北康盆地基底构造特征及其对南海南部构造演化的启示

徐俊杰, 佟殿君, 高圆圆. 2024. 北康盆地基底构造特征及其对南海南部构造演化的启示. 地质通报, 43(9): 1607-1619. doi: 10.12097/gbc.2022.11.039
引用本文: 徐俊杰, 佟殿君, 高圆圆. 2024. 北康盆地基底构造特征及其对南海南部构造演化的启示. 地质通报, 43(9): 1607-1619. doi: 10.12097/gbc.2022.11.039
XU Junjie, TONG Dianjun, GAO Yuanyuan. 2024. Features of the basement-involved structure in the Beikang Basin and their implication for the tectonic evolution of the southern South China Sea. Geological Bulletin of China, 43(9): 1607-1619. doi: 10.12097/gbc.2022.11.039
Citation: XU Junjie, TONG Dianjun, GAO Yuanyuan. 2024. Features of the basement-involved structure in the Beikang Basin and their implication for the tectonic evolution of the southern South China Sea. Geological Bulletin of China, 43(9): 1607-1619. doi: 10.12097/gbc.2022.11.039

北康盆地基底构造特征及其对南海南部构造演化的启示

  • 基金项目: 国家自然科学基金面上项目《南海南部陆缘中中新世不整合地质属性研究——对南海扩张停止机制的约束》(批准号:42172125)
详细信息
    作者简介: 徐俊杰(1988−),男,博士,工程师,从事沉积盆地动力学、海洋地质和地球物理的研究工作。E-mail:m13554408248@163.com
    通讯作者: 佟殿君(1979−),男,博士,副教授,从事大陆边缘盆地动力学方面的研究工作。E−mail: tdj7901@126.com
  • 中图分类号: P71; P722.7; P736.15

Features of the basement-involved structure in the Beikang Basin and their implication for the tectonic evolution of the southern South China Sea

More Information
  • 南海南部是研究东南亚地区构造演化的关键场所,以构造相对简单的北康盆地为基础探讨其构造演化过程。为了确定研究区的构造特征,进行了地震综合解释、主控断层的定性、定量分析和盆地之下的岩石圈伸展因子分析。通过构造分析,发现北康盆地15.5 Ma界面(MMU)之下发育了多条大规模、低角度的拆离断层,界面之下的原型盆地为裂陷盆地,并且局部可表现为拆离盆地,符合被动大陆边缘细颈化带内的构造特征。对北康盆地构造演化过程进行分析并将其与曾母盆地进行对比,发现2个盆地的构造演化特征迥然不同,据此重新将南海南部挤出−逃逸构造区和古南海俯冲−拖曳构造区之间的分界线确定为西巴拉姆线。结合南海南、北部的陆缘盆地基底卷入构造的发育特征发现,南海陆缘岩石圈在发生破裂后,应变的集中主要体现在靠近洋壳的细颈化带和远端带部位,远离洋壳地区的应变受海底扩张的影响较小,这一特征可能与被动陆缘岩石圈的近端和远端在拉伸过程中的解耦相关。

  • 加载中
  • 图 1  北康盆地区域位置及构造单元划分

    Figure 1. 

    图 2  北康盆地断裂平面分布图(断层蓝色细线向粗线方向为断层倾向)

    Figure 2. 

    图 3  北康盆地新生代地层划分

    Figure 3. 

    图 4  北康盆地典型构造地震剖面(据Savva et al., 2014修改)

    Figure 4. 

    图 5  过西部坳陷、中部隆起NWW—SEE向地震解释剖面

    Figure 5. 

    图 6  过南薇西、北康盆地NWW—SEE向地震解释剖面

    Figure 6. 

    图 7  过东南坳陷、中部隆起、东北坳陷SSW—NNE向地震解释剖面

    Figure 7. 

    图 8  北康盆地主要断层活动速率

    Figure 8. 

    图 9  断层平均活动速率(图8断点在各个时期活动速率之和除以 11)

    Figure 9. 

    图 10  过西部坳陷、中部隆起剖面的地壳伸展特征

    Figure 10. 

    图 11  过南薇西、北康盆地剖面的地壳伸展特征

    Figure 11. 

    图 12  北康盆地不同演化阶段构造及应力场特征(据Hall et al., 2008

    Figure 12. 

