Geochronology and geochemistry of intermediate−acid intrusive rocks in Xinlong area, Sichuan Province and its constraints on the evolution of Ganzi−Litang Ocean
-
摘要:
基于详细的野外调查,对四川新龙地区不同类型侵入岩进行了岩石学、地球化学和锆石U−Pb同位素测年,探讨其岩石成因及构造背景。研究表明,古隆巴花岗闪长岩和日果闪长岩同属准铝质系列,具有低硅碱、高铁镁特征,中等的稀土元素总量及明显的Nb、Ta负异常,属于I型花岗岩,为俯冲期岩浆活动产物,获得日果闪长岩锆石U−Pb年龄为217.1 ± 0.8 Ma,形成时代为晚三叠世。日里隆巴花岗闪长岩和花岗岩属于过铝质系列,具有高硅碱、低铁镁及弱的Nb、Ta负异常,均属于S型花岗岩,但后者经历了更高程度的分异,分别为碰撞期和后碰撞期岩浆活动的产物,获得日里隆巴花岗闪长岩锆石U−Pb年龄为203.6 ± 0.5 Ma,形成时代为晚三叠世末。结合区域资料认为,晚三叠世甘孜−理塘洋盆大规模向西俯冲,少量的弧岩浆岩就位于被动大陆边缘雅江残余盆地;晚三叠世末期,由于洋板块的消亡发生弧−陆碰撞,地壳发生部分熔融,形成强过铝质花岗岩。
Abstract:The Yajiang residual basin is located on the southeastern margin of Tibetan Plateau and is an important part of the Yulong−Bayankala foreland basin in the Qiangtang−Sanjiang orogenic system. Based on detailed field investigations, we carried out petrology, geochemistry and zircon U−Pb isotope dating of different types of intrusive rocks in the Xinlong area of Sichuan Province, to discuss their petrogenesis and tectonic background. The results indicate that both the Gulongba granodiorite and the Riguo diorite belong to the metaluminous granites, with low silica, low alkaline, high Fe−Mg characteristics, intermediate REE total contents, and obvious Nb and Ta negative anomalies. They belong to the I−type granites, which are products of subduction magmatic activity. The Riguo diorite was formed at the Late Triassic with zircon U−Pb age of 217.1 ± 0.8 Ma. The Rililongba granodiorite and granite are the peraluminous rocks, with high silica, high alkaline, low Fe−Mg and weak Nb and Ta negative anomalies. Both of them belong to S−type granite, but the latter experienced higher differentiation degree. They were the products of collisional and post−collisional magmatic activity. The zircon U−Pb age of the Rilongba granodiorite is 203.6 ± 0.5 Ma, and its formation period is the end of the Late Triassic. It is believed that the Ganzi−Litang paleo−ocean basin was subducted westward in the Late Triassic, and a small amount of arc intrusions were located in the Yajiang residual basin on the passive continental margin. At the end of the Late Triassic, the arc−land collision occurred due to the extinction of oceanic plates, which caused partial melting of the crust to form strong peraluminous granites.
-
Key words:
- Xinlong area /
- Yajiang residual basin /
- granite /
- zircon U−Pb dating /
- geochemistry /
- geological survey engineering /
- Sichuan Province
-
-
图 1 研究区大地构造位置(a, b, 据Yang et al., 2015修改)和四川新龙地区侵入岩地质简图(c)
Figure 1.
图 3 四川新龙地区侵入岩SiO2−(Na2O+K2O)图解(底图据Middlemost, 1994)
Figure 3.
图 4 四川新龙地区侵入岩SiO2−K2O图解(a, 底图据Richter, 1989)和A/CNK−A/NK图解(b, 底图据 Maniar et al., 1989)
Figure 4.
图 5 四川新龙地区侵入岩稀土元素球粒陨石标准化图解(a)和微量元素原始地幔标准化蛛网图(b)(标准化值据Sun et al., 1989)
Figure 5.
图 6 四川新龙地区侵入岩源区判别图解(底图据Sylvester, 1998)
Figure 6.
图 7 四川新龙地区侵入岩构造环境判别图解(底图据Pearce et al., 1984; Pearce, 1996)
Figure 7.
