Discussion on the evolution of the Southern Anhui Plateau: Evidence from the Yanshanian two-stage granite in the southern Anhui Province and its adjacent areas
-
摘要:
为了探讨中国东部高原南部边界,收集整理皖南及邻区燕山期花岗岩的资料,并综合分析。结果显示,皖南燕山期花岗岩大致以132 Ma为界分为早(150 ~ 132 Ma)、晚(132 ~ 120 Ma)2期:早期的花岗岩主要是花岗闪长岩、二长花岗岩和少量二云母花岗岩,大多具有埃达克岩的特征;晚期花岗岩主要是富钾质的花岗岩,属于A型花岗岩。指示中国东部高原的南界不在长江中下游一线,而应当延伸到皖南及邻区。“皖南高原”大约形成于150 ~ 132 Ma期间,在132 Ma左右发生了垮塌,高原的界线向北退缩到长江中下游一线。中国东部高原整体垮塌在125 Ma左右,但是还残留有一些加厚的地区,主要分布在高原东侧的辽东、胶东、苏北、宁镇一带。
Abstract:In order to study the southern boundary of the eastern plateau in China, the data of Yanshanian granite reported in the literature in the southern Anhui are collected and sorted out in this paper. The results show that, Yanshanian granites in the southern Anhui Province can be divided into early (150 ~ 132 Ma) and late (132 ~ 120 Ma) periods roughly at 132 Ma. The early granites are mainly granodiorite, monzogranite and a small number of two-mica granite, with adakite characteristics, while the late granites are mainly potassium-rich granites, belonging to A-type granite. The study indicates that the southern boundary of the eastern plateau in China is not along the lower reaches of the Yangtze River, but extends to the southern Anhui Province and adjacent areas. The "Southern Anhui Plateau" was formed around 150 ~ 132 Ma and experienced a collapse around 132 Ma, causing the boundary of the plateau to retract northward to the lower reaches of the Yangtze River. The overall collapse of the eastern plateau in China occurred around 125 Ma, but some thickened areas still remain, mainly distributed in the eastern side of the plateau, such as eastern Liaoning Province, eastern Jiaozhou Bay, northern Jiangsu Province, and Nanjing to Zhenjiang City.
-
Key words:
- the southern Anhui Province /
- granite /
- adakite /
- A-type granite /
- Yanshanian /
- geological survey engineering
-
-
图 1 皖南及邻区燕山期两期花岗岩分布(据孙涛,2006修改,周围非研究对象区域岩体未标识)
Figure 1.
表 1 皖南及邻区燕山期岩浆岩岩石类型及年龄
Table 1. List of rock types and ages of Yanshanian magmatic rocks in the southern Anhui Province and its adjacent areas
