Petrogenesis and tectonic setting of the Muzidian granite complex in Northern Dabie Orogen: Constraints from Sr−Nd−Pb isotopic geochemistries
-
摘要:
研究目的 木子店复式岩体处于北大别变质杂岩带北部,其岩性主要为斑状黑云二长花岗岩、斑状黑云角闪二长花岗岩、细中粒黑云二长花岗岩和细粒黑云二长花岗岩。为探讨其物质来源、成因机制和地球化学动力学背景,进一步研究大别地区早白垩世大规模构造-岩浆演化作用,
研究方法 在前期工作的基础上,选取木子店复式岩体进行系统的Sr−Nd−Pb同位素测试。
研究结果 结果表明,木子店岩体的全岩同位素具有较低的Sr初始比值[(87Sr/86Sr)i = 0.70670~0.70895],εNd(t)亦很低,主要集中在−23.16~−14.11之间,类似于扬子克拉通北缘新元古代TTG的Sr−Nd同位素特征;较老的Nd模式年龄(TDM2=2.99~2.07 Ga),结合其地球化学特征和锆石Hf同位素特征,说明它是扬子克拉通北缘中下地壳俯冲部分熔融的产物。低的Pb同位素组成[(206Pb/204Pb)i=17.0056~17.4476,(207Pb/204Pb)i=15.4595~15.5996,(208Pb/204Pb)i=37.7627~38.1417],同样表明其与扬子北缘岩石的亲缘性。木子店岩体中主体岩石表现为埃达克岩特征,来源于增厚的玄武岩下地壳的熔融;仅月形塘单元表现为岛弧岩浆岩性质,但它同样来源于俯冲下地壳的熔融,只是携带了较多富集地幔成分。
结论 结合其地球化学、年代学、锆石Hf同位素研究,认为木子店复式花岗岩体源自扬子克拉通北缘下地壳,其成分类似于其中新元古代TTG类岩石。俯冲到华北克拉通之下的扬子北缘并未发生拆沉作用,只是在俯冲板片的不同部位发生了部分熔融形成了木子店复式岩体,这一成岩作用可能记录了大别地区从俯冲碰撞到伸展减压的转换过程,转换时间极可能发生在131 Ma左右。
-
关键词:
- 北大别 /
- 木子店岩体 /
- Sr−Nd−Pb同位素 /
- 源区特征 /
- 构造-岩浆演化
Abstract:Objective The Muzidian granite complex is located in Northern Dabie Orogen, and its main lithology is porphyritic biotite monzogranite, porphyritic biotite hornblende monzogranite, fine−medium grain biotite monzogranite and fine grain biotite monzogranite. In order to discuss the material source, petrogenetic machanism, and geochemical dynamic background of the Muzidian granites, and even study the large−scale tectono−magmatic evolution during the Early Cretaceous in Dabie area,
Methods the Muzidian granite complex was chosen to test the Sr−Nd−Pb systematic isotopic geochemistry after the previous work.
Results The Muzidian granites have a low initial Sr ratio[(87Sr/86Sr)i=0.70670~0.70895], and εNd(t) is also low, mainly concentrated in −23.16~−14.11. They have much old Nd model age (TDM2=2.99~2.07 Ga) and low radioactive Pb isotopic composition [(206Pb/204Pb)i=17.0056~17.4476, (207Pb/204Pb)i=15.4595~15.5996, (208Pb/204Pb)i=37.7627~38.1417]. The results tell us that the main rocks in the Muzidian granite complex are characterized for adakite, which is derived from the melting of the thickened basaltic lower crust. Only the Yuexingtang unit is characterized for arc magmatic rocks, which is also derived from the melting of the subducted lower crust, and carry more enriched mantle components.
Conclusions With the geochemical, chronological and zircon Hf isotopic studies, it is concluded that the Muzidian granite complex was derived from the lower crust of the northern margin of the Yangtze craton. And the composition of the granites may be similar to the Neoproterozoic TTG rocks. The delamination didn’t happen after the northern margin of the Yangtze subducted to the North China Craton, but partial melting happened at different parts of the subduction slab to form the Muzidian granite complex. This diagenesis may record the transition process from subduction collision to extension in Dabie area, and the transition time is most likely to be 131 Ma.
-
-
图 4 木子店岩体的岩石性质投图(据Qin et al., 2010,数据来源于李小林等,2016;样号同图3)
Figure 4.