图 8 四川新龙地区侵入岩构造环境Hf−Ta−Rb图解(底图据Harris et al., 1986)
Figure 8.
表 1 四川新龙地区侵入岩锆石U−Th−Pb同位素测试结果
Table 1. Zircon U−Th−Pb dating results of the intrusive rocks in the Xinlong area, Sichuan Province
分析点 含量/10−6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/ 1σ 207Pb/ 1σ 206Pb/ 1σ rho 207Pb/ 1σ 207Pb/ 1σ 206Pb/ 1σ 206Pb 235U 238U 206Pb 235U 238U RG−DN1 RG−DN1−1 13 145 323 0.45 0.0501 0.0027 0.2439 0.0146 0.0347 0.0007 0.3212 211 123 222 12 220 4 RG−DN1−2 10 104 264 0.40 0.0568 0.0051 0.2676 0.0236 0.0344 0.0007 0.2377 483 229 241 19 218 5 RG−DN1−3 13 158 331 0.48 0.0500 0.0025 0.2370 0.0124 0.0344 0.0006 0.3475 195 119 216 10 218 4 RG−DN1−4 12 149 315 0.47 0.0483 0.0032 0.2253 0.0142 0.0344 0.0007 0.3119 122 139 206 12 218 4 RG−DN1−5 10 127 280 0.45 0.0576 0.0052 0.2371 0.0217 0.0302 0.0011 0.3934 522 198 216 18 192 7 RG−DN1−6 13 135 329 0.41 0.0493 0.0032 0.2371 0.0157 0.0346 0.0006 0.2599 161 47 216 13 219 4 RG−DN1−7 7 70 205 0.34 0.0575 0.0066 0.2423 0.0238 0.0318 0.0010 0.3273 509 254 220 19 202 6 RG−DN1−8 9 88 250 0.35 0.0558 0.0033 0.2481 0.0151 0.0323 0.0006 0.3206 443 133 225 12 205 4 RG−DN1−9 13 152 341 0.45 0.0497 0.0028 0.2310 0.0126 0.0341 0.0006 0.3088 189 125 211 10 216 4 RG−DN1−10 9 115 228 0.51 0.0571 0.0045 0.2550 0.0191 0.0330 0.0009 0.3446 498 169 231 15 209 5 RG−DN1−11 13 171 311 0.55 0.0493 0.0031 0.2332 0.0143 0.0347 0.0006 0.2976 161 146 213 12 220 4 RG−DN1−12 14 179 345 0.52 0.0514 0.0029 0.2405 0.0129 0.0345 0.0005 0.2935 257 130 219 11 218 3 RG−DN1−14 12 106 302 0.35 0.0528 0.0030 0.2458 0.0130 0.0344 0.0005 0.2685 324 134 223 11 218 3 RG−DN1−15 14 169 337 0.50 0.0521 0.0027 0.2476 0.0131 0.0344 0.0005 0.2852 300 149 225 11 218 3 RG−DN1−16 10 116 246 0.47 0.0493 0.0033 0.2282 0.0150 0.0343 0.0006 0.2491 161 161 209 12 217 4 RG−DN1−17 8 69 198 0.35 0.0547 0.0034 0.2495 0.0149 0.0341 0.0006 0.3090 467 173 226 12 216 4 RG−DN1−18 9 76 229 0.33 0.0475 0.0034 0.2200 0.0143 0.0344 0.0007 0.3060 72 159 202 12 218 4 RG−DN1−19 9 80 221 0.36 0.0497 0.0046 0.2293 0.0209 0.0344 0.0009 0.2770 189 200 210 17 218 5 RG−DN1−20 9 90 242 0.37 0.0464 0.0031 0.2104 0.0146 0.0335 0.0008 0.3320 20 152 194 12 212 5 RG−DN1−21 8 84 214 0.39 0.0487 0.0034 0.2208 0.0142 0.0341 0.0007 0.3059 200 87 203 12 216 4 RG−DN1−22 9 79 233 0.34 0.0464 0.0050 0.2155 0.0215 0.0338 0.0008 0.2406 20 241 198 18 214 5 RG−DN1−23 26 408 587 0.70 0.0494 0.0024 0.2368 0.0114 