岩体编号 岩体名称/地点 样品号 岩石名称 年龄/Ma 类型 参考文献 1 大茅山 10zjs172 花岗岩 131 ± 2 NL Sun et al., 2015 DMS-2-3, DMS-9 花岗岩 121 ~ 126 NL Jiang et al., 2011 2 庐枞盆地南侧钾质侵入岩带 LZ07-14, LZ1027, AQ-85, LZ1116 花岗岩,正长岩 123 ~ 130 ZM,NL,GX 薛怀民等,2016 3 东至兆吉口 E003 花岗闪长岩 144 XM 徐晓春等,2014 4 东至兆吉口 ZKV4 闪长玢岩 134 AD 东至兆吉口 ZKX2 闪长玢岩 129 AD 5 鹅湖 EH-1 二云母花岗岩 122 XM Jiang et al., 2011 6 桃岭 16JDZ017-1 花岗岩 152 AD 韩园园等,2019 7 瑶里 16JDZ014-1 二长花岗岩 129 NL 韩园园等,2019 8 金村岩体 16JDZ016-2 黑云母二长花岗岩 149 AD 韩园园等,2019 9 卧龙谷 16WY011-2 二长花岗岩 132 NL 郭博然等,2013 10 青山岭岩体 16WY006-1 二云母二长花岗岩 131 NL 韩园园等,2019 11 段莘岩体 16WY001-1 花岗岩 131 NL 韩园园等,2019 12 黄山冯村 14TX011-2 钾长花岗岩 130 NL 闫峻等,2017 13 皖南休宁里东坑 LDKZK105-B11 花岗闪长岩 153 XM 陈子微等,2013 14 东源 花岗闪长斑岩 146 AD-XM 周翔等,2011 15 剪刀卡 YP4-TW2 二长花岗岩 131 NL 汪雅菲等,2015 16 牯牛降 GNJ2 花岗岩 130 NL 谢建成等,2012 17 城安 YP4-TW1 花岗闪长岩 142 AD 汪雅菲等,2014 18 刘家 YP4-TW3 正长花岗岩 129 ZM 汪雅菲等,2015 19 石台县谭山 12WN001-1 花岗岩 128 ZM 高冉等,2017 20 池州马头 CZB92 花岗闪长岩 145 AD 谢兴楠等,2013 21 钟村 12WN053-4 花岗闪长岩 135 AD Yue et al., 2020 22 邵岭 12WN035-1 花岗闪长岩 146 AD Yue et al., 2020 23 青阳 07FW001, 07FW004 正长花岗岩 142 AD Wu et al., 2012 24 九华山 07FW005-07FW009 花岗闪长岩 130 ~ 131 NL Wu et al., 2012 25 萌坑 12WN033-1 花岗闪长岩 144 AD Yue et al., 2020 26 黄山 07FW127, 07FW131, 07FW132 花岗岩 125 ~ 127 NL Wu et al., 2012 27 太平 07FW123, 07FW124 花岗闪长岩 140 ~ 142 AD Wu et al., 2012 28 茂林 12WN052 花岗闪长岩 138 AD Yue et al., 2020 29 瑯桥 12WN023-3 花岗闪长岩 143 AD Yue et al., 2020 30 姚村 8849-1-1 正长花岗岩 127 NL,ZM 王存智等,2021 31 宁国刘村 二长花岗岩 132 ZM 陈芳等,2014 32 浙江埭溪 13zj99 花岗岩 132 NL Hu et al., 2017 33 皇坟坞 13ZJ94 花岗斑岩 130 NL 胡庆海,2017 34 阳山 13ZJ81 花岗岩 132 NL 胡庆海,2017 35 中泰 13ZT-1,
13ZT-2花岗闪长岩 140 ~ 146 GX 胡庆海,2017 36 浙江沈中坞 13zj89 花岗岩 134 NL Hu et al., 2017 37 高岭 13ZJ112 花岗岩 130 NL 胡庆海,2017 38 山川乡 13ZJ83-2,
13ZJ84,
13ZJ86花岗岩、花岗斑岩
和花岗闪长岩134 ~ 138 NL 胡庆海,2017 39 唐舍 13ZJ79 花岗闪长岩 132 NL 胡庆海,2017 40 皖南宁国竹溪岭 12ZXL-02 花岗岩 138 ~ 142 XM 陈雪霏等,2013 41 仙霞 13ZJ78 花岗岩 132 AD 周静,2016 42 统里庄 13ZJ80 正长岩 132 NL 胡庆海,2017 43 浙江麻车埠 13zj28 花岗岩 131 NL Hu et al., 2017 44 亭子山 13ZJ42,
13ZJ44花岗斑岩 132 ~ 137 NL 胡庆海,2017 45 宁国兰花岭 GSY-3 花岗闪长岩 148 AD 陈芳等,2015 46 旌德 12WN019-4 二长花岗岩 149 ~ 151 AD Yue et al., 2020 47 绩溪伏岭 ZGS516 正长花岗岩 129 NL 张虹等,2005 48 绩溪伏岭 XY516 正长花岗岩 133 NL 陈芳等,2013 48 顺溪 13ZJ07
13ZJ16
13ZJ103-2
13ZJ107花岗岩 131 ~ 137 NL 陈雪霏等,2013 49 绩溪县逍遥 XY-03 花岗闪长岩 149 AD 施珂等,2017 50 赤石 13ZJ36
13ZJ37闪长岩 147 ~ 152 AD 陈雪霏等,2013 51 杨溪 12WN045-1 二长花岗岩 134 ZM Yue et al., 2020 52 黄山新溪口 HX2 花岗岩 130 NL 柯宏飙等,2020 53 黄山塔坑 14TX005-1 钾长花岗斑岩 127 NL 闫峻等,2017 54 长陔 D028 二长花岗岩 142 XM 周术召等,2016 55 古祝 D029 花岗岩 146 XM 周术召等,2016 56 石门 D251 花岗岩 154 XM 周术召等,2016 57 黄山五里亭 D031 黑云母花岗岩 148 XM 周术召等,2016 58 淳安黄石潭 HST071003 花岗岩 126 NL Li et al., 2013 59 淳安九里岗 花岗岩 124 NL Li et al., 2013 60 淳安结蒙 JM071202 花岗闪长岩 148 XM Li et al., 2013 61 淳安木瓜 MG11 花岗斑岩 142 ZM-NL 厉子龙等,2013 62 淳安儒洪 TS071405 花岗斑岩 129 NL Li et al., 2013 63 铜山 QS3-1 花岗岩 124 ~ 129 NL 张智宇等,2011 64 开化九华山 H210-H224 花岗岩 135 ~ 138 NL 韩效忠等,2018 注:岩体类型标准据张旗等,2020。AD—埃达克岩型;XM—喜马拉雅型;NL—南岭型;ZM—浙闽型;GX—广西型 -