图 3 木子店岩体 Pb 同位素投图(据Huang et al., 2007修改)
Figure 3.
图 6 木子店岩体岩石成因投图(数据来自李小林等, 2016;样号同图3)
Figure 6.
图 7 木子店岩体构造环境判别图解(数据来源于李小林等, 2016;样号同图3)
Figure 7.
表 1 大别地区中生代花岗岩类同位素年龄及Hf同位素数据
Table 1. Isotope ages and Hf isotope data of the Mesozoic granitoid rocks in Dabie area
岩体 岩性 年龄/Ma 测试对象及方法 εHf(t) TDM2/Ma 资料来源 姚冲 二长花岗岩 139.6±2.0 LA−ICP−MS锆石U−Pb −30~−22.8 2212~2606 刘清泉等, 2015 姚冲 花岗斑岩 139.8±2.2 LA−ICP−MS锆石U−Pb −26.5~−23.6 2252~2414 刘清泉等, 2015 姚冲 花岗岩 133.3±1.3 LA−ICP−MS锆石U−Pb −26.5~−20.0 2430~2830 陈伟等, 2013 新县 花岗岩 125.5±1.5 LA−ICP−MS锆石U−Pb −22.92~−19.4 2390~2610 Chen et al., 2015 汤家坪 花岗斑岩 121±4.6 LA−ICP−MS锆石U−Pb −17.6~−10.4 1843~2281 魏庆国等, 2010 商城 斑状黑云母二长花岗岩 137±2 LA−ICP−MS锆石U−Pb −30.2~–15.6 2173~3079 高昕宇等, 2013 达权店 二长花岗岩 118±1 LA−ICP−MS锆石U−Pb −23.2~–16.7 2227~2628 高昕宇等, 2013 千鹅冲 二长花岗岩 130±2 SHRIMP锆石U−Pb −24.5~–11.3 1362~2736 高阳等, 2014 千鹅冲 花岗斑岩 129±2 SHRIMP锆石U−Pb −19. 8~–11.2 1895~2385 高阳等, 2014 石鼓尖 角闪石英二长闪长岩 132.8±4.3 SHRIMP锆石U−Pb −30.5~–27.9 2942~3100 续海金等, 2008 舒潭 斑状二长花岗岩 132.3±1.0 SHRIMP锆石U−Pb −26.0~–20.9 2502~2824 续海金等, 2008 舒潭 钾长花岗岩 127.9±0.8 SHRIMP锆石U−Pb −25.2~–15.1 2133~2766 续海金等, 2008 天堂寨 斑状二长花岗岩 131.7±3.6 LA−ICP−MS锆石U−Pb −28.1~–22.5 2604~2885 续海金等, 2008 沙坪沟 石英二长岩 134±2 LA−ICP−MS锆石U−Pb −33.6~–17.0 2556~3292 Wang et al., 2014 沙坪沟 正长花岗岩 132±1 LA−ICP−MS锆石U−Pb −28.2~–23.5 2640~2957 Wang et al., 2014 沙坪沟 花岗斑岩 138±8 LA−ICP−MS锆石U−Pb −23.7~−16.9 2253~2683 Wang et al., 2014 沙坪沟 石英二长斑岩 135±4 LA−ICP−MS锆石U−Pb −32.1~−20.3 2465~3198 Wang et al., 2014 沙坪沟 二长花岗岩 135±1 LA−ICP−MS锆石U−Pb −31.1~−24.2 2708~3142 Wang et al., 2014 沙坪沟 黑云母闪长岩 128±2 LA−ICP−MS锆石U−Pb −27.9~−22.0 2565~2934 Wang et al., 2014 沙坪沟 黑云母二长岩 129±2 LA−ICP−MS锆石U−Pb −26.6~−21.9 2564~2857 Wang et al., 2014 沙坪沟 石英正长岩 116±2 LA−ICP−MS锆石U−Pb −17.2~−12.9 1989~2261 Wang et al., 2014 沙坪沟 花岗岩斑岩 114±1 LA−ICP−MS锆石U−Pb −23.4~−10.4 1826~2642 Wang et al., 2014 木子店 细粒二长花岗岩 128.9±0.7 LA−ICP−MS锆石U−Pb −25.1~−19.2 2115~2505 刘劲松等, 2016 木子店 斑状黑云角闪二长花岗岩 133±2 LA−ICP−MS锆石U−Pb −26.5~−19.6 2139~2531 刘阿睢等, 2017 木子店 斑状黑云二长花岗岩 131.1±0.5 LA−ICP−MS锆石U−Pb −21.83~−13.98 1826~2246 胡俊良等, 2018 表 2 木子店岩体的全岩Sr−Nd同位素组成
Table 2. Whole rock Sr−Nd isotopic compositions of the Muzidian granites in Dabie Orogen
