma左右也相对集中,这体现了3个构造单元物源存在较好的一致性。结合南盘江盆地和越北地块晚古生代—早中生代地层对比结果,以及同时期动物区系的相似性,研究推测自泥盆纪以来的伸展作用导致了八布−高平构造带在二叠纪时发育裂谷、深水沉积,甚至演化至初始洋盆;然而由于其扩张幅度有限,未发育成广阔的大洋,也未完全裂解进而阻断了越北地块和南盘江盆地的联系。越北地块是华南地块的重要组成部分,古特提斯开阔洋盆应位于越北地块南侧区域。研究成果为印支造山带中大地构造单元划分提供了证据和论证,对理解中越边境地区印支造山作用和过程具有一定程度的指导价值。
Abstract:Objective During the opening and closing of the Paleo-Tethys ocean, multiple continental blocks rifted from the northern margin of Gondwana, drifted northward, and eventually merged with the southern boundary of the Asian continent, forming multiple serpentinite belts. As part of the Paleo-Tethys orogenic belt, the Indosinian orogenic belt records the evolution history of the Paleo-Tethys ocean; however, key scientific issues, such as the location of the ocean basin and the subduction polarity, remain controversial. The keys to addressing these questions lie in defining the structural characteristics of the Babu–Cao Bang tectonic belt along the Sino-Vietnamese border and clarifying the tectonic affinity of the North Vietnam terrane. Specifically, it has to be determined, whether the Babu–Cao Bang tectonic belt represents a suture zone of a wide ocean basin, and whether the North Vietnam terrane is a component of the South China block or an independent micro-continental block.
Methods In order to clarify these two questions, detrital zircon age data were collected from 31 sedimentary rocks in three tectonic units including the Nanpanjiang basin along the southwestern margin of the South China block, the Babu–Cao Bang tectonic belt, and the North Vietnam terrane. Furthermore, age data of inherited igneous zircon from the Song Chay massif in the North Vietnam terrane were obtained. The zircon age distribution histograms and probability curve peaks were compared within these three tectonic units.
Results It was found that the age spectra of these samples mostly have peaks at 270–250 Ma, 460–420 Ma, and 1000–900 Ma. In addition, the age data are relatively concentrated around 1800 Ma and 2500 Ma, which reflects good consistency in the provenance of the three tectonic units.
Conclusion Based on the stratigraphic correlation between the Nanpanjiang basin and the North Vietnam terrane from the late Paleozoic to the early Mesozoic and the faunal similarities during the same period, this study speculates that an extensional event led to the development of rifts, deep-water sediments, and even oceanic crust in the Babu–Cao Bang tectonic belt during the Permian. However, due to its limited extensional magnitude, this rift failed to evolve into a mature oceanic basin, preserving the tectonic connection between the North Vietnam terrane and the Nanpanjiang basin. The North Vietnam terrane is an important component of the South China block, and the open basin of the Paleo-Tethys ocean should have been located to the south of the North Vietnam terrane. [Significance] This study provides evidence for the division of tectonic units in the Indosinian orogenic belt, and guides our understanding of Indosinian orogenic processes in the Sino-Vietnamese border area.
-
-
[1] CAI J X, ZHANG K J, 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic[J]. Tectonophysics, 467(1-4): 35-43. doi: 10.1016/j.tecto.2008.12.003
[2] CHEN S R, LU G, ZHANG N, et al., 2007. Low metamorphism and deformation tectonics of Triassic system in Youjiang Basin: take Tian'e area as an example[J]. Journal of Guilin University of Technology, 27(3): 304-309. (in Chinese with English abstract)
[3] CHEN Z C, LIN W, FAURE M, et al., 2014. Geochronology and isotope analysis of the Late Paleozoic to Mesozoic granitoids from northeastern Vietnam and implications for the evolution of the South China block[J]. Journal of Asian Earth Sciences, 86: 131-150. doi: 10.1016/j.jseaes.2013.07.039
[4] DU Y S, HUANG H W, HUANG Z Q, et al., 2009. Basin translation from Late Palaeozoic to Triassic of Youjiang basin and its tectonic significance[J]. Bulletin of Geological Science and Technology, 28(6): 10-15. (in Chinese with English abstract)
[5] DUAN L, CHRISTIE-BLICK N, MENG Q R, et al., 2023. A back-arc transtensional origin for the Nanpanjiang basin in the pre-Norian Triassic, with implications for the broader intracontinental development of South China[J]. Basin Research, 35(2): 551-571. doi: 10.1111/bre.12722
[6] FAURE M, LEPVRIER C, VAN NGUYEN V, et al., 2014. The South China block-Indochina collision: where, when, and how?[J]. Journal of Asian Earth Sciences, 79: 260-274. doi: 10.1016/j.jseaes.2013.09.022
[7] FAURE M, LIN W, CHU Y, et al., 2016a. Triassic tectonics of the southern margin of the South China Block[J]. Comptes Rendus Geoscience, 348(1): 5-14.