[1] Atherton M P, Petford N. 1993. Generation of sodium−rich magmas from newly underplated basaltic crust[J]. Nature, 362(6416): 144−146. doi: 10.1038/362144a0
[2] Castillo P R. 2006. An overview of adakite petrogenesis[J]. Chinese Science Bulletin, 51(3): 257−268. doi: 10.1007/s11434-006-0257-7
[3] Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189−200. doi: 10.1007/BF00374895
[4] Creaser R A, Price R C, Wormald R J. 1991. A−type granites revisited: Assessment of a residual−source model[J]. Geology, 19(2): 163−166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
[5] Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subduction lithosphere[J]. Nature, 347: 662−665. doi: 10.1038/347662a0
[6] Deng J H, Yang X Y, Sun W D, et al. 2012. Petrology, geochemistry, and tectonic significance of Mesozoic shoshonitic volcanic rocks, Luzong volcanic basin, eastern China[J]. International Geology Review, 54(6): 714−736. doi: 10.1080/00206814.2011.580628
[7] Deng J H, Yang X Y, Li S, et al. 2016. Partial melting of subducted paleo−Pacific plate during the early Cretaceous: constraint from adakitic rocks in the Shaxi porphyry Cu–Au deposit, Lower Yangtze River Belt[J]. Lithos, 262: 651−667. doi: 10.1016/j.lithos.2016.07.039
[8] Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033
[9] Gu H L, Yang X Y, Deng J H, et al. 2017. Geochemical and zircon U–Pb geochronological study of the Yangshan A−type granite: Insights into the geological evolution in south Anhui, eastern Jiangnan Orogen[J]. Lithos, 284/285: 156−170.
[10] Gu H L, Yang X Y, Nie Z X, et al. 2018. Study of late−Mesozoic magmatic rocks and their related copper−gold−polymetallic deposits in the Guichi ore−cluster district, Lower Yangtze River Metallogenic Belt, East China[J]. International Geology Review, 60(11/14): 1404−1434. doi: 10.1080/00206814.2017.1422442
[11] Hu Q H, Yu K Z, Liu Y S, et al. 2017. The 131−134 Ma A−type granites from northern Zhejiang Province, South China: implications for partial melting of the Neoproterozoic lower crust[J]. Lithos, 294/295: 39−52. doi: 10.1016/j.lithos.2017.09.016
[12] Jiang X Y, Luo J C, Guo J, et al. 2018. Geochemistry of I− and A−type granites of the Qingyang–Jiuhuashan complex, eastern China: Insights into early cretaceous multistage magmatism[J]. Lithos, 316/317: 278−294.