0.0348 0.0004 0.2510 169 115 216 9 220 3 RG−DN1−24 5 48 139 0.34 0.0551 0.0051 0.2564 0.0216 0.0345 0.0009 0.2995 417 207 232 17 219 5 RG−DN1−25 10 109 245 0.44 0.0520 0.0034 0.2405 0.0147 0.0342 0.0006 0.2685 287 152 219 12 217 4 RG−DN1−26 17 208 437 0.48 0.0514 0.0023 0.2448 0.0110 0.0347 0.0007 0.4671 261 100 222 9 220 5 DN2539 DN2539−1 95 153 287 0.53 0.0479 0.0017 0.2134 0.0080 0.0323 0.0004 0.3083 100 85 196 7 205 2 DN2539−2 77 124 326 0.38 0.0509 0.0016 0.2223 0.0070 0.0318 0.0004 0.4375 235 72 204 6 202 3 DN2539−3 222 371 517 0.72 0.0521 0.0013 0.2281 0.0062 0.0317 0.0003 0.3753 300 57 209 5 201 2 DN2539−4 100 170 263 0.65 0.0494 0.0015 0.2184 0.0064 0.0321 0.0003 0.2951 165 70 201 5 204 2 DN2539−6 179 296 685 0.43 0.0540 0.0015 0.2385 0.0069 0.0320 0.0004 0.4418 369 59 217 6 203 3 DN2539−7 59 100 196 0.51 0.0482 0.0029 0.2130 0.0129 0.0321 0.0005 0.2478 106 150 196 11 203 3 DN2539−8 348 269 464 0.58 0.0587 0.0013 0.4256 0.0146 0.0523 0.0014 0.7904 567 48 360 10 328 9 DN2539−9 275 455 615 0.74 0.0522 0.0015 0.2317 0.0066 0.0321 0.0003 0.3666 295 69 212 5 204 2 DN2539−10 53 76 161 0.47 0.0522 0.0022 0.2284 0.0100 0.0317 0.0004 0.3133 300 98 209 8 201 3 DN2539−11 137 224 618 0.36 0.0501 0.0015 0.2237 0.0070 0.0323 0.0004 0.4441 198 69 205 6 205 3 DN2539−12 123 196 300 0.66 0.0505 0.0018 0.2266 0.0086 0.0325 0.0004 0.3523 217 83 207 7 206 3 DN2539−13 93 156 274 0.57 0.0533 0.0020 0.2360 0.0086 0.0322 0.0004 0.3575 343 88 215 7 204 3 DN2539−14 112 182 255 0.72 0.0476 0.0018 0.2140 0.0091 0.0323 0.0005 0.3642 76 89 197 8 205 3 DN2539−15 187 285 684 0.42 0.0524 0.0012 0.2336 0.0064 0.0322 0.0004 0.4948 302 49 213 5 204 3 DN2539−16 100 167 280 0.60 0.0478 0.0017 0.2125 0.0071 0.0324 0.0004 0.3614 100 −116 196 6 206 2 DN2539−17 70 112 204 0.55 0.0516 0.0023 0.2266 0.0098 0.0321 0.0004 0.3009 333 100 207 8 203 3 DN2539−18 181 299 658 0.45 0.0493 0.0012 0.2203 0.0058 0.0324 0.0004 0.4965 161 56 202 5 206 3 DN2539−19 234 382 609 0.63 0.0489 0.0012 0.2157 0.0056 0.0319 0.0003 0.3549 146 62 198 5 203 2 DN2539−20 118 194 343 0.57 0.0494 0.0017 0.2170 0.0072 0.0320 0.0003 0.3178 165 78 199 6 203 2 DN2539−21 118 194 475 0.41 0.0504 0.0016 0.2223 0.0070 0.0321 0.0004 0.3867 213 72 204 6 204 2 DN2539−22 76 124 268 0.46 0.0502 0.0017 0.2211 0.0076 0.0321 0.0005 0.4339 206 78 203 6 204 3 DN2539−23 96 163 349 0.47 0.0530 0.0018 0.2340 0.0081 0.0320 0.0004 0.3725 332 78 214 7 203 3 DN2539−24 177 283 588 0.48 0.0506 0.0011 0.2255 0.0051 0.0323 0.0003 0.4725 220 52 206 4 205 2 DN2539−25 105 177 435 0.41 0.0515 0.0016 0.2270 0.0076 0.0319 0.0004 0.4174 265 77 208 6 203 3 表 2 四川新龙地区侵入岩主量、微量和稀土元素分析结果