  • [1]

    Bai Y L, Wang X Y, Dong D D, et al. 2020. Symmetry of the South China Sea conjugate margins in a rifting, drifting and collision context[J]. Marine and Petroleum Geology, 117: 104397. doi: 10.1016/j.marpetgeo.2020.104397

    [2]

    Barckhausen U, Engels M, Franke D, et al. 2014. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 58: 599−611. doi: 10.1016/j.marpetgeo.2014.02.022

    [3]

    Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Soil Earth, 98(B4): 6299−6328. doi: 10.1029/92JB02280

    [4]

    Brune S, Heine C, Clift P D, et al. 2017. Rifted margin architecture and crustal rheology: Reviewing Iberia−Newfoundland, Central South Atlantic, and South China Sea[J]. Marine and Petroleum Geology, 79: 257−281. doi: 10.1016/j.marpetgeo.2016.10.018

    [5]

    Cullen A. 2014. Reprint of Nature and significance of the West Baram and Tinjar Lines, NW Borneo[J]. Marine and Petroleum Geology, 58: 674−686. doi: 10.1016/j.marpetgeo.2014.01.009

    [6]

    Duan L, Pei J X, Zhang Y Z, et al. 2018. Tectonic characteristics of extensional detachment basin in southern South China Sea[J]. Marine Origin Petroleum Geology, 23(4): 71−80(in Chinese with English abstract).

    [7]

    Fuller M, Ali J R, Moss S J, et al. 1999. Paleomagnetism of Borneo[J]. Journal of Asian Earth Sciences, 17(1/2): 3−24.

    [8]

    Gozzard S, Kusznir N, Franke D, et al. 2018. South China Sea crustal thickness and oceanic lithosphere distribution from satellite gravity inversion[J]. Petroleum Geoscience, 25(1): 112−128.

    [9]

    Hall R, van Hattum M W A, Spakman W. 2008. Impact of India–Asia collision on SE Asia: The record in Borneo[J]. Tectonophysics, 451(1/4): 366−389.

    [10]

    Hall R. 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 570/571(11): 1−41.

    [11]

    Hall R, Spakman W. 2015. Mantle structure and tectonic history of SE Asia[J]. Tectonophysics, 658: 14−45. doi: 10.1016/j.tecto.2015.07.003

    [12]

    Hall R, Breitfeld T. 2017. Nature and demise of the Proto−South China Sea[J]. Bulletin of the Geological Society of Malaysia, 63: 61−76. doi: 10.7186/bgsm63201703

    [13]

    Haq B U, Hardenbol J, Vail P R. 1987. Chronology of fluctuating sea levels since the Triassic[J]. Science, 235: 1156−1167.

    [14]

    Hutchison C S. 1975. Ophiolite in Southeast Asia[J]. Geological Society of America Bulletin, 86: 797−806. doi: 10.1130/0016-7606(1975)86<797:OISA>2.0.CO;2

    [15]

    Hutchison C S. 1996. The 'Rajang accretionary prism' and 'Lupar Line' problem of Borneo[J]. Geological Society London Special Publications, 106(1): 247−261. doi: 10.1144/GSL.SP.1996.106.01.16

    [16]

    Lei C. 2012. Structure and evolution of Yinggehai and Qiongdongnan Basins, South China Sea: Implications for Cenozoic tectonic in Southeast Asia[D]. Doctoral Dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    [17]

    Lei C, Ren J Y, Zhang J. 2015. Tectonic province division in the South China Sea: Implications for basin geodynamics[J]. Earth Science−Journal of China University of Geosciences, 40(4): 744−762(in Chinese with English abstract). doi: 10.3799/dqkx.2015.062

    [18]

    Lei J P, Jiang S H, Li S Z, et al. 2016. Gravity anomaly in the southern South China Sea: a connection of Moho depth to the nature of the sedimentary basins' crust[J]. Geological Journal, 51(S1): 244−262. doi: 10.1002/gj.2817

    [19]

    Lei Z Y, Zhang L, Wang L Z, et al. 2020. Provenance migration in the Beikang Basin of the Southern South China Sea during the Oligocene to the Mid−Miocene[J]. Earth Science, 45(5): 1855−1864(in Chinese with English abstract).

    [20]

    Li C F, Li J, Ding W, et al. 2015. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research Solid Earth, 120(3): 1377−1399. doi: 10.1002/2014JB011686

    [21]

    Liang G H, Zhang B L. 2024. Discussion on the Cenozoic tectonic evolution of the South China Sea from continental margin extension[J]. Geological Bulletin of China, 43(1): 20−32(in Chinese with English abstract).

