Petrogenesis of porphyries in Baxi copper deposit in East Junggar, NW China and its enlightenment to mineral prospecting
-
摘要:
新疆坝西铜矿位于东准噶尔琼河坝矿集区,是新发现的斑岩型铜矿。主要赋矿围岩为石英闪长岩、花岗闪长岩和石英二长闪长岩。锆石U−Pb测年显示,花岗闪长岩和石英闪长岩均形成于337 Ma,属早石炭世晚期。花岗闪长岩和石英闪长岩都具有高硅、中低钾,属钙碱性系列,富钙、富铝,为准铝质—弱过铝质。富集轻稀土及大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,具有弱的负Eu异常,表现出弧花岗岩特征和某些埃达克岩特性。结合区域研究,初步认为形成于东准噶尔岩浆活动相对“宁静期”的坝西含矿石英闪长岩和花岗闪长岩,应与早期俯冲的弧物质的部分熔融有关,并发生了岩浆混合作用,且伴随有一定程度的结晶分异,同时也形成斑岩型铜矿,此时应处于从俯冲增生到后造山伸展的转换阶段。琼河坝地区除志留纪—泥盆纪发育大量矿产外,石炭纪也是一个重要的成矿期,值得关注。本次研究对北疆及邻区的晚古生代后碰撞斑岩矿产的找矿勘查工作具有重要的指示意义。
Abstract:The recently discovered Baxi porphyry copper deposit is located in the Qiongheba ore−concentration area in East Junggar, Xinjiang. The ore−bearing porphyry are mainly composed of quartz diorite, quartz monzodiorite and granodiorite. Zircon U−Pb dating yielded two similar late Early Carboniferous ages of 337 Ma for quartz diorite and granodiorite. Quartz diorites and granodiorites are high SiO2, CaO, Al2O3, and low K2O contents, belonging the calc−alkaline, aluminum−weakly peraluminous. They are rich in LREE and LILE, such as Nb, Ta and Ti with weak negative Eu anomaly and high Sr and low Y contents, showing arc granitic characters with some Adakite futures. Combined with the regional research, we suggest the diorites and granodiorites in the Baxi porphyry copper deposit formed by partial melting of former subduction arc with magmatic mixing and following crystallization differentiation during the tectonic transition period from subduction to post−orogenic setting in Late Paleozoic. Porphyry copper deposits also formed in this period. In other words, except the Silurian−Devonian large−scale metallogenic stage, Carboniferous is also an important metallogenic stage in the Qiongheba area. It indicates that we should more attention on Late Paleozoic post−collision porphyry deposits in mineral exploration in northern Xinjiang and adjacent areas.
-
Key words:
- Qiongheba /
- Carboniferous /
- porphyry copper deposit /
- tectonic setting transition /
- East Junggar
-
-
图 1 东准噶尔地质简图(a)、区域地质图(b)及矿区地质简图(c)(年龄数据据张铭鸿等,2021)
Figure 1.
图 5 坝西铜矿花岗闪长岩和石英闪长岩SiO2−K2O图解(a)和A/CNK−A/NK图解(b)(空心圆石英闪长岩数据为本文数据;实心圆石英闪长岩数据据Xiao et al., 2018; 张铭鸿等,2021)
Figure 5.
图 6 坝西铜矿花岗闪长岩和石英闪长岩稀土元素配分模式图(a)及微量元素蛛网图(b)(标准化值据Sun et al., 1989;空心圆石英闪长岩数据为本文数据;实心圆石英闪长岩数据据Xiao et al., 2018; 张铭鸿等,2021)
Figure 6.