[13] Jiang Y H, Zhao P, Zhou Q, et al. 2011. Petrogenesis and tectonic implications of Early Cretaceous S− and A−type granites in the northwest of the Gan−Hang rift, SE China[J]. Lithos, 121: 55−73. doi: 10.1016/j.lithos.2010.10.001
[14] Li H, Ling M X, Li C Y, et al. 2012. A−type granite belts of two chemical subgroups in central eastern China: indication of ridge subduction[J]. Lithos, 150: 26−36. doi: 10.1016/j.lithos.2011.09.021
[15] Li J W, Zhao X F, Zhou M F, et al. 2009. Late Mesozoic magmatism from the Daye region, eastern China: U−Pb ages, petrogenesis, and geodynamic implications[J]. Contributions to Mineralogy and Petrology, 157(3): 383−409. doi: 10.1007/s00410-008-0341-x
[16] Li Z L, Zhou J, Mao J R, et al. 2013. Zircon U−Pb geochronology and geochemistry of two episodes of granitoids from the northwestern Zhejiang Province, SE China: Implication for magmatic evolution and tectonic transition[J]. Lithos, 179: 334−352. doi: 10.1016/j.lithos.2013.07.014
[17] Ma Q, Zheng J P, Xu Y G, et al. 2015. Are continental “adakites” derived from thickened or foundered lower crust?[J]. Earth and Planetary Science Letters, 419: 125−133.
[18] Qi H S, Lu S M, Yang X Y, et al. 2020. Genesis of Cretaceous igneous rocks and its related large scale porphyry U−Au mineralization in Chating, the Middle−Lower Yangtze River Metallogenic Belt: The geochemical constrains[J]. Ore Geology Reviews, 127: 103793. doi: 10.1016/j.oregeorev.2020.103793
[19] Qian L, Wang Y, Xie J C, et al. 2019. The Late Mesozoic granodiorite and polymetallic mineralization in southern Anhui Province, China: A perspective from apatite geochemistry[J]. Solid Earth Sciences, 4(2019): 178−189.
[20] Sun F J, Xu X S, Zou H B, et al. 2015. Petrogenesis and magmatic evolution of ~130 Ma A−type granites in Southeast China[J]. Journal of Asian Earth Sciences, 98: 20−224.
[21] Sun W D, Ding X, Hu Y H, et al. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 262(3/4): 533−542. doi: 10.1016/j.jpgl.2007.08.021
[22] Sun W D, Ling M X, Chung S L, et al. 2012. Geochemical constraints on adakites of different origins and copper mineralization[J]. Journal of Geology, 120(1): 105−120. doi: 10.1086/662736
[23] Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A−type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 28: 151−179. doi: 10.1016/0024-4937(92)90029-X
[24] Wang Q, Wyman D A, Xu J F, et al. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu–Au mineralization[J]. Lithos, 89: 424−446. doi: 10.1016/j.lithos.2005.12.010
[25] Wang Q, Wyman D A, Xu J F, et al. 2007. Partialmelting of thickened or delaminated lower crust in the middle of eastern China: Implications for Cu–Au mineralization[J]. Journal of Geology, 115(2): 149−161. doi: 10.1086/510643
[26] Wang S W, Zhou T F, Yuan F, et al. 2016. Geochemical characteristics of the Shujiadian Cu deposit related intrusion in Tongling: Petrogenesis and implications for the formation of porphyry Cu systems in the Middle−Lower Yangtze River Valley metallogenic belt, eastern China[J]. Lithos, 252: 185−199.
[27] Wong J, Sun M, Xing G F, et al. 2009. Geochemical and zircon U–Pb and Hf isotopic study of the Baijuhuajian metaluminous A−type granite: extension at 125–100 Ma and its tectonic significance for South China[J]. Lithos, 112(3/4): 289−305. doi: 10.1016/j.lithos.2009.03.009
[28] Wu F Y, Ji W Q, Sun D H, et al. 2012. Zircon U–Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos, 150: 6−25. doi: 10.1016/j.lithos.2012.03.020
[29] Xiao Q L, Zhou T F, Hollings P, et al. 2021. Mineral and whole−rock chemistry of the Chating porphyry Cu–Au deposit related intrusions in the Middle−Lower Yangtze River Belt, Eastern China: Implications for magma evolution and mineralization[J]. Lithos, 380/381: 105881.