    [22]

    Liu J, Chen X, Wu W, et al. 2015. New tectono−geochronological constraints on timing of shearing along the Ailao Shan−Red River shear zone: Implications for genesis of Ailao Shan gold mineralization[J]. Journal of Asian Earth Sciences, 103: 70−86. doi: 10.1016/j.jseaes.2014.11.006

    [23]

    Madon M, Kim C L, Wong R. 2013. The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution[J]. Journal of Asian Earth Sciences, 76: 312−333. doi: 10.1016/j.jseaes.2013.04.040

    [24]

    Menier D, Mathew M, Pubellier M, et al. 2017. Landscape response to progressive tectonic and climatic forcing in NW Borneo: Implications for geological and geomorphic controls on flood hazard[J]. Scientific Reports, 7(1): 1−18. doi: 10.1038/s41598-016-0028-x

    [25]

    Metcalfe I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland[J]. Gondwana Research, 19(1): 3−21. doi: 10.1016/j.gr.2010.02.016

    [26]

    Mohn G, Manatschal G, Beltrando M, et al. 2012. Necking of continental crust in magma−poor rifted margins: Evidence from the fossil Alpine Tethys margins[J]. Tectonics, 31(1): 1−28.

    [27]

    Morley C K. 2016. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development[J]. Journal of Asian Earth Sciences, 120: 62−86. doi: 10.1016/j.jseaes.2016.01.013

    [28]

    Peron−Pinvidic G, Manatschal G, Osmundsen P T. 2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts[J]. Marine and Petroleum Geology, 43: 21−47. doi: 10.1016/j.marpetgeo.2013.02.002

    [29]

    Peron−Pinvidic G, Manatschal G. 2010. From microcontinents to extensional allochthons: witnesses of how continents rift and break apart?[J]. Petroleum Geoscience, 16(3): 189−197. doi: 10.1144/1354-079309-903

    [30]

    Ranero C R, Perez−Gussinye M. 2010. quential faulting explains the asymmetry and extension discrepancy of conjugate margins[J]. Nature, 468(7321): 294−299. doi: 10.1038/nature09520

    [31]

    Ren J Y, Pang X, Lei C, et al. 2015a. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process: Implication for research of the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 22(1): 102−114 (in Chinese with English abstract).

    [32]

    Ren J Y, Pang X, Lei C, et al. 2015b. Structure and evolution of deep water/superdeep water basins in the northern continental margins of South China Sea[C]// The 17th Annual Meeting of the China Association for Science and Technology—Minutes 9, Proceedings of the Symposium on Deepwater Oil and Gas Exploration and Development Technology in the South China Sea, Guangzhou, China: 8 (in Chinese with English abstract).

    [33]

    Ren J Y, Pang X, Yu P, et al. 2018. Characteristics and formation mechanism of deepwater and ultra−deepwater basins in the northern continental margin of the South China Sea[J]. Chinese Journal of Geophysics, 61(12): 4901−4920 (in Chinese with English abstract).

    [34]

    Sandoval L, Welford J K, Macmahon H, et al. 2019. etermining continuous basins across conjugate margins: The East Orphan, Porcupine, and Galicia Interior basins of the southern North Atlantic Ocean[J]. Marine and Petroleum Geology, 110: 138−161. doi: 10.1016/j.marpetgeo.2019.06.047

    [35]

    Savva D, Meresse F, Pubellier M, et al. 2013. Seismic evidence of hyper−stretched crust and mantle exhumation offshore Vietnam[J]. Tectonophysics, 608: 72−83. doi: 10.1016/j.tecto.2013.07.010

    [36]

    Savva D, Pubellier M, Franke D, et al. 2014. Different expressions of rifting on the South China Sea margins[J]. Marine and Petroleum Geology, 58: 579−598. doi: 10.1016/j.marpetgeo.2014.05.023

    [37]

    Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea[J]. Tectonophysics, 692: 98−119. doi: 10.1016/j.tecto.2016.02.022

    [38]

    Song T, Li C. 2015. Rifting to drifting transition of the Southwest Subbasin of the South China Sea[J]. Marine Geophysical Researches, 36(2/3): 167−185.

    [39]

    Tang W. 2018. Characteristics of major uncomformities and depositional evolution of Cenozoic in Beikang Basin, South China Sea[J]. China Offshore Oil and Gas, 30(2): 9−16(in Chinese with English abstract).

    [40]

    Wang P C, Li S Z, Guo L L, et al. 2016. Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms[J]. Geological Journal, 51(S1): 464−489. doi: 10.1002/gj.2835

    [41]

    Williams S E, Whittaker J M, Halpin J A, et al. 2018. Australian−Antarctic break up and seafloor spreading: Balancing geological and geophysical constraints[J]. Earth Science Reviews, 188: 41−58.

    [42]

    Wu D, Zhu X M, Zhang H H, et al. 2014. Deposition characteristics and hydrocarbon distribution in medium and large basins of Nansha, South China Sea[J]. Journal of Palaeogeography, 16(5): 673−686(in Chinese with English abstract).

    [43]

    Wu Z P, Liu Y Q, Zhang J, et al. 2018. Cenozoic characteristics and evolution of fault systems in the Liyue Basin, South China Sea[J]. Earth Science Frontiers, 25(2): 221−231 (in Chinese with English abstract).