表 1 坝西铜矿含矿花岗闪长岩(C-2)和石英闪长岩(WSS-2) LA−ICP−MS锆石U−Th−Pb同位素分析结果
Table 1. LA−ICP−MS zircon U−Th−Pb data of granodiorite (C-2) and quartz diorite (WSS-2) in the Baxi copper deposit
样号 含量/10−6 Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232U 1σ 206Pb /238U 年龄/Ma 1σ Pb Th U C-2-1 6.50 45.80 111.60 0.41 0.06 0.00 0.39 0.03 0.05 0.00 0.01 0.00 334.0 6.3 C-2-2 5.90 38.30 99.80 0.38 0.06 0.00 0.42 0.03 0.05 0.00 0.01 0.00 334.9 5.0 C-2-3 5.20 37.40 85.80 0.43 0.06 0.01 0.41 0.05 0.05 0.00 0.01 0.00 340.9 11.0 C-2-4 5.40 34.20 93.30 0.36 0.06 0.00 0.40 0.02 0.05 0.00 0.01 0.00 334.6 5.3 C-2-5 3.70 24.20 65.10 0.37 0.06 0.01 0.41 0.06 0.05 0.00 0.01 0.00 341.5 18.9 C-2-7 4.60 33.20 80.40 0.41 0.06 0.01 0.41 0.10 0.05 0.00 0.01 0.00 331.1 18.1 C-2-8 6.10 52.10 100.40 0.51 0.06 0.01 0.41 0.04 0.05 0.00 0.01 0.00 340.7 7.8 C-2-9 5.40 44.60 89.20 0.50 0.06 0.01 0.40 0.06 0.05 0.00 0.01 0.00 335.4 18.1 C-2-10 8.40 67.20 136.60 0.49 0.05 0.00 0.41 0.04 0.05 0.00 0.01 0.00 343.6 7.7 C-2-11 4.70 28.30 79.60 0.35 0.06 0.01 0.42 0.04 0.05 0.00 0.01 0.00 338.1 19.5 C-2-12 6.50 45.90 111.20 0.41 0.06 0.01 0.40 0.07 0.05 0.00 0.01 0.00 338.4 13.3 C-2-13 4.00 27.90 66.60 0.42 0.06 0.01 0.42 0.09 0.05 0.00 0.01 0.00 342.4 17.2 C-2-14 5.00 36.60 85.40 0.42 0.05 0.01 0.41 0.06 0.05 0.00 0.01 0.00 342.2 19.2 C-2-15 6.90 57.40 112.70 0.50 0.06 0.01 0.40 0.07 0.05 0.00 0.01 0.00 335.0 15.7 C-2-16 4.30 34.70 75.30 0.46 0.05 0.01 0.40 0.05 0.05 0.00 0.01 0.00 333.1 23.4 C-2-17 4.40 29.30 80.40 0.36 0.05 0.01 0.41 0.09 0.05 0.00 0.00 0.00 334.4 30.2 C-2-18 8.90 63.80 151.30 0.42 0.05 0.00 0.40 0.02 0.05 0.00 0.01 0.00 338.7 6.0 C-2-19 5.30 43.70 89.70 0.48 0.05 0.00 0.40 0.02 0.05 0.00 0.01 0.00 339.4 6.1 C-2-20 18.90 215.40 302.20 0.71 0.05 0.01 0.39 0.03 0.05 0.00 0.01 0.00 332.2 13.4 WSS-2-1 9.50 107.50 146.70 0.73 0.06 0.01 0.39 0.07 0.05 0.00 0.01 0.00 335.5 13.9 WSS-2-2 18.80 187.30 290.70 0.64 0.06 0.00 0.41 0.02 0.05 0.00 0.01 0.00 339.7 4.8 WSS-2-3 22.00 241.70 332.80 0.72 0.05 0.00 0.40 0.01 0.05 0.00 0.01 0.00 337.4 4.1 WSS-2-4 17.40 206.70 265.60 0.77 0.05 0.00 0.39 0.02 0.05 0.00 0.01 0.00 332.5 4.1 WSS-2-5 13.70 152.50 208.80 0.73 0.05 0.00 0.39 0.02 0.05 0.00 0.01 0.00 334.7 3.9 