Table 2. Major, trace and rare earth elements contents of the intrusive rocks in the Xinlong area, Sichuan province
元素 日里隆巴岩体花岗闪长岩 日里隆巴岩体花岗岩 古隆巴岩体花岗闪长岩 日果岩体闪长岩 FX2539−1 FX2540−1 FX2544−1 FX2544−2 FX2544−3 FX2545−1 FX2542−1 FX2543−1 FX2543−2 FX2539−2 FX2540−2 FX2540−3 FX2540−4 PM031−5FX1 PM031−7FX1 PM031−6FX1 PM031−6FX2 PM003−9FX1 PM003−9FX2 FX1191−1 FX1192−1 RG−FX1 RG−FX2 SiO2 67.96 67.22 68.75 67.38 67.19 68.35 73.66 66.26 73.39 73.59 74.02 75.27 73.65 61.26 58.92 61.86 59.67 58.02 58.87 56.98 56.16 56.30 56.56 Na2O 2.70 3.00 2.66 2.87 2.81 2.53 3.30 3.60 3.12 3.11 2.94 2.12 2.26 1.52 1.66 1.45 1.51 2.05 2.26 2.35 2.13 2.01 1.88 K2O 3.25 2.38 3.24 2.94 3.14 3.16 4.50 3.85 4.84 5.23 5.93 5.13 4.75 1.39 1.38 1.31 1.37 1.74 1.98 1.45 1.45 1.39 1.34 CaO 3.31 3.76 3.22 3.88 3.87 3.59 1.95 3.05 2.10 1.07 0.99 1.07 1.01 5.53 5.43 5.32 5.45 7.75 7.28 7.36 8.80 8.56 8.64 FeO 2.96 3.24 2.92 3.31 3.21 3.14 1.61 2.32 1.47 0.25 0.25 0.21 0.37 5.04 5.30 5.55 5.83 6.00 5.68 6.30 6.33 6.30 6.39 Fe2O3 0.25 0.34 0.16 0.34 0.42 0.31 0.28 0.52 0.36 0.12 0.09 0.12 0.03 0.40 0.41 0.58 0.36 1.49 1.65 1.81 1.69 1.54 0.96 MgO 1.45 1.70 1.40 1.80 1.75 1.58 0.53 1.19 0.73 0.07 0.06 0.08 0.07 3.01 3.41 3.12 3.26 4.27 4.12 4.34 4.36 4.32 4.88 Al2O3 16.30 16.96 16.02 17.64 17.49 16.07 15.80 18.27 16.33 13.91 14.21 12.03 11.59 13.85 14.44 13.36 13.88 15.51 15.93 16.04 16.16 16.59 15.97 P2O5 0.17 0.17 0.16 0.18 0.17 0.18 0.10 0.16 0.12 0.01 0.02 0.01 0.02 0.18 0.19 0.19 0.17 0.12 0.11 0.16 0.13 0.16 0.16 TiO2 0.71 0.77 0.67 0.81 0.78 0.75 0.28 0.55 0.37 0.06 0.06 0.06 0.07 1.16 1.18 1.22 1.17 0.80 0.79 0.94 0.89 0.89 0.82 MnO 0.11 0.12 0.11 0.12 0.12 0.12 0.06 0.10 0.07 0.01 0.02 0.01 0.01 0.19 0.20 0.19 0.18 0.18 0.16 0.20 0.18 0.21 0.21 烧失量 0.85 1.26 1.13 1.08 1.00 0.99 0.67 0.72 0.59 0.58 0.65 0.71 0.69 1.71 2.33 0.82 0.94 2.51 1.70 2.67 1.96 1.54 1.51 La 32.67 34.72 33.38 31.17 36.34 38.25 30.67 29.25 20.05 6.74 7.96 11.42 7.78 18.92 20.81 21.96 20.34 23.16 23.30 28.14 26.79 25.38 21.56 Ce 60.08 61.84 60.89 56.33 62.30 66.19 56.29 53.23 36.31 15.05 20.07 25.87 19.34 41.43 41.51 42.97 39.75 42.84 43.24 53.45 47.38 48.09 44.43 Pr 6.57 6.38 