    [44]

    Xie X N, Ren J Y, Wang Z F, et al. 2015. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading[J]. Earth Science Frontiers, 22(1): 77−87(in Chinese with English abstract).

    [45]

    Xu J J. 2019. The tectono−stratigraphic framework and geodynamics of the Zengmu Basin, southern South China Sea[D]. Doctoral Dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    [46]

    Xu J, Ren J, Luo P. 2019. The evolution of a gravity−driven system accompanied by diapirism under the control of the prograding West Luconia Deltas in the Kangxi Depression, Southern South China Sea[J]. Marine Geophysical Research, 40(B4): 199−221.

    [47]

    Yao Y J, Xia B, Xu X. 2005. Tectonic evolution of the main sedimentary basins in southern area of the South China Sea[J]. Geological South China sea, 17: 1−11(in Chinese with English abstract).

    [48]

    Ye Q, Mei L, Shi H, et al. 2020. The Influence of Pre‐existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin[J]. Tectonics, 39(3): 290−312.

    [49]

    Zahirovic S, Matthews K J, Flament N, et al. 2016. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic[J]. Earth−Science Reviews, 162: 293−337. doi: 10.1016/j.earscirev.2016.09.005

    [50]

    Zahirovic S, Seton M, Miller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia[J]. Solid Earth Discussions, 5(2): 227−273.

    [51]

    Zhang Y, Xia S, Cao J, et al. 2020. Extensional tectonics and post−rift magmatism in the southern South China Sea: New constraints from multi−channel seismic data[J]. Marine and Petroleum Geology, 117: 104396. doi: 10.1016/j.marpetgeo.2020.104396

    [52]

    Zhao S, Li X J, Yao Y J, et al. 2019. Orogenic events in Southern South China Sea and their relationship with the subduction of the Proto South China Sea[J]. Marine Geology & Quaternary Geology, 39(5): 147−162 (in Chinese with English abstract).

    [53]

    段亮, 裴健翔, 张亚震, 等. 2018. 南海南部裂离型盆地构造特征[J]. 海相油气地质, 23(4): 71−80.

    [54]

    雷超, 任建业, 张静. 2015. 南海构造变形分区及成盆过程[J]. 地球科学—中国地质大学学报, 40(4): 744−762.

    [55]

    雷超. 2012. 南海北部莺歌海−琼东南盆地新生代构造变形格局及其演化过程分析[D]. 中国地质大学(武汉)博士学位论文.

    [56]

    雷振宇, 张莉, 王龙樟, 等. 2020. 南海南部北康盆地晚渐新世−中中新世物源变化[J]. 地球科学, 45(5): 1855−1864.

    [57]

    梁光河, 张宝林. 2024. 从陆缘伸展探讨新生代南海构造演化[J]. 地质通报, 43(1): 20−32.

    [58]

    任建业, 庞雄, 雷超, 等. 2015a. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 22(1): 102−114.

    [59]

    任建业, 庞雄, 雷超, 等. 2015b. 南海北部陆缘深水—超深水盆地结构和演化[C]//第十七届中国科协年会——分9 南海深水油气勘探开发技术研讨会论文集, 广州.

    [60]

    任建业, 庞雄, 于鹏, 等. 2018. 南海北部陆缘深水−超深水盆地成因机制分析[J]. 地球物理学报, 61(12): 4901−4920.

    [61]

    唐武. 2018. 南海北康盆地新生代重要不整合界面特征与沉积演化规律[J]. 中国海上油气, 30(2): 9−16.

    [62]

    吴冬, 朱筱敏, 张厚和, 等. 2014. 中国南沙海域大中型盆地沉积特征与油气分布[J]. 古地理学报, 16(5): 673−686.

    [63]

    吴智平, 刘雨晴, 张杰, 等. 2018. 中国南海礼乐盆地新生代断裂体系的发育与演化[J]. 地学前缘, 25(2): 221−231.

    [64]

    解习农, 任建业, 王振峰, 等. 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 22(1): 77−87.

    [65]

    徐俊杰. 2019. 曾母盆地构造−地层格架及其成盆机制研究[D]. 中国地质大学(武汉)博士学位论文.

    [66]

    姚永坚, 夏斌, 徐行. 2005. 南海南部海域主要沉积盆地构造演化特征[J]. 南海地质研究, 17: 1−11.

    [67]

    赵帅, 李学杰, 姚永坚, 等. 2019. 南海南部造山运动及其与古南海俯冲的成因联系[J]. 海洋地质与第四纪地质. 39(5): 147–162.

  • 加载中

(12)

计量
  • 文章访问数:  308
  • PDF下载数:  57
  • 施引文献:  0
出版历程
收稿日期:  2022-11-28
修回日期:  2023-03-30
刊出日期:  2024-09-15

目录