样品号 含量/10−6 87Rb/86Sr 87Sr/86Sr 2σ/10−5 (87Sr/86Sr)i 含量/10−6 147Sm/144Nd 143Nd/144Nd 2s/10−6 fSm/Nd εNd(t) TDM/Ma TDM2/Ma Rb Sr Sm Nd 桃花尖单元(K2Tηγβ),128.9±0.7 Ma M16-1 158.2 246.4 1.851 0.71237 8 0.70895 2.105 14.92 0.0854 0.511538 6 −0.566 −19.62 1909 2516 M16-4 84.61 303 0.8053 0.70888 6 0.70739 1.783 13.79 0.0782 0.512064 4 −0.602 −9.23 1221 1675 白衣冲单元(K1Bπηγβ),131.1±0.5 Ma M16-3 100.2 491.8 0.5878 0.70857 4 0.70748 9.826 57.15 0.104 0.511836 3 −0.471 −14.11 1821 2069 M16-16 123.7 668.1 0.5338 0.70895 2 0.70796 12.47 92.53 0.0815 0.511603 5 −0.586 −18.28 1779 2409 M16-19 83.38 767.5 0.3132 0.70857 4 0.70799 7.414 42.95 0.1044 0.511795 2 −0.469 −14.92 1884 2134 M16-21 114.4 337.3 0.9777 0.70976 6 0.70795 3.306 27.92 0.0716 0.511611 9 −0.636 −17.96 1647 2384 M16-22 85.45 751.5 0.3278 0.70731 2 0.70670 4.587 29.56 0.0939 0.511802 3 −0.523 −14.61 1711 2110 月形塘单元(K1Yηγβψ),133±2 Ma M16-20 143 519 0.7947 0.70939 2 0.70792 5.277 34.25 0.0932 0.511798 3 −0.526 −14.67 1706 2115 M16-23 112.5 638.4 0.5082 0.70865 2 0.70771 7.958 49.8 0.0967 0.51151 5 −0.508 −20.35 2128 2574 M16-24 105.9 526.4 0.58 0.70883 8 0.70776 5.17 37.01 0.0845 0.511519 5 −0.570 −19.97 1918 2545 M16-25 93.06 775 0.3462 0.7081 3 0.70746 4.904 30.27 0.098 0.511524 6 −0.502 −20.10 2134 2554 乌石岩单元(K1Wηγβ) M16-2 94.39 544.7 0.4997 0.70922 9 0.70830 5.071 39.46 0.0778 0.511615 2 −0.604 −17.99 1717 2385 M16-5 85.86 517.3 0.4786 0.70813 6 0.70725 5.016 35.55 0.0854 0.511656 5 −0.566 −17.31 1770 2330 M16-6 178 159.6 3.219 0.71724 7 0.71129 6.101 40.11 0.092 0.511243 7 −0.532 −25.48 2377 2989 M16-7 125.4 257.6 1.404 0.7101 6 0.70751 2.903 18.7 0.0939 0.511646 5 −0.523 −17.65 1908 2356 M16-8 78.56 398.6 0.5683 0.7086 7 0.70755 4.238 31.58 0.0812 0.51163 4 −0.587 −17.75 1744 2366 M16-9 125.9 604.4 0.6006 0.70873 4 0.70762 9.205 57.68 0.0965 0.511627 2 −0.509 −18.06 1974 2389 M16-10 122.4 501.4 0.704 0.70845 8 0.70715 3.334 17.85 0.0113 0.511578 4 −0.943 −17.61 1183 2359 M16-11 151.7 384.6 1.138 0.71084 4 0.70874 12.26 73.24 0.1013 0.511665 6 −0.485 −17.40 2007 2335 M16-12 138.7 345.2 1.159 0.71035 5 0.70821 6.614 45.77 0.0874 0.511451 4 −0.556 −21.35 2043 2656 M16-13 127.6 449.6 0.8184 0.70984 6 0.70833 5.456 42.51 0.0776 0.51135 3 −0.605 −23.16 2009 2804 表 3 木子店岩体全岩Pb同位素组成
Table 3. Whole rock Pb isotopic compositions of the the Muzidian granites
样品号 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb (206Pb/204Pb)i (207Pb/204Pb)i (208Pb/204Pb)i μ 桃花尖单元(K2Tηγβ),128.9±0.7 Ma M16-1 17.4073 15.5851 38.1207 17.3521 15.5824 37.9877 2.7093 M16-4 17.4485 15.5600 37.9556 17.4292 15.5590 37.9095 0.9471 白衣冲单元(K1Bπηγβ),131.1±0.5 Ma M16-3 17.4445 15.5670 38.1831 17.4351 15.5665 38.1417 0.4605 M16-16 17.4274 15.5650 38.0875 17.4160 15.5644 38.0508 0.5604 M16-19 17.4606 15.5931 38.1137 17.4437 15.5923 38.0363 0.8285 M16-21 17.4586 15.5861 38.0804 17.4514 15.5857 38.0522 