Application of distributed 3D wide field electromagnetic method in the exploration of high-grade iron ore in the thick covered area of Litun in Qihe−Yucheng, Shandong Province
-
摘要:
近年来,山东齐河—禹城李屯厚覆盖区富铁矿勘查取得了重大进展,但该区新生界厚度大(900~1100 m)、磁铁矿体埋藏深,矿体引起的地球物理异常弱,找矿难度大。为了揭示李屯富铁矿深部地质构造,开展了分布式三维广域电磁探测,应用高阶2n序列伪随机信号,一次发射49个频率并同时接收,实现分布式滚动测量,获得了地下2000 m以浅地电特征,并对地下地质结构进行解释,构建了重点研究区的三维地质模型,解释结果与已有的二维地震和钻探信息吻合度较高,为重磁联合反演提供有效的地质结构约束,结合重磁场特征和成矿规律圈定新的找矿靶区。结果表明,分布式三维广域电磁法是获取厚覆盖地区深部地质结构的有效探测方法,具有良好的应用前景。
-
关键词:
- 分布式三维广域电磁法 /
- 富铁矿 /
- 厚覆盖区 /
- 山东
Abstract:In recent years, significant progress has been made in the exploration of high-grade iron ores in the Litun heavy-cover area of Qihe—Yucheng, Shandong Province. But the Cenozoic thickness (900~1100 m) in this area is so large that the magnetic iron ore is deeply buried. The geophysical condition caused by the iron ore is thus abnormally weak, and the prospecting is difficult. To reveal the deep geological structure of high-grade iron ore in the Litun, distributed three-dimensional wide field electromagnetic detection was carried out. The high-order 2n sequence pseudo-random signal was used, which can transmit 49 frequencies at a time and receive at the same time, realize distributed rolling measurement, and obtain the geoelectric characteristics of 2000 m underground. Based on this, a detailed interpretation of the underground geological structure was carried out, and a three-dimensional geological model of the key research area was constructed. The interpretation results were in good agreement with the existing seismic and drilling information. It provides effective geological structure constraints for gravity-magnetic joint inversion. Delineates new prospecting targets in combination with gravity and magnetic characteristics and metallogenic laws. The results show that the distributed three-dimensional wide field electromagnetic method is an effective detection method to obtain the deep geological structure in the heavy-cover area and has a good application prospect.
-
-
图 3 高阶2n序列伪随机信号(Yang et al.,2022)
Figure 3.
表 1 地层电阻率测井参数
Table 1. Statistics of formation resistivity logging parameters
地层 归一化电阻率/(Ω·m) 统计厚度/m 极值 平均值 Q 13~15 13 2980 N 6~14 8 4015 C+P 40~178 78 2146 矿体 2~18 9 256 角岩 59~194 160 325 蚀变闪长岩 34~138 67 475 闪长岩 1351~1656 1619 573 注:Q—第四系;N—新近系;C+P—石炭系−二叠系 -
[1] He J S. 2019. Theory and technology of wide field electromagnetic method[J]. The Chinese Journal of Nonferrous Metals, 29(9): 1809−1816(in Chinese with English abstract).
[2] He J S. 2020. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 44(5): 985−990(in Chinese with English abstract).
[3] He J S, Yang Y, Li D Q, et al. 2020. Method and system for generating high−order pseudo−random electromagnetic prospecting signal[P]. CN Patent, 202010344733.2 (in Chinese with English abstract).
[4] Hou Z, Chen X, Yu C C, et al. 2021. Characteristics of the geological deep structure in QiHe−Yucheng area of Shandong: Characteristics of the geological deep structure in QiHe−Yucheng area of Shandong[J]. Progress in Geophysics, 36(3): 1070−1081(in Chinese with English abstract).
[5] Shen L J, Zhu Y Z, Gao Z J. 2020. Paimary Study on Geological Characteristics of Litun Rock Mass in Paimary Study on Geological Characteristics of Litun Rock Mass in[J]. Shandong Land and Resources, 36(2): 23−29(in Chinese with English abstract).
[6] Shen L J, Zhu Y Z, Wang H H, et al. 2021a. Geochemical characteristics and geological significance of Litun iron ore deposit in Qihe—Yucheng area, Shandong Province[J]. Geological Review, 67(1): 84−98(in Chinese with English abstract).
[7] Shen L J, Zhu Y Z, Li S, et al. 2021b. Application of Geophysical Logging in Deep Metallic Ore Prospecting[J]. Well Logging Technology, 45(4): 431−438(in Chinese with English abstract).
[8] Wang H H, Li X Z, Shen L J, et al. 2021a. Geological Characteristics and Metallogenic Model of "Yucheng Type" Rich Iron Deposit in Qihe Yucheng Area in Shandong Province[J]. Shandong Land and Resources, 37(9): 26−35(in Chinese with English abstract).
[9] Wang H H, Shen L J, Wang D D, et al. 2021b. Study on Mesozoic magmatic intrusion and Paleozoic multi−mineral genesis mechanism in Huanghebei Coalfield, Shandong Province[J]. Coal Geology & Exploration, 49(2): 83−92(in Chinese with English abstract).