WSS-2-6 28.30 322.80 423.20 0.76 0.05 0.00 0.40 0.03 0.05 0.00 0.01 0.00 339.5 6.1 WSS-2-7 14.60 151.90 223.90 0.67 0.06 0.00 0.42 0.02 0.05 0.00 0.01 0.00 339.3 4.2 WSS-2-8 14.60 149.80 224.30 0.66 0.05 0.00 0.40 0.02 0.05 0.00 0.01 0.00 338.2 4.1 WSS-2-9 16.30 184.80 245.40 0.75 0.06 0.00 0.40 0.02 0.05 0.00 0.01 0.00 334.7 5.7 WSS-2-10 18.30 201.90 270.50 0.74 0.06 0.01 0.41 0.04 0.05 0.00 0.01 0.00 342.7 8.2 WSS-2-11 14.80 142.20 226.20 0.62 0.05 0.00 0.39 0.02 0.05 0.00 0.01 0.00 334.9 5.0 WSS-2-13 17.00 186.90 253.90 0.73 0.05 0.00 0.40 0.02 0.05 0.00 0.01 0.00 336.5 4.2 WSS-2-14 10.40 115.20 156.80 0.73 0.05 0.00 0.39 0.02 0.05 0.00 0.01 0.00 333.6 5.5 WSS-2-15 14.70 165.10 217.70 0.75 0.05 0.00 0.39 0.05 0.05 0.00 0.01 0.00 331.8 14.0 WSS-2-17 8.80 75.50 134.80 0.56 0.06 0.00 0.41 0.03 0.05 0.00 0.01 0.00 337.0 5.5 WSS-2-18 14.40 123.40 217.80 0.56 0.05 0.00 0.40 0.02 0.05 0.00 0.01 0.00 338.7 5.1 WSS-2-19 17.10 209.40 243.60 0.85 0.05 0.01 0.39 0.04 0.05 0.00 0.00 0.00 335.0 7.7 WSS-2-20 11.90 118.90 178.30 0.66 0.06 0.00 0.42 0.02 0.05 0.00 0.00 0.00 335.7 5.8 表 2 坝西铜矿赋矿岩石主量、微量和稀土元素分析结果
Table 2. Major, trace and rare elements compositions of the ore-bearing rocks from the Baxi copper deposit
元素 WSS-3 BX-GSY1 BX-GSY2 C-2 BX-GSY3 BX-GSY4 BX-GSY5 D008-2 石英闪长岩 石英闪长岩 黑云母辉石石英闪长岩 花岗闪长岩 花岗闪长岩 花岗闪长岩 黑云母花岗闪长岩 黑云母花岗闪长岩 SiO2 60.3 60 56.87 62.97 63.61 63.66 63.97 61.33 TiO2 0.55 0.58 0.79 0.59 0.51 0.46 0.46 0.61 Al2O3 17.85 17.7 17.22 15.95 16.12 17.52 17.37 16.19 Fe2O3 2.42 6.34 8.26 2.35 5.5 4.19 4.29 3.09 FeO 2.87 2.94 3.99 3.41 2.68 2.46 2.01 3.2 MnO 0.12 0.14 0.15 0.16 0.08 0.13 0.12 0.08 MgO 2.43 2.48 3.43 2.23 2.18 1.52 1.48 2.67 CaO 5.87 5.46 6.64 4.99 4.47 4.28 4.13 4.87 Na2O 4.36 4.37 3.4 3.4 3.58 4.62 4.73 3.54 K2O 0.84 1.31 1.41 2 2.3 1.72 1.8 2.16 P2O5 0.18 0.18 0.2 0.14 0.13 0.17 0.17 0.15 H2O + 1.08 0.11 0 1.09 0.11 0.1 0.12 1.23 烧失量 1.28 0.79 0.87 0.89 0.66 1.92 1.04 1.1 总计 100.15 102.4 103.23 100.17 101.93 102.75 101.69 100.22 La 11.9 13.6 12 12.7 14.2 15.8 14 12.8 Ce 25 30 29.3 28.5 32.9 34.3 32.2 27.9 Pr 3.42 3.6 3.6 4.26 3.9 4.1 3.8 4.2 Nd 12.8 14.8 16.2 16 15.7 16.7 15.4 15.6 Sm 3.14 3.2 4 4.36 3.5 3.5 3.4 4.49 Eu 1.07 1 1 1.02 0.86 1.1 1 0.99 Gd 3.18 