[30] Xie J C, Yang X Y, Sun W D, et al. 2012. Early Cretaceous dioritic rocks in the Tongling region, eastern China: implications for the tectonic settings[J]. Lithos, 150: 49−61. doi: 10.1016/j.lithos.2012.05.008
[31] Xie J C, Wang Y, Li Q Z, et al. 2018. Petrogenesis and metallogenic implications of Late Mesozoic intrusive rocks in the Tongling region, eastern China: a case study and perspective review[J]. International Geology Review, 60(11/14): 1361−1380. doi: 10.1080/00206814.2017.1386130
[32] Yan J, Liu J M, Li Q Z, et al. 2015. In situ zircon Hf–O isotopic analyses of late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China: implications for petrogenesis and geodynamic evolution[J]. Lithos, 227: 57−76. doi: 10.1016/j.lithos.2015.03.013
[33] Yang J H, Wu F Y, Chung S L, et al. 2006. A hybrid origin for the Qianshan A−type granite, northeast China: Geochemical and Sr−Nd−Hf isotopic evidence[J]. Lithos, 89(1/2): 89−106. doi: 10.1016/j.lithos.2005.10.002
[34] Yang X Y, Yang X M, Chi Y Y, et al. 2011. A porphyritic copper (gold) ore−formingmodel for the Shaxi–Changpushan district, Lower Yangtze metallogenic belt, China: geological and geochemical constraints[J]. International Geology Review, 53: 580−611. doi: 10.1080/00206810903211906
[35] Yuan F, Zhou T F, Yue S C, et al. 2003. Rare Earths of Magmatic Rocks in Yanshanian Stage in Adjacent Region of Anhui and Jiangxi Provinces, Jiangnan Uplift[J]. Journal of Rare Earth, 21(5): 591−594.
[36] Yue Q, Yan J, Liu J M, et al. 2020. Geochronology, petrogenesis and tectonic implications of the early Cretaceous granitoids in the Jingde−Guangde area, Anhui province, South China[J]. Journal of Asian Earth Sciences, 190: 104−150.
[37] Zhang Y S, Yan J, Li Q Z, et al. 2018. Pulses of Late Mesozoic magmatism: Zircon ages and Hf−O isotopic composition of the Qingyang−Jiuhuashan granitic complex, southern Anhui province, eastern China[J]. Journal of Asian Earth Sciences, 167: 181−196. doi: 10.1016/j.jseaes.2017.08.003
[38] Zhou J, Jiang Y H, Xing G F, et al. 2013. Geochronology and petrogenesis of Cretaceous A–type granites from the NE Jiangnan Orogen, SE China[J]. International Geology Review, 55: 1359−1383. doi: 10.1080/00206814.2013.774199
[39] Zhou T F, Wang S W, Fan Y, et al. 2015. A review of the intracontinental porphyry deposits in the Middle−Lower Yangtze River Valley metallogenic belt, Eastern China[J]. Ore Geology Reviews, 65: 433−456. doi: 10.1016/j.oregeorev.2014.10.002
[40] Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3/4): 269−287. doi: 10.1016/S0040-1951(00)00120-7
[41] Zhou X M, Sun T, Shen W Z, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26−33. doi: 10.18814/epiiugs/2006/v29i1/004
[42] 陈芳, 王登红, 杜建国, 等. 2013. 安徽绩溪伏岭花岗岩LA−ICP−MS锆石U−Pb年龄的精确测定及其地质意义[J]. 岩矿测试, 32(6): 970−977. doi: 10.3969/j.issn.0254-5357.2013.06.020
[43] 陈芳, 王登红, 杜建国, 等. 2014. 安徽宁国刘村二长花岗岩地球化学特征、LA–ICP–MS 锆石U–Pb 年龄及其地质意义[J]. 地质学报, 88(5): 869−882.
[44] 陈芳, 王登红, 杜建国, 等. 2015. 安徽宁国兰花岭钨钼矿床含矿岩体的地球化学特征、LA−ICP−MS 锆石U−Pb 年代学研究[J]. 大地构造与成矿学, 39(2): 369−377. doi: 10.3969/j.issn.1001-1552.2015.02.017
[45] 陈雪霏, 汪应庚, 孙卫东, 等. 2013. 皖南宁国竹溪岭地区花岗岩锆石U−Pb年代学及地球化学及其成因研究[J]. 地质学报, 87(11): 1662−1678.