6.41 6.06 6.44 7.12 5.58 5.56 4.26 2.18 2.83 3.28 2.87 4.94 5.16 4.85 4.80 4.87 5.14 6.11 5.21 4.99 4.51 Nd 25.02 23.27 21.57 22.96 27.06 26.38 22.76 20.81 15.42 9.74 12.83 16.04 13.57 18.36 21.37 20.20 19.03 18.29 17.78 24.81 20.42 21.08 19.16 Sm 4.39 4.32 4.05 4.38 4.46 4.42 4.04 3.97 3.55 2.55 4.12 3.74 3.79 3.83 4.27 4.11 3.76 4.05 4.13 4.98 4.38 3.87 3.84 Eu 1.37 1.35 1.37 1.39 1.46 1.36 1.00 1.22 0.82 0.41 0.34 0.53 0.36 1.23 1.18 1.15 1.06 1.07 0.96 1.11 1.09 1.11 1.07 Gd 4.42 4.16 3.97 4.29 4.53 4.36 4.04 3.97 3.50 2.59 3.80 3.23 3.98 4.20 4.39 4.38 4.23 3.73 4.15 4.84 4.13 3.93 3.65 Tb 0.70 0.68 0.61 0.73 0.73 0.69 0.61 0.66 0.66 0.48 0.85 0.56 0.88 0.77 0.85 0.79 0.77 0.72 0.77 0.94 0.77 0.79 0.73 Dy 4.84 4.83 4.27 5.15 5.09 4.71 3.80 4.73 4.55 3.63 6.61 3.78 7.02 5.97 6.16 6.08 5.60 4.76 4.78 6.41 5.24 5.47 4.84 Ho 0.90 0.84 0.80 0.97 0.94 0.93 0.66 0.89 0.88 0.70 1.32 0.70 1.34 1.19 1.20 1.22 1.15 1.01 1.14 1.33 1.10 1.18 1.09 Er 2.74 2.73 2.35 3.06 2.84 2.61 1.80 2.59 2.80 2.15 4.46 2.32 4.29 3.65 3.87 3.85 3.49 3.17 2.98 4.10 3.27 3.19 2.92 Tm 0.44 0.44 0.35 0.48 0.42 0.41 0.27 0.40 0.42 0.38 0.82 0.37 0.78 0.57 0.55 0.58 0.54 0.46 0.48 0.63 0.53 0.53 0.46 Yb 2.68 2.60 2.17 3.16 2.62 2.68 1.65 2.51 2.80 2.56 5.31 2.48 5.07 3.64 3.97 3.92 3.59 3.10 3.30 4.27 3.26 3.58 3.39 Lu 0.41 0.39 0.32 0.45 0.39 0.38 0.25 0.36 0.42 0.38 0.80 0.41 0.79 0.51 0.56 0.56 0.54 0.45 0.47 0.69 0.52 0.51 0.50 Y 29.32 28.44 25.12 32.39 29.79 30.03 21.23 28.78 29.30 23.49 44.08 22.84 44.08 37.29 37.31 39.95 35.17 27.46 30.12 36.40 31.86 35.53 31.98 Li 63.77 71.92 65.00 68.15 71.49 62.75 57.77 81.56 52.55 13.48 12.61 13.61 13.80 26.80 40.56 28.07 26.64 21.55 25.01 24.72 34.10 30.64 28.78 Be 3.99 4.27 3.29 3.97 3.48 3.54 4.54 5.35 4.84 4.48 5.24 3.98 5.38 2.21 2.21 2.22 1.92 1.53 1.44 1.56 1.48 1.56 1.54 V 44.84 50.44 44.09 55.06 56.77 54.65 13.77 35.75 22.54 1.86 2.00 2.25 1.67 158.89 175.93 171.18 148.14 88.20 84.13 80.23 84.02 85.36 80.52 Cr 37.85 40.20 37.48 32.96 44.99 37.71 12.98 21.96 19.87 9.46 16.98 7.30 13.50 156.02 175.34 145.02 136.94 35.42 38.10 51.21 48.06 50.85 50.31 Ni 8.08 8.71 6.73 9.15 8.97 7.89 1.35 3.51 2.41 1.27 1.24 1.21 1.25 20.73 22.66 17.53 16.31 6.04 7.36 11.87 9.01 9.16 6.66 Cu 8.08 12.41 60.59 5.88 5.08 32.00 1.56 3.64 2.63 16.83 15.19 12.51 21.28 10.59 21.35 16.32 16.20 12.46 12.05 10.92 7.08 7.98 7.80 Zn 69.04 71.23 65.80 73.90 