2.7 3.5 4.57 3 3 2.8 4.61 Tb 0.48 0.47 0.68 0.77 0.56 0.51 0.5 0.75 Dy 2.98 2.9 4.1 4.53 3.4 3 3 4.72 Ho 0.53 0.63 0.9 0.79 0.74 0.64 0.64 0.82 Er 1.95 1.7 2.5 3.05 2.1 1.8 1.8 3.02 Tm 0.28 0.28 0.41 0.47 0.37 0.31 0.31 0.45 Yb 2 1.9 2.6 2.96 2.2 2.1 2 3.18 Lu 0.24 0.29 0.4 0.37 0.35 0.31 0.32 0.38 Y 18.2 16 22.7 29 19.3 17.4 16.4 28.7 Rb 16.5 44.7 41.3 Ba 477 786 701 Nb 3.84 4.29 3.86 Ta 0.21 0.25 0.22 Zr 93.3 99.7 152 Hf 2.63 3.33 4.41 Th 2.23 3.69 3.62 V 141 139 170 Cr 12.5 8.73 11 Co 15 16.3 12.9 Ni 9.66 7.2 8.89 U 0.88 1.24 1.37 ∑REE 68.97 77.07 81.19 84.35 83.78 87.17 81.17 83.91 δEu 1.02 1.03 0.8 0.69 0.79 1.01 0.96 0.66 DI 57.56 55.8 45.48 61.91 62.23 66.03 67.51 60.69 A/CNK 0.95 0.96 0.9 0.95 0.98 1.02 1.01 0.95 A/NK 2.21 2.06 2.42 2.05 1.92 1.85 1.78 1.98 注:主量元素含量单位为%;稀土和微量元素含量单位为10−6 -
[1] Chen B, Jahn B M, Wilde S, et al. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications[J]. Tectonophysics, 328(1): 157−182.
[2] Du S J, Qu X, Deng G, et al. 2010. Chronology and tectonic setting of the intrusive bodies and associated porphyry copper deposit in Hersai area, eastern Junggar.[J]. Acta Petrologica Sinica, 26(10): 2981−2996(in Chinese with English abstract).
[3] Gao F L, Gui X M, Li T Z, et al. 2018. Rock−forming and ore−forming ages and geochemistry of the Layikeleke porphyry Cu(Mo) deposit in East Junggar of Xinjiang and their geological significance[J]. Geological Bulletin of China, 37(6): 1113−1124.
[4] Gao J, Klemd R, Zhu M, et al. 2018a. Large−scale porphyry−type mineralization in the Central Asian metallogenic domain: A review[J]. Journal of Asian Earth Sciences, 165: 7−36. doi: 10.1016/j.jseaes.2017.10.002
[5] Gao J, Qin K Z, Zhou M F, et al. 2018b. Large−scale porphyry−type mineralization in the Central Asian Metallogenic Domain: Geodynamic background, magmatism, fluid activity and metallogenesis[J]. Journal of Asian Earth Sciences, 165: 1−6. doi: 10.1016/j.jseaes.2018.08.023
[6] Gao J, Zhu M T, Wang X S, et al. 2019. Large−scale porphyry−type mineralization in the Central Asian metallogenic domain: tectonic background, fluid feature and metallogenic deep dynamic mechanism[J]. Acta Geologica Sinica, 93(1): 24−71(in Chinese with English abstract).