0.3540 M16-22 17.3470 15.5509 37.9939 17.3265 15.5499 37.9492 1.0051 月形塘单元(K1Yηγβψ),133±2 Ma M16-20 17.4938 15.5911 38.1167 17.4280 15.5879 37.9864 3.2274 M16-23 17.0696 15.4725 37.9425 17.0186 15.4700 37.7766 2.5024 M16-24 17.3842 15.5338 37.9163 M16-25 17.0244 15.4604 37.8127 17.0056 15.4595 37.7627 0.9225 乌石岩单元(K1Wηγβ) M16-2 17.4626 15.5801 38.1257 17.4438 15.5791 38.0318 0.9231 M16-5 17.4083 15.5921 38.2103 17.3448 15.5890 38.0421 3.1203 M16-6 17.5340 15.5760 38.0835 17.4148 15.5702 37.7720 5.8497 M16-7 17.4395 15.5710 38.0754 17.3974 15.5690 37.9726 2.0647 M16-8 17.4586 15.5630 38.0794 17.4389 15.5620 38.0120 0.9640 M16-9 17.5028 15.5811 38.1056 17.4160 15.5768 37.9333 4.2613 M16-10 17.2958 15.5388 38.0200 17.1758 15.5330 37.9306 5.8876 M16-11 17.3531 15.5620 38.1680 17.3335 15.5610 38.0783 0.9584 M16-12 17.4807 15.5720 38.0482 17.4476 15.5704 37.9579 1.6252 M16-13 17.5360 15.6062 38.1137 17.4009 15.5996 37.9559 6.6295 -
[1] Chen B, Jahn B M, and Wei C J. 2002. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd−Sr isotope evidence[J]. Lithos, 60: 67−88. doi: 10.1016/S0024-4937(01)00077-9
[2] Chen W, Xu Z W, Li H C, et al. 2013. Petrogenesis and Origin of the Xinxian granitic batholith in Henan Province and its implication for the tectonic evolution of the Western Dabie area[J]. Acta Petrologica Sinica, 87(10): 1510−1524(in Chinese with English abstract).
[3] Chen W, Xu Z W, Qiu W H, et al. 2015. Petrogenesis of the Yaochong granite and Mo deposit, Western Dabie Orogen, eastern−central China: Constraints from zircon U−Pb and molybdenite Re−Os ages, Sr−Nd−Pb−Hf isotopes[J]. Journal of Asian Earth Sciences, 103: 198−211. doi: 10.1016/j.jseaes.2015.01.010
[4] Chen Y J, Pirajno F, Qi J P. 2008. The Shandong gold deposit, Eastern Qinling Orogen, China: Isotope geochemistry and implications for ore genesis[J]. Journal of Asian Earth Science, 33(3/4): 252−266. doi: 10.1016/j.jseaes.2007.12.002
[5] Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662−665. doi: 10.1038/347662a0
[6] Gao X Y, Zhao T P, Shi X B, et al. 2013. Geochemistry and petrogenesis of the Early Cretaceous Shangcheng and Daquandian Granites in the North Dabie Mountains[J]. Geochimica, 42(4): 307−339(in Chinese with English abstract).
[7] Gao Y, Ye H S, Li Y F, et al. 2014. SHRIMP zircon U−Pb ages, Hf isotopic compositions and trace elements characteristics of the granites from the Qianechong Mo deposit, Dabie Orogen[J]. Acta Petrologica Sinica, 30(1): 49−63(in Chinese with English abstract).