72.58 69.52 33.13 50.17 40.55 9.74 7.49 6.23 8.81 92.98 100.14 93.62 92.57 86.55 86.08 95.91 93.25 90.38 87.98 Ga 21.19 22.09 20.14 21.62 22.77 21.33 19.98 22.21 19.10 15.57 16.32 16.13 17.10 21.57 20.62 20.65 19.96 18.38 17.98 19.35 19.80 19.01 19.06 As 5.77 4.01 3.31 2.67 2.37 0.98 2.06 1.22 2.32 2.49 3.59 2.73 4.81 2.32 3.67 3.73 2.59 0.90 0.96 0.74 0.71 0.84 0.82 Rb 147.72 133.20 139.07 126.30 117.41 135.12 186.23 166.41 200.64 166.92 186.48 190.80 173.58 62.25 59.32 58.21 56.66 65.36 71.59 54.25 54.03 57.55 59.16 Sr 238.00 246.69 243.71 238.20 264.43 218.93 194.13 258.17 176.90 66.88 57.35 89.12 53.74 208.81 218.68 191.28 184.97 254.80 252.10 254.10 265.60 259.90 247.30 Y 29.32 28.44 25.12 32.39 29.79 30.03 21.23 28.78 29.30 23.49 44.08 22.84 44.08 37.29 37.31 39.95 35.17 27.46 30.12 36.40 31.86 35.53 31.98 Zr 29.93 31.51 34.11 19.17 22.58 30.08 78.16 47.39 93.83 55.14 46.50 59.86 38.82 26.69 12.38 33.75 35.68 44.33 43.61 43.60 34.79 42.58 44.53 Nb 14.84 18.68 14.09 15.52 16.48 14.27 17.93 20.05 14.90 10.67 17.62 11.20 18.22 10.15 9.16 12.17 11.51 16.04 12.31 14.56 12.81 14.57 13.67 Cd 0.01 0.01 0.04 0.04 0.05 0.02 0.01 0.03 0.02 0.01 0.01 0.02 0.02 0.09 0.09 0.10 0.08 0.13 0.12 0.17 0.13 0.14 0.14 Cs 7.85 9.81 7.08 7.37 6.22 7.62 4.87 8.40 6.16 5.20 5.74 7.34 5.25 1.90 3.38 2.07 2.33 2.47 2.71 2.86 2.18 3.57 3.46 Ba 709.38 483.52 711.35 611.90 667.33 588.03 646.45 557.33 292.97 125.08 81.94 184.31 66.25 380.33 380.29 364.10 340.92 437.50 464.60 425.50 407.40 389.30 383.60 Hf 1.34 1.10 1.46 1.05 1.18 1.32 2.94 1.83 4.73 2.53 2.23 2.62 1.98 1.83 0.67 2.31 2.02 2.72 2.37 2.60 2.05 2.19 2.14 Ta 1.41 1.55 0.44 0.88 1.16 0.64 1.33 1.81 1.15 1.88 3.92 2.61 3.24 0.27 0.16 0.39 0.33 0.82 0.46 0.44 0.39 0.41 0.43 W 0.55 0.58 0.55 0.88 0.72 2.92 0.38 0.46 0.44 1.27 4.47 4.64 2.44 0.39 0.39 1.64 0.28 0.66 0.37 0.32 0.38 0.29 0.23 Pb 17.94 11.86 17.17 15.98 17.88 14.03 22.51 24.61 34.92 42.33 43.93 36.45 44.86 7.59 8.72 6.10 7.08 13.51 10.93 13.52 9.26 8.49 21.30 Th 13.15 13.43 13.28 12.51 13.37 15.56 15.57 14.71 16.00 15.64 21.39 23.25 21.29 5.97 5.34 7.05 7.34 7.64 7.53 7.53 8.09 4.83 4.36 U 4.45 4.46 3.22 3.32 3.36 3.58 3.83 4.65 8.91 12.87 22.62 19.89 24.24 2.00 1.56 1.26 1.75 1.31 1.38 1.41 0.87 0.65 0.56 注:主量元素含量单位为%,微量和稀土元素含量单位为10−6 -
[1] Burchfiel B C, Zhen Z L, Liu Y P, et al. 1995. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 663−735.