[7] Gu L X, Yan Z F. 1996. Geology and genesis of peraluminous granites in East Tianshan Upper Paleozoic island arc belt[J]. Chinese Journal of Geochemistry, 15(1): 33−43. doi: 10.1007/BF03166794
[8] Guo L S, Zhang R, Liu Y L, et al. 2009. Zircon U−Pb age of Tonghualing intermediate−acid intrusive rocks, Eastern Junggar, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(5): 819−824(in Chinese with English abstract).
[9] Han Y, Zhao G. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo−Asian Ocean[J]. Earth−Science Reviews, 186: 129−152. doi: 10.1016/j.earscirev.2017.09.012
[10] Hou K J, Qin Y, Li Y H, et al. 2013. In situ Sr−Nd Isotopic Measurement of Apatite Using Laser Ablation Multi−collector Inductively Coupled Plasma−Mass Spectrometry[J]. Rock and Mineral Analysis, 32(4): 547−554(in Chinese with English abstract).
[11] Hou Z Q, Qu X M, Yang Z S, et al. 2006. Metallogenesis in Xizang collisional orogenic belt: Ⅲ. Mineralization in post−collisional extension setting[J]. Mineral Deposits, 25(6): 629−651(in Chinese with English abstract).
[12] Huang G, Niu G Z, Wang X L, et al. 2016. Early Silurian adakitic rocks of East Junggar, Xinjiang: Evidence from zircon U−Pb age, geochemistry and Sr−Nd−Hf isotope of the quartz diorite[J]. Acta Petrologica et Mineralogica, 35(5): 751−767(in Chinese with English abstract).
[13] Ji J Q, Chen J F, Han B F. 2018. Zircon U−Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 115(1/4): 137−152.
[14] Liu Y S. 2014. The manual of ICPMSDataCal for LA-ICP-MS/LA-MCICP-MS data processing[R]. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences: 1–40(in Chinese).
[15] Ludwig K R. 2012. User’s manual for Isoplot 3.75: A geochronological toolkit for Microsoft Excel[M]. Berkeley, California: Berkeley Geochronology Center Special Publication.
[16] Li J T, Zhu B Q. 1990. Main characteristics of late paleozoic platetectonics in the southern part of East Junggar, Xinjiang[J]. Geological Review, 36(4): 305−316(in Chinese with English abstract).
[17] Li J T, Xiao X C, Chen W. 2000. Late Ordovician continental basement of the eastern Junggar Basin in Xinjiang, NW China: Evidence from the Laojunmiao metamorphic complex on the northeast basin margin[J]. Geological Bulletin of China, 19(3): 297−302(in Chinese with English abstract).
[18] Li L. 2012. Study on the Granitic Magmatism and Tectonic Significance of the Silurian in the Eastern Junggar Region, Xinjiang[D]. Master's Thesis of Northwest University(in Chinese with English abstract).
[19] Long X, Yuan C, Sun M, et al. 2012. Geochemistry and U−Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction−accretion processes in the southern Central Asian Orogenic Belt[J]. Gondwana Research, 21(2/3): 637−653. doi: 10.1016/j.gr.2011.05.015
[20] Lu P, Tong Y, Meng Q Y, et al. 2021. Petrogenesis and tectonic setting of the Late Permian A−type granitic dyke swarm in Ulungur, East Junggar[J]. Geological Bulletin of China, 40(1): 58−70(in Chinese with English abstract).
[21] Meng Q Y. 2020. Spatiotemporal distribution and mineralization of Paleozoic granites in East Junggar[D]. Master's Thesis of China University of Geosciences(Beijing)(in Chinese with English abstract).