[46] 陈子微, 余心起, 周翔, 等. 2013. 皖南休宁县里东坑似斑状花岗闪长岩成岩成矿特征分析[J]. 中国地质, 40(6): 1762−1776.
[47] 董树文, 吴锡浩, 吴珍汉, 等. 2000. 论东亚大陆的构造翘变——燕山运动的全球意义[J]. 地质论评, 46(1): 8−13. doi: 10.3321/j.issn:0371-5736.2000.01.002
[48] 范裕, 周涛发, 袁峰, 等. 2008. 安徽庐江−枞阳地区A型花岗岩的LA−ICP−MS定年及其地质意义[J]. 岩石学报, 24(8): 1715−1724.
[49] 高冉, 闫峻, 李全忠, 等. 2017. 皖南谭山岩体成因: 年代学和地球化学制约[J]. 高校地质学报, 23(2): 227−243.
[50] 郭博然, 刘树文, 杨朋涛, 等. 2013. 江西卧龙谷花岗岩和铜厂花岗闪长斑岩的地球化学特征及成因——对赣东北地区铜矿成矿地质背景的制约[J]. 地质通报, 32(7): 1035−1046. doi: 10.3969/j.issn.1671-2552.2013.07.009
[51] 韩效忠, 吴兆剑, 刘蓉蓉, 等. 2018. 浙江新路盆地九华山火山-侵入杂岩年代学、地球化学特征及其地质意义[J]. 地球科学, 43(S1): 192−208.
[52] 韩园园, 闫峻, 杨超, 等. 2019. 江南造山带东段桃岭-段莘带花岗岩锆石定年和岩石成因[J]. 矿物岩石, 2: 34−44.
[53] 胡庆海. 2017. 扬子板块东缘(浙江北部)晚中生代花岗岩的地球化学特征及其地球动力学意义[D]. 中国地质大学(武汉)博士学位论文.
[54] 柯宏飙, 王金泉, 丁勇, 等. 2020. 皖南歙县新溪口岩体锆石U−Pb定年、地球化学特征及找矿前景[J]. 华东地质, 41(2): 116−127.
[55] 李鹏举, 余心起, 邱骏挺, 等. 2016. 皖南侏罗—白垩纪两类花岗岩的岩石成因、氧逸度特征及成矿意义[J]. 岩石学报, 32(2): 399−418.
[56] 厉子龙, 周静, 毛建仁, 等. 2013. 浙西北木瓜燕山期花岗斑岩的定年、地球化学特征及其地质意义[J]. 岩石学报, 29(10): 3607−3622.
[57] 马昌前, 杨坤光, 明厚利, 等. 2003. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学(D辑), 33(9): 817−827.
[58] 毛景文, Holly S, 杜安道, 等. 2004. 长江中下游地区铜金(钼)矿Re–Os年龄测定及其对成矿作用的指示[J]. 地质学报, 78(1): 121−131. doi: 10.3321/j.issn:0001-5717.2004.01.014
[59] 彭戈, 闫峻, 初晓强, 等. 2012. 贵池岩体的锆石定年和地球化学: 岩石成因和深部过程[J]. 岩石学报, 28(10): 3271−3286.
[60] 任纪舜. 1989. 中国东部及邻区大地构造演化的新见解[J]. 中国区域地质, 4: 1−12.
[61] 施珂, 张达玉, 丁宁, 等. 2017. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 47(6): 1746−1762.
[62] 孙涛. 2006. 新编华南花岗岩分布图及其说明[J]. 地质通报, 25(3): 332−337. doi: 10.3969/j.issn.1671-2552.2006.03.002
[63] 汪海, 赵壮, 杨晓勇, 等. 2020. 安庆-贵池矿集区宝树尖铜多金属矿床成因: 来自岩石地球化学及年代学的约束[J]. 岩石学报, 36(1): 184−204. doi: 10.18654/1000-0569/2020.01.17
[64] 汪雅菲, 袁峰, 杜建国. 2014. 皖南城安岩体锆石U−Pb年代学研究[J]. 矿床地质, 33(增刊): 163−264.