[8] He Y S, Li S G, Hoefs J, et al. 2013. Sr−Nd−Pb isotopic compositions of Early Cretaceous granitoids from the Dabie Orogen: Constraints on the recycled lower continental crust[J]. Lithos, (156/159): 204−217.
[9] Hou Z H, Li S G. 2003. Comparisons of TIMS and SIMS zircon U−Pb ages of the ultrahigh pressure metamorphic and mafic igneous rocks in the Dabie mountains[J]. Acta Petrologica Sinica, 19(3): 490−496(in Chinese with English abstract).
[10] Hu J L, Liu J S, Liu A S, et al. 2018. Zircon U−Pb Dating, Hf Isotope and REE Geochemistry of the porphyritic biotite monzogranite in Muzidian area[J]. Buttletin of Mineralogy, Petrology and Geochemistry, 37(4): 750−759(in Chinese with English abstract).
[11] Huang F, Li S G, Dong F, et al. 2007. Recycling of deeply subducted continental crust in the Dabie Mountains, central China[J]. Lithos, 96: 151−169. doi: 10.1016/j.lithos.2006.09.019
[12] Jahn B M, Wu F Y, Lo C H, et al. 1999. Crust−mantle interaction induced by deep subduction of the continental crust: geochemical and Sr−Nd isotope evidence from post−collisional mafic−ultramafic intrusions of northern Dabie complex central China[J]. Chemical Geology, 157(1/2): 119−146. doi: 10.1016/S0009-2541(98)00197-1
[13] Leech M L. 2001. Arrested Orogenic development: Eclogitization, delamination, and tectonic collapse[J]. Earth and Planetary Science Letters, 185: 149−159. doi: 10.1016/S0012-821X(00)00374-5
[14] Li S G, Xiao Y L, Liu D L, et al. 1993. Collision of the North China and Yangtze Blocks and formation of coesite−bearing eclogites: Timing and processes[J]. Chemical Geology, 109(1/4): 89−111. doi: 10.1016/0009-2541(93)90063-O
[15] Li S G, Li Q L, Hou Z H, et al. 2005. Cooling history and exhumation mechanism of the ultrahigh−pressure metamorphic rocks in the Dabie mountains, central China[J]. Acta Petrologica Sinica, 21(4): 1117−1124(in Chinese with English abstract).
[16] Li X L, Hu J L, Chen J X, et al. 2016. Geochemistry and petrogenesis of the Muzidian granites in the Dabie Mountains[J]. Resources Environment & Engineering, 30(4): 268−278(in Chinese with English abstract).
[17] Liu A S, Hu J L, Cheng S B, et al. 2017. Zircon U−Pb age, Hf isotopic composition of porphyritic amphibole and biotite monzogranite from Muzidian, Dabie Orogen and its implication[J]. Bulletin of Geological Science and Technology, 36(6): 62−70(in Chinese with English abstract).
[18] Liu F L, Xue H M, Xu Z Q, et al. 2006. SHRIMP U−Pb zircon dating from eclogite lens in marble, Shuanghe area, Dabie UHP terrane: restriction on the prograde, UHP and retrograde metamorphic ages[J]. Acta Petrologica Sinica, 22(7): 1761−1778(in Chinese with English abstract).
[19] Liu Q Q, Shao Y J, Zhang Z H, et al. 2015. Zircon U−Pb ages, Hf isotope characteristics and its implication of granite from Yaochong, Dabie Orogen, China[J]. The Chinese Journal of Nonferrous Metals, 25(2): 479−491(in Chinese with English abstract).
[20] Liu J S, Hu J L, Liu A S, et al. 2016. Age and origin of Muzidian fine−grained monzogranite dyke in Dabie orogenic belt: Zircon U−Pb dating and Hf isotopic constraints[J]. Geological Bulletin of China, 35(12): 2088−2099(in Chinese with English abstract).
[21] Liu R, Wu C X, Zhu L L, et al. 2020. Giant Unexposed Yanshanian Magmatism in Southern North Dabie Terrane: Evidence from Zircon U−Pb Age, Elemental and Sr−Nd−Hf Isotope Geochemistry of Magmatic Rocks[J]. Geotectonica et Metallogenia, 44(1): 119−140(in Chinese with English abstract).