[8] FAURE M, LIN W, CHU Y, et al., 2016b. Triassic tectonics of the Ailaoshan Belt (SW China): early Triassic collision between the South China and Indochina Blocks, and Middle Triassic intracontinental shearing[J]. Tectonophysics, 683: 27-42. doi: 10.1016/j.tecto.2016.06.015
[9] FENG Q L, LIU B P, 2002. Early Permian radiolarians from Babu ophiolitic mélange in southeastern Yunnan[J]. Earth Science—Journal of China University of Geosciences, 27(1): 1-3. (in Chinese with English abstract)
[10] FU J N, PIRAJNO F, YANG F, et al., 2021. Integration of zircon and apatite U-Pb geochronology and geochemical mapping of the Wude basalts (Emeishan large igneous province): a tool for a better understanding of the tectonothermal and geodynamic evolution of the Emeishan LIP[J]. Geoscience Frontiers, 12(2): 573-585. doi: 10.1016/j.gsf.2020.08.004
[11] GAO J B, YANG R D, ZHENG L L, et al., 2017. Depositional environments and tectonic background of the Middle-Late Devonian siliceous sediments in Luodian, South Guizhou[J]. Acta Geologica Sinica, 91(9): 2004-2020. (in Chinese with English abstract)
[12] GUO W, NIE T, SUN Y L, 2019. New data on the biostratigraphy of the Early Devonian "Spirifer" tonkinensis brachiopod fauna in South China and adjacent region[J]. Palaeobiodiversity and Palaeoenvironments, 99(1): 29-43. doi: 10.1007/s12549-019-00371-w
[13] HALPIN J A, TRAN H T, LAI C K, et al., 2016. U-Pb zircon geochronology and geochemistry from NE Vietnam: a 'tectonically disputed' territory between the Indochina and South China blocks[J]. Gondwana Research, 34: 254-273. doi: 10.1016/j.gr.2015.04.005
[14] HOA T T, ANH T T, PHUONG N T, et al., 2008. Permo-Triassic intermediate-felsic magmatism of the Truong Son belt, eastern margin of Indochina[J]. Comptes Rendus Géoscience, 340(2-3): 112-126.
[15] HU L S, CAWOOD P A, DU Y S, et al. , 2024. OIB-type mafic-ultramafic rocks in South Guangxi, South China: a record of interaction between Paleo-Tethys subduction and Emeishan large Igneous Province[J]. Lithos, 468-469: 107497.
[16] HUANG Y, HE C, CHEN N S, et al., 2019. Diabase sills in the outer zone of the Emeishan Large Igneous Province, Southwest China: petrogenesis and tectonic implications[J]. Journal of Earth Science, 30(4): 739-753. doi: 10.1007/s12583-019-1241-x
[17] HUANG Z Q, HUANG H, DU Y S, et al., 2013. Depositional chemistry of cherts of the Late Paleozoic in Napo rift basin, Guangxi and its implication for the tectonic evolution[J]. Earth Science—Journal of China University of Geosciences, 38(2): 253-265. (in Chinese with English abstract) doi: 10.3799/dqkx.2013.026
[18] JIANG W, YAN Q R, XIA W J, et al., 2021. Geochronology and petrogenesis of Triassic low-Ti mafic intrusions in Funing: implications for the tectonic evolution of Nanpanjiang Basin, SW China[J]. Geological Journal, 56(10): 5235-5254. doi: 10.1002/gj.4234
[19] LEPVRIER C, FAURE M, VAN V N, et al., 2011. North-directed Triassic nappes in Northeastern Vietnam (East Bac Bo)[J]. Journal of Asian Earth Sciences, 41(1): 56-68. doi: 10.1016/j.jseaes.2011.01.002
[20] LI Q L, LIN W, WANG Y, et al., 2021. Detrital zircon U-Pb age distributions and Hf isotopic constraints of the Ailaoshan-Song Ma Suture Zone and their paleogeographic implications for the Eastern Paleo-Tethys evolution[J]. Earth-Science Reviews, 221: 103789. doi: 10.1016/j.earscirev.2021.103789
[21] LIN W, LIU F, WANG Y, et al., 2024. Temporal and spatial heterogeneity of the Ailaoshan-Song Ma-Song Chay ophiolitic mélange, and its significance on the evolution of Paleo-Tethys[J]. Comptes Rendus Géoscience, 356(S2): 115-136.