[10] Wang R S, Hao X Z, Hu L, et al. 2023. Discovery of skarn iron−rich deposit based on gravity and magnetic data in the Qihe−Yucheng, Shandong Province: Enlightenment to prospecting of the superdeep coverage area[J]. Geology in China, 50(2): 331−346(in Chinese with English abstract).
[11] Yang Y, He J S, Li D Q. 2021. Energy distribution and effective components analysis of 2n sequence pseudo−random signal[J]. Transactions of Nonferrous Metals Society of China, 31(7): 2102−2115. doi: 10.1016/S1003-6326(21)65641-8
[12] Yang Y, He J S, Ling F, et al. 2022. Distributed wide field electromagnetic method based on high−order 2n sequence pseudo random signal[J]. Transactions of Nonferrous Metals Society of China, 32(5): 1609−1622. doi: 10.1016/S1003-6326(22)65897-7
[13] Yang Y, Zhou C, Zhang H, et al. 2023. Denoising CSEM data using least−squares method based on mixed basis of Fourier series and Legendre polynomials[J]. IEEE Transactions on Geoscience and Remote Sensing, 61: 1−12.
[14] Zhang Z Q, Li Y P, Wang H H, et al. 2016. Large high−grade iron ore deposit is found in Qihe−Yucheng area of Shandong Province[J]. Shandong Land and Resources, 32(5): 94(in Chinese with English abstract).
[15] Zhou M L, Ru L, Zhu Y Z, et al. 2021. Magnetic field characteristics and ore prediction in Qihe−Yucheng area of Shandong Province[J]. Geophysical and Geochemical Exploration, 45(2): 301−307(in Chinese with English abstract).
[16] Zhu Y Z, Zhou M L, Gao Z J, et al. 2018. The discovery of the Qihe−Yucheng skarn type rich iron deposit in Shandong and its exploration significance[J]. Geological Bulletin of China, 37(5): 938−944(in Chinese with English abstract).
[17] Zhu Y Z, Qiang J K, Wang L F, et al. 2019. Three−dimensional inversion analysis of magnetic data from deep buried iron ore and prediction of prospecting target area[J]. Geophysical and Geochemical Exploration, 43(6): 1182−1190(in Chinese with English abstract).
[18] 何继善. 2019. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报, 29(9): 1809−1816.
[19] 何继善. 2020. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 44(5): 985−990.
[20] 何继善, 杨洋, 李帝铨, 等. 2021. 一种高阶伪随机电磁勘探信号生成方法及系统[P]. 山东省: CN202010344733.2.
[21] 侯征, 陈雄, 于长春, 等. 2021. 山东齐河—禹城地区深部地质构造特征——来自大地电磁的证据[J]. 地球物理学进展, 36(3): 1070−1081. doi: 10.6038/pg2021EE0422
[22] 沈立军, 朱裕振, 高志军. 2020. 山东齐河—禹城富铁矿区李屯岩体地质特征初探[J]. 山东国土资源, 36(2): 23−29.
[23] 沈立军, 朱裕振, 王怀洪, 等. 2021a. 山东齐河—禹城地区李屯富铁矿床地球化学特征及地质意义[J]. 地质论评, 67(1): 84−98. doi: 10.16509/j.georeview.2021.01.007
[24] 沈立军, 朱裕振, 李双, 等. 2021b. 地球物理测井在金属矿深部找矿中的应用[J]. 测井技术, 45(4): 431−438. doi: 10.16489/j.issn.1004-1338.2021.04.015
[25] 王怀洪, 李秀章, 沈立军, 等. 2021a. 山东齐河—禹城地区“禹城式”富铁矿地质特征与成矿模式[J]. 山东国土资源, 37(9): 26−35.
[26] 王怀洪, 沈立军, 王东东, 等. 2021b. 山东黄河北煤田中生代岩浆侵入与古生代多矿产成因机制[J]. 煤田地质与勘探, 49(2): 83−92. doi: 10.3969/j.issn.1001-1986.2021.02.011
[27] 王润生, 郝兴中, 胡蕾, 等. 2023. 基于重磁资料在山东齐河—禹城探获矽卡岩型富铁矿及其对超深覆盖区找矿的启示[J]. 中国地质, 50(2): 331−346.
[28] 张增奇, 李英平, 王怀洪, 等. 2016. 山东省齐河禹城地区发现大型富铁矿[J]. 山东国土资源, 32(5): 94. doi: 10.3969/j.issn.1672-6979.2016.05.020
[29] 周明磊, 汝亮, 朱裕振, 等. 2021. 山东齐河—禹城地区重磁场特征及找矿预测[J]. 物探与化探, 45(2): 301−307.
[30] 朱裕振, 周明磊, 高志军, 等. 2018. 山东齐河—禹城地区矽卡岩型富铁矿的发现及其意义[J]. 地质通报, 37(5): 938−944.
[31] 朱裕振, 强建科, 王林飞, 等. 2019. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 43(6): 1182−1190.
-