[22] Ma C Q, Li Z C, Ehlers C, et al. 1998. A post−collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high−pressure and ultrahigh−pressure Metamorphic zone, east−central China[J]. Lithos, 45: 431−456. doi: 10.1016/S0024-4937(98)00043-7
[23] Ma C Q, Ehlers C, Xu C H, et al. 2000. The roots of the Dabieshan ultrahigh−pressure metamorphic terrane: Constraints from geochemistry and Nd−Sr isotope systematics[J]. Precambridge Research, 102(3/4): 279−301.
[24] Ma C Q, Yang K G, Ming H L, et al. 2003. The time of the transition from compression to extension of the Mesozoic crust in the Dabie Mountains: Evidence from granites[J]. Science in China Series D−Earth Sciences, 33(9): 817−827(in Chinese).
[25] Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids[J]. Lithos, 46: 411−429. doi: 10.1016/S0024-4937(98)00076-0
[26] Qin J F, Lai S C, Wu C R, et al. 2010. Magma mixing origin for the post−collisional adakitic monzogranite of the Triassic Yangba pluton, Northwestern margin of the South China block: Geochemistry, Sr−Nd isotopic, zircon U−Pb dating and Hf isotopic evidences[J]. Contributions to Mineralogy and Petrology, 159(3): 389−409. doi: 10.1007/s00410-009-0433-2
[27] Springer W, Seck H A. 1997. Partial fusion of basic granulite at 5 to 15 kbar: Implications for the origin of TTG magmas[J]. Contributions to Mineralogy and Petrology, 127: 30−45. doi: 10.1007/s004100050263
[28] Wan J, Kong L Y, Liu C X, et al. 2024. Geochemical characteristics of Early Cretaceous gabbro in Muzidian area, North Dabie and its indicative significance for tectonic environment[J]. Geological Bulletin of China, 43(8): 1446−1458(in Chinese with English abstract).
[29] Wang G G, Ni P, Yu W, et al. 2014. Petrogenesis of early Cretaceous post−collisional granitoids at Shapinggou, Dabie Orogen implications for crustal Architecture and porphyry Mo mineralization[J]. Lithos, 184/187: 393−415.
[30] Wang Q, Xu J F, Zhao Z H, et al. 2003. Intermediate−acid igneous rocks strongly depleted in heavy earth elements (or adakitic rocks) and copper−gold metallogenesis[J]. Earth Science Frontiers, 10(4): 561−572(in Chinese with English abstract).
[31] Wang Q, Wyman D A, Xu J F, et al. 2007. Early Cretaceous adakitic granites in the Northern Dabie complex, Central China: Implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 71(10): 2609−2636. doi: 10.1016/j.gca.2007.03.008
[32] Wang Q C, Cong B L. 1998. Tectonic framework of the ultrahigh−pressure metamorphic zone from the Dabie Mountains[J]. Acta Petrologica Sinica, 14(4): 481−492(in Chinese with English abstract).
[33] Wei Q G, Gao X Y, Zhao T P, et al. 2010. Petrogenesis of Tangjiaping granite porphyry in northern Dabie: Evidence from zircon LA−ICPMS U−Pb dating and geochemical characteristics[J]. Acta Petrologica Sinica, 26(5): 1550−1562(in Chinese with English abstract).
[34] Wu F Y, Ge W C, Sun D Y, et al. 2003. Discussions on the lithospheric thinning in Eastern China[J]. Earth Science Frontiers, 10(3): 51−60(in Chinese with English abstract).
[35] Xiong X L, Adam J, Green T H, 2005. Rutile stability and rutile/melt HFSE partitioning during patial melting of hydrous basalt: Implications for TTG genesis[J]. Chemical Geology, 218(3/4): 339−359.
[36] Xue H M, Dong S W, Liu X C. 2002U−Pb zircon dating for Cretaceous adakitic volcanic rocks in eastern part of the North Dabie Mountains[J]. Geochinica, 31(35): 455−463(in Chinese with English abstract).
[37] Xu J H, Ye K, Ma C Q. 2008. Early Cretaceous granitoids in the North Dabie and their tectonic implications: Sr−Nd and zircon Hf isotopic evidences[J]. Acta Petrologica Sinica, 24(1): 83−103(in Chinese with English abstract).