[22] LIN W, WANG Y, LIU F, et al., 2024. Indosinian orogenic belt: Song Chay tectonic belt[J]. Acta Petrologica Sinica, 40(1): 1-28. (in Chinese with English abstract) doi: 10.18654/1000-0569/2024.01.01
[23] LIU B P, FENG Q L, FANG N Q, et al., 1993. Tectonic evolution of Palaeo-Tethys poly-island-ocean in Changning-Menglian and Lancangjiang belts, southwestern Yunnan, China[J]. Earth Science—Journal of China University of Geosciences, 18(5): 529-539. (in Chinese with English abstract)
[24] LIU C, 2017. Sedimentary features and evolution of the Late Paleozoic isolated Bama Platform in the Youjiang Basin: responses to and implications for the deep-time climate change[D]. Wuhan: China University of Geosciences: 1-214. (in Chinese with English abstract)
[25] LIU J L, TRAN M D, TANG Y, et al., 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: geochronology, geochemistry and tectonic implications[J]. Gondwana Research, 22(2): 628-644. doi: 10.1016/j.gr.2011.10.011
[26] LIU X J, LIANG Q D, LI Z L, et al., 2017. Origin of Permian extremely high Ti/Y mafic lavas and dykes from Western Guangxi, SW China: implications for the Emeishan mantle plume magmatism[J]. Journal of Asian Earth Sciences, 141: 97-111. doi: 10.1016/j.jseaes.2016.09.005
[27] METCALFE I, 2021. Multiple Tethyan ocean basins and orogenic belts in Asia[J]. Gondwana Research, 100: 87-130. doi: 10.1016/j.gr.2021.01.012
[28] QIU L, YAN D P, TANG S L, et al., 2016. Mesozoic geology of southwestern China: indosinian foreland overthrusting and subsequent deformation[J]. Journal of Asian Earth Sciences, 122: 91-105. doi: 10.1016/j.jseaes.2016.03.006
[29] ROGER F, MALUSKI H, LEPVRIER C, et al., 2012. LA-ICPMS zircons U/Pb dating of Permo-Triassic and Cretaceous magmatisms in Northern Vietnam-Geodynamical implications[J]. Journal of Asian Earth Sciences, 48: 72-82. doi: 10.1016/j.jseaes.2011.12.012
[30] SHI G R, SHEN S Z, 1998. A Changhsingian (Late Permian) brachiopod fauna from Son La, northwest Vietnam[J]. Journal of Asian Earth Sciences, 16(5-6): 501-511. doi: 10.1016/S0743-9547(98)00028-2
[31] SHU L S, YAO J L, WANG B, et al., 2021. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block[J]. Earth-Science Reviews, 216: 103596. doi: 10.1016/j.earscirev.2021.103596
[32] SONE M, METCALFE I, 2008. Parallel Tethyan sutures in mainland Southeast Asia: new insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Géoscience, 340(2-3): 166-179.
[33] THANH N X, HAI T T, HOANG N, et al., 2014. Backarc mafic–ultramafic magmatism in Northeastern Vietnam and its regional tectonic significance[J]. Journal of Asian Earth Sciences, 90: 45-60. doi: 10.1016/j.jseaes.2014.04.001
[34] THANH T D, KHUC V, 2006. Stratigraphic units of Vietnam[M]. Hanoi: Vietnam National University Publishing House: 1-526.
[35] TRAN H T, DANG B V, DO T D, et al. , 2007. The occurrence of pillow basalts in Cao Bang–Lang Son area and their implication to the tectonic setting of East Bac Bo region[J]. Journal of Geology, Department of Geology and Minerals of Vietnam, 299: 10-24. (in Vietnamese)
[36] TRAN H T, POLYAKOV G V, TRAN A T, et al. , 2016. Intraplate magmatism and metallogeny of North Vietnam[M]. Cham: Springer: 103-152.