[65] 汪雅菲. 2015. 安徽城安岩体地球化学特征及成因研究[D]. 合肥工业大学硕士学位论文.
[66] 王存智, 黄志忠, 赵希林, 等. 2018. 长江中下游宣城水东地区早白垩世酸性火山岩年代学、地球化学及岩石成因[J]. 岩石矿物学杂志, 37(5): 697−715. doi: 10.3969/j.issn.1000-6524.2018.05.001
[67] 王存智, 黄志忠, 赵希林, 等. 2021. 下扬子地区姚村A 型花岗岩年代学、地球化学特征及岩石成因[J]. 中国地质, 48(2): 549−563.
[68] 王亮, 王凯, 张翔, 等. 2022. 南祁连扎子沟埃达克岩年代学、地球化学特征及地质意义[J]. 西北地质, 55(1): 39−49.
[69] 王继强, 孙维安, 袁峰, 等. 2017. 庐枞盆地大倪庄铜矿床地质特征、成岩时代及成因探讨[J]. 中国地质, 44(1): 86−100. doi: 10.12029/gc20170107
[70] 王孝磊, 周金城, 陈昕, 等. 2017. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 36(5): 714−735. doi: 10.3969/j.issn.1007-2802.2017.05.003
[71] 翁望飞, 支利庚, 蔡连友, 等. 2011. 皖南中生代高钾钙碱性埃达克岩地球化学特征及岩石成因[J]. 地质调查与研究, 35(2): 98−107. doi: 10.3969/j.issn.1672-4135.2011.02.002
[72] 夏国清, 伊海生, 赵西西, 等. 2012. 晚中生代中国东部高原古高程定量研究[J]. 科学通报, 57(23): 2220−2230.
[73] 谢建成, 陈思, 荣伟, 等. 2012. 安徽牯牛降 A 型花岗岩的年代学、地球化学和构造意义[J]. 岩石学报, 28(12): 4007−4020.
[74] 谢建成, 夏冬梅, 方德, 等. 2016. 皖南晚中生代花岗闪长岩地球化学: 成岩成矿制约[J]. 岩石学报, 32(2): 439−455.
[75] 谢兴楠, 马春, 柳建新, 等. 2013. 安徽马头铜钼多金属矿区复式花岗岩体成因及与成矿的关系[J]. 中国有色金属学报, 23(9): 2584−2591.
[76] 邢凤鸣, 徐祥. 1994. 安徽两条 A 型花岗岩带[J]. 岩石学报, 10(4): 357−369. doi: 10.3321/j.issn:1000-0569.1994.04.007
[77] 徐晓春, 刘雪, 张赞赞, 等. 2014. 安徽东至兆吉口铅锌矿区岩浆岩锆石U−Pb年龄及其地质意义[J]. 地质科学, 49(2): 431−455. doi: 10.3969/j.issn.0563-5020.2014.02.008
[78] 薛怀民, 汪应庚, 马芳, 等. 2009. 高度演化的黄山A 型花岗岩: 对扬子克拉通东南部中生代岩石圈减薄的约束[J]. 地质学报, 83(2): 247−259. doi: 10.3321/j.issn:0001-5717.2009.02.010
[79] 薛怀民, 马芳, 关海燕, 等. 2013. 怀宁盆地火山岩的年代学、地球化学及与长江中下游其他火山岩盆地的对比[J]. 中国地质, 40(3): 694−714. doi: 10.3969/j.issn.1000-3657.2013.03.004
[80] 薛怀民, 马芳, 曹光跃, 等. 2016. 长江中下游庐枞火山岩盆地南侧钾质侵入岩带的成因[J]. 地质学报, 90(9): 2233−2257. doi: 10.3969/j.issn.0001-5717.2016.09.011
[81] 闫峻, 彭戈, 刘建敏, 等. 2012. 下扬子繁昌地区花岗岩成因: 锆石年代学和Hf–O同位素制约[J]. 岩石学报, 28(10): 3209−3227.
[82] 闫峻, 后田结, 王爱国, 等. 2017. 皖南中生代早期成矿和晚期非成矿花岗岩成因对比[J]. 中国科学:地球科学, 47(11): 1269−1291.