[38] Xu H J, Ma C Q, Zhang J F, et al. 2013. Early Cretaceous low−Mg adakitic granites from the Dabie Orogen, eastern China: Petrogenesis and implications for destruction of the over−thickened lower continental crust[J]. Gondwana Research, 23: 190−207. doi: 10.1016/j.gr.2011.12.009
[39] Zhang H F, Gao S, Zhong Z Q, et al. 2002. Geochemical and Sr−Nd−Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh−pressure metamorphic belt, China[J]. Chemical Geology, 186: 281−299. doi: 10.1016/S0009-2541(02)00006-2
[40] Zhang L G, Liu J X, Wang K F. 1995. Geology of the East Asian lithospheric blocks: Isotopic geochemistry of the upper mantle−base and granites and Its geodynamics[M]. Beijing: Chinese Science Press: 1−252(in Chinese).
[41] Zhang K J. 2006. North China and South China collision: Insights from analogue modeling[J]. Journal of Geodynamics, 42: 38−51. doi: 10.1016/j.jog.2006.04.004
[42] Zhang Q, Qian Q, Wang E C, et al. 2001a. An East China plateau in Mid−Late Yanshanian period: Implication from adakites[J]. Chinese Journal of Geology, 36(2): 248−255(in Chinese with English abstract).
[43] Zhang Q, Wang Y, Qian Q, et al. 2001b. The characteristics and tectonic−metallogenic significances of the adakites in Yanshan period from eastern China[J]. Acta Petrologica Sinica, 17(2): 236−244(in Chinese with English abstract).
[44] Zhang S B, Zheng Y F, Zhao Z F, et al. 2009. Origin of TTG−like rocks from anatexis of ancient lower crust: Geochemical evidence from Neoproterozoic granitoids in South China[J]. Lithos, 113: 347−368. doi: 10.1016/j.lithos.2009.04.024
[45] Zhao Z F, Zheng Y F, Wei C S, et al. 2004. Zircon U−Pb ages, element and oxygen isotope geochemistry of Mesozoic intermediate−felsic in the Dabie Mountains[J]. Acta Petrologica Sinica, 20(5): 1151−1174(in Chinese with English abstract).
[46] Zhao Z F, Zheng Y F, Wei C S, et al. 2005. Zircon U−Pb age, element and C−O isotope geochemistry of post−collisional mafic−ultramafic rocks from the Dabie Orogen in east−central China[J]. Lithos, 83: 1−28. doi: 10.1016/j.lithos.2004.12.014
[47] Zhao Z F, Zheng Y F, Wei C S. 2008. Zircon U−Pb ages, Hf and O isotopes constrain the crustal Architecture of the ultrahigh−pressure Dabie orogen in China[J]. Chemical Geology, 253: 222−242. doi: 10.1016/j.chemgeo.2008.05.011
[48] Zhao Z F, Zheng Y F. 2009. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie−Sulu orogenic belt[J]. Science in China Series D−Earth Sciences, 39(7): 888−909(in Chinese).
[49] Zhao Z F, Zheng Y F, Wei C S, et al. 2011. Origin of postcollisional magmatic rocks in the Dabie Orogen: Implications for crust−mantle interaction and crustal architecture[J]. Lithos, 126: 99−114. doi: 10.1016/j.lithos.2011.06.010
[50] Zheng Y F. 2008. Research progress on ultrahigh pressure metamorphism and continental collision: A case study of the Dabie−Sulu Orogenic Belt[J]. Science in China Press, 53(18): 2129−2152(in Chinese).
[51] 陈伟, 徐兆文, 李红超, 等. 2013. 河南新县花岗岩岩基的岩石成因、来源及对西大别构造演化的启示[J]. 岩石学报, 87(10): 1510−1524.
[52] 高阳, 叶会寿, 李永峰, 等. 2014. 大别山千鹅冲钼矿区花岗岩的SHRIMP锆石U−Pb年龄、Hf同位素组成及微量元素特征[J]. 岩石学报, 30(1): 49−63.
[53] 高昕宇, 赵太平, 施小斌, 等. 2013. 大别山北麓早白垩世商城和达权店岩体的地球化学特征与成因[J]. 地球化学, 42(4): 307−339.
[54] 侯振辉, 李曙光. 2003. 大别造山带超高压变质岩和镁铁质岩浆岩锆石U−Pb 年代学的TIMS和SIMS法定年结果比较[J]. 岩石学报, 19(3): 490−496.
[55] 胡俊良, 刘劲松, 刘阿睢, 等. 2018. 北大别木子店岩体斑状黑云二长花岗岩的年龄与成因: 锆石U−Pb定年、Hf同位素与稀土元素证据[J]. 矿物岩石地球化学通报, 37(4): 750−759.