[2] Butler R W H, Harris N B W, Whittington A G. 1997. Interactions between deformation, magmatism and hydrothermal activity during active crustal thickening: A field example from Nanga Parbat, Pakistan Himalayas[J]. Mineralogical Magazine, 61(1): 37−52.
[3] Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision−zone magmatism[J]. Geological Society, London, Special Publications, 19: 67−81.
[4] Hsü K J, Pan G T, Sengör A M C. 1995. Tectonic evolution of the Tibetan Plateau: A working hypothesis based on the Archipelago model of orogenesis[J]. International Geology Review, 37(6): 473−508. doi: 10.1080/00206819509465414
[5] Küster D, Harms U. 1998. Post−collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review[J]. Lithos, 45(1/4): 177−195.
[6] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[7] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Science Reviews, 37(3/4): 215−224.
[8] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956
[9] Pearce J A. 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120−125. doi: 10.18814/epiiugs/1996/v19i4/005
[10] Patino D A E, Mccarthy T C. 1998. Melting of crustal rocks during continental collision and subduction[C]// Hacker B R, Liu J G. When continents collide: geodynamics and geochemistry of ultrahigh pressure rocks. Netherlands: Kluwer, Dordrecht, Academic Publishers, 27−55.
[11] Richter F M. 1989. Simple models for trace element fractionation during melt segregation[J]. Earth and Planetary Science Letters, 77(3/4): 333−344.
[12] Rudnick R L, Gao S. 2003. Composition of the continental crust[C]// Turekian K K, Holland H D. Treatise on geochemistry. Oxford: Pergamon: 1−64.
[13] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the ocean basins. Geological Society, London, Special Publications, 42(1): 313−345.
[14] Sylvester P J. 1998. Post−collisional strongly peraluminous granites[J]. Lithos, 45(1/4): 29−44.
[15] Taylor S R, McLennan S M. 1986. The continental crust: Its composition and evolution[J]. The Journal of Geology, 94(4): 632−633. doi: 10.1086/629067
[16] Tischendorf G, Paelchen W. 1985. Zur Klassfication von granitoiden/classification of granitoids[J]. Zeit Schrift fuer Geologische Wissenschaften, 13(5): 615−627.
[17] Yin A, Harrison T M. 2000. Geologic Evolution of the Himalayan−Tibetan Orogen[J]. Ann. Rev. Earth Planet., 28(1): 211−280. doi: 10.1146/annurev.earth.28.1.211
[18] Yang L Q, Deng J, Yildirim D, et al. 2015. Structure, geochronology, and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling orogen, China[J]. Geological Society of America Bulletin, 127(11/12): 1831−1854.
[19] Zhang H F, Zhang L, Harris N, et al. 2006. U−Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan−Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement[J]. Contrib. Mineral. Petrol., 152(1): 75−88. doi: 10.1007/s00410-006-0095-2
[20] Zhang H F, Harris N, Zhang L. 2007. A−type adakitic magmatism association in Songpan−Garze Fold Belt, eastern granite and Tibetan Plateau: implication for lithospheric delamination[J]. Lithos, 97(3/4): 323−335.
[21] Zhang C Z, Li B, Cai J X, et al. 2007. A−type granite and adakitic magmatism association in Songpan−Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination[J]. Lithos, 103(3): 562−564.
[22] 邓红, 唐渊, 骆志红, 等. 2021. 松潘−甘孜造山带东缘塔公岩体岩石学、同位素年代学特征及其构造意义[J]. 地球科学, 46(2): 527−539.
[23] 段志明, 张玉修, 祝向平, 等. 2013. 松潘−甘孜南部玛孜措石英闪长岩的地球化学特征、同位素年龄及其构造意义[J]. 地质学报, 87(12): 1874−1886.