[22] Qu X, Xu X W, Liang G L, et al. 2009. Geological and geochemical characteristics of the Mengxi Cu−Mo deposit and its constraint to tectonic setting of the Qiongheba magmatic arc in eastern Junggar, Xinjiang[J]. Acta Petrologica Sinica, 25(4): 765−776(in Chinese with English abstract).
[23] Shen P. 2015. The magmatic oxygen fugacity of porphyry copper deposits in the Central Asian Metallogenic Domain and its control on the scale of ore deposits[J]. Acta Mineralogica Sinica, 2015(S1): 497(in Chinese).
[24] Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 42(12): 313−345.
[25] Tong Y, Wang T, Hong D W, et al. 2010. Spatial and temporal distribution of the Carboniferous−Permian granitoids in northern Xinjiang and its adjacent areas, and its tectonic significance[J]. Acta Petrologica et Mineralogica, 29(6): 619−641(in Chinese with English abstract).
[26] Wang D H, Li H Q, Ying L J, et al. 2009. Copper and gold metallogenic epoch and prospecting potential in Qiongheba area of Yiwu County, Xinjiang[J]. Mineral Deposits, 28(1): 73−82(in Chinese with English abstract).
[27] Wang L, Chen A D. 2018. Discussion on geophysical characteristics and prospecting of Bashang copper deposit in Xinjiang[J]. World Nonferrous Metals, 496(4): 107−109(in Chinese with English abstract).
[28] Wang S L, Qu S Z, Xu M S, et al. 2017. Geophysical characteristics and prospecting direction of Daxi copper depoasits[J]. Xingjiang Geology, 35(2): 201−206(in Chinese).
[29] Wang S L, Guo Y, Gao K. 2018. Geological characteristics and metallogenic prospect analysis of Daxi copper deposit in Yiwu County, Xinjiang[J]. Xinjiang Youse Jinshu, 41(1): 22−24(in Chinese).
[30] Windley B F, Alexeiev, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(12): 31−47.
[31] Xiao W J, Han C M, Yuan C, et al. 2006. Unique Carboniferous−Permian tectonic−metallogenic framework of Northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleoasian Domain[J]. Acta Petrologica Sinica, 22(5): 1062−1076(in Chinese with English abstract).
[32] Xiao W, Windley B F, Han C, et al. 2018. Late Paleozoic to Early Triassic multiple roll−back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth−Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020
[33] Xiao W, Li S, Santosh M, et al. 2012. Orogenic belts in Central Asia: Correlations and connections[J]. Journal of Asian Earth Sciences, 49: 1−6. doi: 10.1016/j.jseaes.2012.03.001
[34] Xiong X L, Cai Z Y, Niu H C, et al. 2005. The Late Paleozoic adakites in eastern Tianshan area and their metallogenetic significance[J]. Acta Petrologica Sinica, 21(3): 967−976(in Chinese with English abstract).
[35] Yang F Q, Wu H, Han J L. 2001. Metallogenic series and metallogenic egularity of metallic ore deposits in East Zhungeer, Xinjiang[J]. Xinjiang Geology, 19(1): 54−58(in Chinese with English abstract).
[36] Yang Z M, Hou Z Q. 2009. Porphyry Cu deposits in collisional orogen setting: A preliminary genetic model[J]. Mineral Deposits, 28(5): 515−538(in Chinese with English abstract).
[37] Yu H X, Wu G Q, Liu J Y. 1998. Two types of granite and two metallogenic series in eastern Junggar Region of Xinjiang[J]. Geotectonica Et Metallogenia, 22(2): 119−127(in Chinese).
[38] Zhang H X, Niu H C, Hiroaki Sato, et al. 2004. Late Paleozoic Adakite and Nb−enriched Basalt from Northern Xinjiang: Evidence for the Southward Subduction of the Paleo−Asian Ocean[J]. Geological Journal of China Universities, 10(1): 106−113(in Chinese with English abstract).