[37] WAN B, WU F Y, ZHU R X, 2023. The influence of Tethyan evolution on changes of the Earth's past environment[J]. Science China Earth Sciences, 66(12): 2653-2665. (in Chinese with English abstract) doi: 10.1007/s11430-023-1185-3
[38] WANG Y, LIN W, FAURE M, et al., 2021. Detrital zircon U-Pb age distribution and Hf isotopic constraints from the terrigenous sediments of the Song Chay suture Zone (NE Vietnam) and their paleogeographic implications on the eastern Paleo‐Tethys evolution[J]. Tectonics, 40(8): e2020TC006611. doi: 10.1029/2020TC006611
[39] WU F Y, WAN B, ZHAO L, et al., 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627-1674. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.06.01
[40] XIA L, YAN Q R, XIANG Z J, et al., 2018. Olistotromes in the northern margin of the Napo forearc basin (Guangxi, South China): a special indicator for discriminating forearc domain[J]. Acta Petrologica Sinica, 34(3): 685-700. (in Chinese with English abstract).
[41] XIA L, YAN Q R, XIANG Z J, et al., 2021. Provenance and tectonic setting of the Triassic clastic deposits in the Napo basin, South China: evidence from petrography, whole-rock geochemistry and detrital zircon U-Pb geochronology[J]. Geological Magazine, 158(12): 2095-2114. doi: 10.1017/S0016756821000558
[42] XIA L, YAN Q R, XIANG Z J, et al., 2022. Triassic detrital records in the western Dian-Qiong suture, South China: implications for the eastern Paleo-Tethys evolution[J]. Terra Nova, 34(6): 561-571. doi: 10.1111/ter.12623
[43] XIA W J, YAN Q R, XIANG Z J, et al., 2018. Sedimentary characteristics of the Early-Middle Triassic on the south flank of the the Xilin faulted block in the Nanpanjiang basin and its tectonic implications[J]. Acta Petrologica Sinica, 34(7): 2119-2139. (in Chinese with English abstract).
[44] XIA W J, YAN Q R, XIANG Z J, et al., 2019. Baddeleyite and zircon U-Pb dating of Badu diabase in the Nanpanjiang basin and its tectonic significance[J]. Acta Geoscientica Sinica, 40(2): 265-278. (in Chinese with English abstract)
[45] XIANG Z J, YAN Q R, XIA L, et al., 2021. The tectonic setting of the Early-Middle Triassic volcanic-sedimentary succession in Funing-Napo area, the south margin of Nanpanjiang Basin, South China[J]. Geological Bulletin of China, 40(1): 138-151. (in Chinese with English abstract)
[46] XIANG Z J, YANG J H, YAN Q R, et al., 2022. Petrogenesis of the Early-Middle Triassic high-Mg andesitic rocks in the southern margin of the South China Block: implications for the convergence between the South China and Indochina Blocks[J]. Journal of Asian Earth Sciences, 232: 104994. doi: 10.1016/j.jseaes.2021.104994
[47] YANG J H, CAWOOD P A, DU Y S, et al. , 2012. Detrital record of Indosinian mountain building in SW China: provenance of the Middle Triassic turbidites in the Youjiang Basin[J]. Tectonophysics, 574-575: 105-117.
[48] YAO S X, ZHOU K H, YU H M, et al., 2018. Extension of the Devonian Danchi sequence in western Guangxi province[J]. Journal of Stratigraphy, 42(2): 238-242. (in Chinese with English abstract)
[49] ZHANG B H, DING J, ZHANG L K, et al., 2013. SHRIMP zircon U–Pb chronology of the Babu ophiolite in southeastern Yunnan province[J]. Acta Geologica Sinica, 87(10): 1498-1509. (in Chinese with English abstract)
[50] ZHANG C G, ZENG R Y, LI C M, et al., 2021. Late Permian High-Ti basalt in Western Guangxi, SW China and its link with the Emeishan Large Igneous Province: geochronological and geochemical perspectives[J]. Frontiers in Earth Science, 9: 729955. doi: 10.3389/feart.2021.729955
[51] ZHANG Q, ZHANG K W, LI D Z, et al. , 1988. A preliminary study of Shuanggou ophiolite in Xinping county, Yunnan province[J]. Acta Petrologica Sinica(4): 37-48. (in Chinese with English abstract)
[52] ZHONG D L, WU G Y, JI J Q, et al., 1999. Discovery of ophiolite in Southeast Yunnan, China[J]. Chinese Science Bulletin, 44(1): 36-41. doi: 10.1007/BF03182880
[53] ZHOU X Y, YU J H, O’REILLY S Y, et al. , 2017. Sources of the Nanwenhe-Song Chay granitic complex (SW China - NE Vietnam) and its tectonic significance[J]. Lithos, 290-291: 76-93.