[24] 段志明, 李勇, 张毅, 等. 2005. 青藏高原唐古拉山中新生代花岗岩锆石U−Pb 年龄、地球化学特征及其大陆动力学意义[J], 地质学报, 79(1): 88−98.
[25] 费光春, 李佑国, 温春齐. 2009. 四川乡城—稻城地区花岗岩地球化学特征及构造背景探讨[J]. 矿物岩石, 29(2): 88−95.
[26] 侯增谦, 曲晓明, 周继荣, 等. 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录[J]. 地质学报, 75(4): 484−497.
[27] 侯可军, 李延河, 田有荣. 2009. LA−MC−ICP−MS锆石微区原位U−Pb定年技术[J]. 矿床地质, 28(4): 481−492.
[28] 李平, 陈隽璐, 张越, 等. 2023. 商丹俯冲增生带南缘土地沟—池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 56(2): 10−27.
[29] 梁信之, 谭庆鹄, 师常庆, 等. 1984. 1∶ 20万新龙幅、禾尼乡幅、康定幅区域调查报告[R]. 四川省地矿局区调队: 46−57.
[30] 潘桂棠, 王立全, 张万平, 等. 2013. 青藏高原及邻区大地构造图及说明书[M]. 北京: 地质出版社: 7−80.
[31] 秦蒙, 严松涛, 文浪, 等. 2019. 甘孜−理塘蛇绿混杂岩带晚三叠世构造演化——来自理塘地区勇杰岩体地球化学、年代学的制约[J]. 地质通报, 38(10): 1615−1625.
[32] 时章亮, 张宏飞, 蔡宏明. 2009. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J]. 地球科学−中国地质大学学报, 34(4): 569−584.
[33] 王全伟, 王康明. 2004. 四川1∶25万石渠县幅区域地质调查报告[R]. 四川省地质调查院: 45−137.
[34] 王全伟. 2008. 川西地区花岗岩及其成矿系列[M]. 北京: 地质出版社: 1−305.
[35] 许志琴, 侯立玮, 王宗秀. 1992. 中国松潘−甘孜造山带的造山过程[M]. 北京: 地质出版社: 1−190.
[36] 严松涛, 秦蒙, 段阳海, 等. 2019a. 四川理塘地区二叠纪洋岛型岩石组合的识别及其构造意义: 来自岩石学、地球化学和年代学证据[J]. 地质学报, 93(2): 381−393.
[37] 严松涛, 段阳海, 谭昌海, 等. 2019b. 甘孜−理塘蛇绿混杂岩带中三叠世洋岛型岩石组合的识别及其构造意义——来自岩石学、地球化学和年代学证据[J]. 地球学报, 40(6): 816−826.
[38] 严松涛, 谭昌海, 秦蒙, 等. 2020a. 四川理塘地区二叠—三叠纪硅质岩的地球化学特征及地质意义[J]. 地球学报, 41(4): 504−514.
[39] 严松涛, 谭昌海, 段阳海, 等. 2020b. 甘孜−理塘蛇绿混杂岩带中段洋岛型岩石组合的发现及其对构造演化的指示意义[J]. 地质学报, 94(2): 439−449.
[40] 严松涛, 吴青松, 李虎, 等. 2021. 甘孜−理塘蛇绿混杂岩带中段理塘地区混杂岩物质组成及其洋盆演化史[J]. 中国地质, 48(6): 1875−1895.
[41] 严松涛, 吴青松, 谭昌海, 等. 2022. 四川理塘地区花岗闪长岩特征及其增生楔弧岩浆活动[J]. 中国地质, 49(4): 1295−1308.
[42] 严松涛, 吴青松, 朱利东, 等. 2023. 甘孜-理塘蛇绿混杂岩带晚三叠世洋岛型岩石组合识别及其对甘孜-理塘洋盆构造演化的制约[J]. 地质通报, 42(10): 1684−1695.
[43] 喻光明, 毛世东, 周振菊, 等. 2024. 西南三江甘孜-理塘洋晚古生代构造演化: 来自理塘蛇绿混杂岩堆晶辉长岩U−Pb年龄的约束[J]. 地质通报, 43(1): 61−75.
-