[39] Zhang H X, Shen X M, Ma L , et al. 2008. Geochronology of the Fuyun adakite, North Xinjiang and its constraint to the initiation of the Paleo−Asian Ocean subduction[J]. Acta Petrologica Sinica, 24(5): 1054−1058(in Chinese with English abstract).
[40] Zhang M H, Yao Y, Cheng Z G, et al. 2021. Early Carboniferous quartz diorite in the Baxi copper deposit, East Junggar: Insight into potential for porphyry copper deposits[J]. Acta Petrologica et Mineralogica, 40(1): 153−168(in Chinese with English abstract).
[41] Zhang Y, Liang G L, Wu Q Y, et al. 2010. Characteristics and formation mechanism of the veins in Mengxi porphyry Cu−Mo deposit, eastern Junggar, Xinjiang, China.[J]. Acta Petrologica Sinica, 26(10): 2997−3006(in Chinese with English abstract).
[42] Zhang Z C, Dong S Y, H H, et al. 2009. Geology and geochemistry of the Permian intermediate−acid intrusions in the southwestern Tianshan, Xinjiang, China: implications for petrogenesis and tectonics[J]. Geological Bulletin of China, 28(12): 1827−1839 (in Chinese with English abstract).
[43] Zhao J X, Tong Y, Meng G X, et al. 2017. Zircon U−Pb age and petrogenesis of the Lüshigou high Ba−Sr quartz−monzonite in East Junggar, Xinjiang, and its geological significance[J]. Acta Petrologica et Mineralogica, 36(5): 743−754(in Chinese with English abstract).
[44] 杜世俊, 屈迅, 邓刚, 等. 2010. 东准噶尔和尔赛斑岩铜矿成岩成矿时代与形成的构造背景[J]. 岩石学报, 26(10): 2981−2996.
[45] 高俊, 朱明田, 王信水, 等. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景, 流体作用与成矿深部动力学机制[J]. 地质学报, 93(1): 24−71.
[46] 郭丽爽, 张锐, 刘玉琳, 等. 2009. 新疆东准噶尔铜华岭中酸性侵入体锆石U−Pb年代学研究[J]. 北京大学学报: 自然科学版, 45(5): 819−824.
[47] 侯可军, 秦燕, 李延河, 等. 2013. 磷灰石Sr−Nd同位素的激光剥蚀−多接收器电感耦合等离子体质谱微区分析[J]. 岩矿测试, 32(4): 547−554.
[48] 侯增谦, 曲晓明, 杨竹森, 等. 2006. 青藏高原碰撞造山带: Ⅲ 后碰撞伸展成矿作用[J]. 矿床地质, 25(6): 629−651.
[49] 黄岗, 牛广智, 王新录, 等. 2016. 新疆东准噶尔早志留世埃达克岩−来自锆石U−Pb年龄、地球化学及Sr−Nd−Hf同位素的证据[J]. 岩石矿物学杂志, 35(5): 751−767.
[50] 李锦轶, 肖序常, 汤耀庆, 等. 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J]. 地质论评, 36(4): 305−316.
[51] 李锦轶, 肖序常, 陈文. 2000. 准噶尔盆地东部的前晚奥陶世陆壳基底——来自盆地东北缘老君庙变质岩的证据[J]. 中国区域地质, 19(3): 297−302.
[52] 李雷. 2012. 新疆东准噶尔地区志留纪花岗岩浆作用及构造意义研究[D]. 西北大学硕士学位论文.
[53] 刘勇胜. 2014. LA-ICP-MS/LA-MC-ICP-MS 数据处理软件ICPMSDataCal(V9. 5) 使用手册[R]. 中国地质大学地质过程与矿产资源国家重点实验室: 1–40.
[54] 卢鹏, 童英, 孟秋熠, 等. 2021. 东准噶尔北缘乌伦古地区晚二叠世A型花岗质岩墙成因及构造背景[J]. 地质通报, 40(1): 58−70.