[83] 赵德奎, 古黄玲, 舒旺杰, 等. 2019. 安徽贵池地区岩浆岩演化特征及其与金银多金属矿的关系[J]. 华东地质, 40(2): 126−134.
[84] 张超, 马昌前, Holt F. 2012. 含水大陆下地壳的部分熔融: 大别山C型埃达克岩成因探讨[J]. 高校地质学报, 18(1): 41−51. doi: 10.3969/j.issn.1006-7493.2012.01.004
[85] 张虹, 戴圣潜, 管运财, 等. 2005. 皖南绩溪伏岭岩体岩石地球化学特征[J]. 中国地质, 32(3): 411−416. doi: 10.3969/j.issn.1000-3657.2005.03.009
[86] 张俊杰, 王光杰, 杨晓勇, 等. 2012. 皖南旌德花岗闪长岩与暗色包体的成因: 地球化学、锆石U−Pb年代学与Hf同位素制约[J]. 岩石学报, 28(12): 4047−4063.
[87] 张旗, 钱青, 王二七, 等. 2001a. 燕山中晚期的“中国东部高原”: 埃达克岩的启示[J]. 地质科学, 36: 248−255.
[88] 张旗, 王焰, 钱青, 等. 2001b. 中国东部燕山期埃达克岩的特征及其构造-成矿意义[J]. 岩石学报, 17(2): 236−244.
[89] 张旗, 金惟俊, 王元龙, 等. 2007. 晚中生代中国东部高北界探讨[J]. 岩石学报, 23(4): 689−700. doi: 10.3969/j.issn.1000-0569.2007.04.001
[90] 张旗, 王元龙, 金惟俊, 等. 2008. 晚中生代的中国东部高原: 证据、问题和启示[J]. 地质通报, 27(9): 1404−1430. doi: 10.3969/j.issn.1671-2552.2008.09.004
[91] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31(4): 621−626.
[92] 张旗. 2014. 大陆花岗岩的地球动力学意义[J]. 矿物岩石学杂志, 33(4): 785−798.
[93] 张旗, 焦守涛. 2020. 埃达克理论: 埃达克岩来自高压背景——一个科学的、可靠的、有预见性的科学发现[J]. 岩石学报, 36(6): 1675−1683. doi: 10.18654/1000-0569/2020.06.02
[94] 张智宇, 杜杨松, 张静, 等. 2011. 安徽贵池铜山岩体SHRIMP锆石U−Pb年代学与岩石地球化学特征研究[J]. 地质论评, 57(3): 366−378.
[95] 张梓尧, 张义虎, 徐磊, 等. 2023. 西秦岭宕昌—舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义[J/OL]. 西北地质, 1−16. doi: 10.12401/j.nwg.2023013.
[96] 周洁, 姜耀辉, 曾勇, 等. 2013. 江南造山带东段旌德岩体锆石LA–ICPMS 年龄和Nd−Sr−Hf 同位素地球化学[J]. 中国地质, 40(5): 1379−1391. doi: 10.3969/j.issn.1000-3657.2013.05.004
[97] 周静. 2016. 浙西北早白垩世花岗质岩石成因与构造演化[D]. 浙江大学博士学位论文.
[98] 周术召. 2016. 皖南白际-长垓北东向花岗岩带特征及其与燕山期断裂带的成因关系[D]. 中国地质大学(北京)硕士学位论文.
[99] 周涛发, 袁峰, 侯明金, 等. 2004. 江南隆起带东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景[J]. 矿物岩石, 24(3): 65−71. doi: 10.3969/j.issn.1001-6872.2004.03.008
[100] 周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 24(8): 1665−1678.
[101] 周翔, 余心起, 王德恩, 等. 2011. 皖南东源含W-Mo花岗闪长斑岩及成矿年代学研究[J]. 现代地质, 25(2): 201−210. doi: 10.3969/j.issn.1000-8527.2011.02.002
[102] 周翔, 余心起, 杨赫鸣, 等. 2012. 皖南绩溪县靠背尖高Ba−Sr 花岗闪长斑岩年代学及其成因[J]. 岩石学报, 28(10): 3403−3417.
-