[56] 李曙光, 李秋立, 侯振辉, 等. 2005. 大别山超高压变质岩的冷却史及折返机制[J]. 岩石学报, 21(4): 1117−1124.
[57] 李小林, 胡俊良, 陈姣霞, 等. 2016. 大别山地区木子店岩体的地球化学特征与成因[J]. 资源环境与工程, 30(4): 268−278.
[58] 刘阿睢, 胡俊良, 程顺波, 等. 2017. 大别山木子店地区斑状角闪黑云二长花岗岩株的锆石U−Pb年龄、Hf同位素组成及其地质意义[J]. 地质科技情报, 36(6): 62−70.
[59] 刘福来, 薛怀民, 许志琴, 等. 2006. 大别超高压变质带的进变质、超高压和退变质时代的准确限定: 以双河大理岩中榴辉岩锆石SHRIMP U−Pb定年为例[J]. 岩石学报, 22(7): 1761−1778.
[60] 刘劲松, 胡俊良, 刘阿睢, 等. 2016. 大别山木子店地区细粒二长花岗岩脉的年龄和成因——锆石U−Pb年龄和Hf同位素制约[J]. 地质通报, 35(12): 2088−2099.
[61] 刘清泉, 邵拥军, 张智慧, 等. 2015. 大别山姚冲花岗岩锆石U−Pb年龄、Hf同位素及地质意义[J]. 中国有色金属学报, 25(2): 479−491.
[62] 刘锐, 吴昌雄, 祝莉玲, 等. 2020. 北大别南部存在巨量隐伏燕山期岩浆作用: 岩浆岩锆石U−Pb年龄、元素及Sr−Nb−Hf同位素证据[J]. 大地构造与成矿学, 44(1): 119−140.
[63] 马昌前, 杨坤光, 明厚利, 等. 2003. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学(D辑), 33(9): 817−827.
[64] 万俊, 孔令耀, 刘成新, 等. 2024. 北大别木子店地区早白垩世辉长岩地球化学特征及其对构造环境的指示[J]. 地质通报, 43(8): 1446−1458.
[65] 王强, 许继峰, 赵振华. 2003. 强烈亏损重稀土元素的中酸性火成岩(或埃达克质岩)与Cu、Au成矿作用[J]. 地学前缘, 10(4): 561−572.
[66] 王清晨, 丛柏林. 1998. 大别山超高压变质带的大地构造框架[J]. 岩石学报, 14(4): 481−492.
[67] 魏庆国, 高昕宇, 赵太平, 等. 2010. 大别北麓汤家坪花岗斑岩锆石LA−ICPMS U−Pb定年和岩石地球化学特征及其对岩石成因的制约[J]. 岩石学报, 26(5): 1550−1562.
[68] 吴福元, 葛文春, 孙德有, 等. 2003. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 10(3): 51−60.
[69] 续海金, 叶凯, 马昌前. 2008. 北大别早白至纪花岗岩类的Sm−Nd和锆石Hf同位素及其构造意义[J]. 岩石学报, 24(1): 83−103.
[70] 薛怀民, 董树文, 刘晓春. 2002. 北大别东部白垩纪埃达克质火山岩及其锆石U−Pb年代学[J]. 地球化学, 31(35): 455−463.
[71] 张理刚, 刘敬秀, 王可法. 1995. 东亚岩石圈块体地质: 上地幔-基底和花岗岩同位素地球化学及其地球动力学[M]. 北京: 科学出版社: 1−252.
[72] 张旗, 钱青, 王二七, 等. 2001a. 燕山中晚期的中国东部高原: 埃达克岩的启示[J]. 地质科学, 36(2): 248−255.
[73] 张旗, 王焰, 钱青, 等. 2001b. 中国东部燕山期埃达克岩的特征及其构造-成矿意义[J]. 岩石学报, 17(2): 236−244.
[74] 赵子福, 郑永飞, 魏春生, 等. 2004. 大别山中生代中酸性岩浆岩锆石U−Pb定年、元素和氧同位素地球化学研究[J]. 岩石学报, 20(5): 1151−1174.
[75] 赵子福, 郑永飞. 2009. 俯冲大陆岩石圈重熔: 大别-苏鲁造山带中生代岩浆岩成因[J]. 中国科学(D辑), 39(7): 888−909.
[76] 郑永飞. 2008. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造山带为例[J]. 科学通报, 53(18): 2129−2152.
-