[55] 孟秋熠. 2020. 东准噶尔古生代花岗岩时空分布规律与成矿作用[D]. 中国地质大学(北京)硕士学位论文.
[56] 屈迅, 徐兴旺, 梁广林, 等. 2009. 蒙西斑岩型铜钼矿地质地球化学特征及其对东准噶尔琼河坝岩浆岛弧构造属性的制约[J]. 岩石学报, 25(4): 765−776.
[57] 申萍. 2015. 中亚成矿域斑岩铜矿岩浆氧逸度及其对矿床规模的控制[J]. 矿物学报, (S1): 497.
[58] 童英, 王涛, 洪大卫, 等. 2010. 北疆及邻区石炭—二叠纪花岗岩时空分布特征及其构造意义[J]. 岩石矿物学杂志, 29(6): 619−641.
[59] 王登红, 李华芹, 应立娟, 等. 2009. 新疆伊吾琼河坝地区铜、金矿成矿时代及其找矿前景[J]. 矿床地质, 28(1): 73−82.
[60] 王磊, 陈安德. 2018. 关于新疆坝西铜矿地球物理特征及找矿探讨[J]. 世界有色金属, 496(4): 107−109.
[61] 王斯林, 屈栓柱, 徐敏山, 等. 2017. 坝西铜矿地质地球物理特征及找矿方向[J]. 新疆地质, 35(2): 201−206.
[62] 王斯林, 郭燕, 高科. 2018. 新疆伊吾县坝西铜矿地质特征及成矿远景分析[J]. 新疆有色金属, 41(1): 22−24.
[63] 肖文交, 韩春明, 袁超, 等. 2006. 新疆北部石炭纪—二叠纪独特的构造−成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, 22(5): 1062−1076.
[64] 熊小林, 蔡志勇, 牛贺才, 等. 2005. 东天山晚古生代埃达克岩成因及铜金成矿意义[J]. 岩石学报, 21(3): 967−976.
[65] 杨富全, 吴海, 韩金良. 2001. 新疆东准噶尔金属矿床成矿系列及成矿规律[J]. 新疆地质, 19(1): 54−58.
[66] 杨志明, 侯增谦. 2009. 初论碰撞造山环境斑岩铜矿成矿模型[J]. 矿床地质, 28(5): 515−538.
[67] 喻亨祥, 吴郭泉, 刘家远. 1998. 新疆东准噶尔地区两类花岗岩与两个成矿系列[J]. 大地构造与成矿学, 22(2): 119−127.
[68] 张海祥, 沈晓明, 马林, 等. 2008. 新疆北部富蕴县埃达克岩的同位素年代学及其对古亚洲洋板块俯冲时限的制约[J]. 岩石学报, 24(5): 1054−1058.
[69] 张海祥, 牛贺才, Sato H, 等. 2004. 新疆北部晚古生代埃达克岩、富铌玄武岩组合: 古亚洲洋板块南向俯冲的证据[J]. 高校地质学报, 10(1): 106−113.
[70] 张铭鸿, 姚勇, 程志国, 等. 2021. 新疆东准噶尔坝西早石炭世石英闪长岩及其对斑岩铜矿的指示意义[J]. 岩石矿物学杂志, 40(1): 153−168.
[71] 张永, 梁广林, 吴倩怡, 等. 2010. 东准噶尔蒙西斑岩铜钼矿床脉体特征及其形成机制[J]. 岩石学报, 26(10): 2997−3006.
[72] 张招崇, 董书云, 黄河, 等. 2010. 西南天山二叠纪中酸性侵入岩的地质学和地球化学: 岩石成因和构造背景[J]. 地质通报, 28(12): 1827−1839.
[73] 赵建新, 童英, 孟贵祥, 等. 2017. 新疆东准噶尔绿石沟高Ba−Sr石英二长岩的锆石U−Pb年龄、成因及地质意义[J]. 岩石矿物学杂志, 36(5): 743−754.
-