[54] 陈暑荣, 陆刚, 张能, 等, 2007. 右江盆地三叠系的极低级变质作用与变形构造: 以天峨地区为例[J]. 桂林工学院学报, 27(3): 304-309.
[55] 杜远生, 黄宏伟, 黄志强, 等, 2009. 右江盆地晚古生代—三叠纪盆地转换及其构造意义[J]. 地质科技情报, 28(6): 10-15.
[56] 冯庆来, 刘本培, 2002. 滇东南八布蛇绿混杂岩中的早二叠世放射虫化石[J]. 地球科学−中国地质大学学报, 27(1): 1-3.
[57] 高军波, 杨瑞东, 郑禄林, 等, 2017. 黔南罗甸中晚泥盆世硅质岩类沉积环境及其形成的大地构造背景[J]. 地质学报, 91(9): 2004-2020. doi: 10.3969/j.issn.0001-5717.2017.09.007
[58] 黄志强, 黄虎, 杜远生, 等, 2013. 广西那坡裂陷盆地晚古生代硅质岩地球化学特征及其地质意义[J]. 地球科学−中国地质大学学报, 38(2): 253-265.
[59] 林伟, 王印, 刘飞, 等, 2024. 印支造山带: Song Chay构造带[J]. 岩石学报, 40(1): 1-28. doi: 10.18654/1000-0569/2024.01.01
[60] 刘本培, 冯庆来, 方念乔, 等, 1993. 滇西南昌宁—孟连带和澜沧江带古特提斯多岛洋构造演化[J]. 地球科学−中国地质大学学报, 18(5): 529-539.
[61] 刘超, 2017. 华南右江盆地晚古生代巴马孤立台地沉积特征与演化: 对深时古气候演变的响应和启示[D]. 武汉: 中国地质大学: 1-214.
[62] 万博, 吴福元, 朱日祥, 2023. 特提斯演化对地球环境演变的影响[J]. 中国科学: 地球科学, 53(12): 2687-2700.
[63] 吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627-1674. doi: 10.18654/1000-0569/2020.06.01
[64] 夏磊, 闫全人, 向忠金, 等, 2018. 广西那坡盆地火山岩-碳酸盐岩混杂型滑塌堆积: 特殊的弧前域构造指相标志及其大地构造意义[J]. 岩石学报, 34(3): 685-700.
[65] 夏文静, 闫全人, 向忠金, 等, 2018. 南盘江盆地中部西林断隆南翼中—下三叠统沉积学特征及其大地构造意义[J]. 岩石学报, 34(7): 2119-2139.
[66] 夏文静, 闫全人, 向忠金, 等, 2019. 南盘江盆地八渡辉绿岩斜锆石和锆石U-Pb年龄及其地质意义[J]. 地球学报, 40(2): 265-278. doi: 10.3975/cagsb.2018.070901
[67] 向忠金, 闫全人, 夏磊, 等, 2021. 南盘江盆地南缘富宁—那坡地区早—中三叠世火山−沉积组合形成环境[J]. 地质通报, 40(1): 138-151. doi: 10.12097/gbc.dztb-40-1-138
[68] 姚仕祥, 周开华, 庾慧敏, 等, 2018. 丹池地区泥盆纪地层序列在右江裂陷盆地的延伸[J]. 地层学杂志, 42(2): 238-242.
[69] 张斌辉, 丁俊, 张林奎, 等, 2013. 滇东南八布蛇绿岩的SHRIMP锆石U-Pb年代学研究[J]. 地质学报, 87(10): 1498-1509.
[70] 张旗, 张魁武, 李达周, 等, 1988. 云南新平县双沟蛇绿岩的初步研究[J]. 岩石学报(4): 37-48.
-