The discovery of the Early Cretaceous olive basaltic porphyrite in the Wumengshan area on the western margin of the Yangtze block and its implications for the intracontinental response to the continental margin collision orogenic event
-
摘要:
研究目的 扬子板块西缘燕山期岩浆活动的缺失致使该时期的构造运动缺乏精确的时间记录,本次工作首次在滇东北乌蒙山地区发现了早白垩世的基性侵入岩,探讨其成因及地质意义对于探索扬子西缘燕山期构造活动具有重要意义。
研究方法 通过详细的野外地质观测、镜下鉴定、锆石U−Pb测年和岩石地球化学方法对新发现的侵入岩进行研究。
研究结果 早白垩世基性侵入岩的岩性为橄榄玄武玢岩,呈斑状结构,杏仁状构造,斑晶以斜长石及橄榄石为主;其31个锆石测点的U−Pb谐和年龄为134.0± 0.4 Ma,形成时代为早白垩世早期。岩石地球化学特征显示其具有富碱、高Ti、高Al、低SiO2的特征,稀土元素总量较高,重稀土元素亏损,轻、重稀土元素分馏明显,与研究区二叠纪峨眉山玄武岩具有高度相似的地球化学特征,二者应同源,可能是二叠纪形成的峨眉地幔柱尾部交代富集地幔,在班公湖-怒江结合带俯冲-碰撞作用的远程挤压效应下引起软流圈部分熔融,上升侵位过程中与地壳发生轻度混染,形成的基性—超基性侵入岩。
结论 早白垩世橄榄玄武岩玢岩的地球化学特征表明,特提斯构造域与扬子板块西缘的陆缘碰撞造山运动具有巨大的远程效应,其发现也将滇西地区燕山期岩浆活动的研究扩展到了小江断裂带以东的乌蒙山区一带,填补了四川盆地周缘燕山期岩浆活动的空白,同时,橄榄玄武玢岩的形成也表明,扬子板块西缘大规模陆内挤压造山达到高峰,134 Ma左右是扬子板块西缘陆内造山温压达到高峰的时间记录。
Abstract:Objective The absence of Yanshanian magmatic activities in the western margin of the Yangtze block has led to a lack of precise time records of tectonic movements during this period. In this study, Early Cretaceous basic intrusive rocks were discovered for the first time in the Wumengshan area of northeastern Yunnan. This discovery is of great significance for exploring the Yanshanian tectonic activities in the western margin of the Yangtze block.
Methods This paper conducts research on the newly discovered intrusive rocks through detailed field geological observations, microscopic identification, zircon U−Pb dating, and petrogeochemical methods, and explores their genesis and geological significance.
Results The lithology of the Early Cretaceous basic intrusive rocks is olivine basaltic porphyrite, which has a porphyritic texture and amygdaloidal structure. The phenocrysts are mainly plagioclase and olivine. The U−Pb concordia age of 31 zircon measurement points is 134.0 ± 0.4 Ma, indicating that the formation age is the early stage of the Early Cretaceous. Petrogeochemical characteristics show that these rocks are rich in alkalis, high in Ti and Al, and low in SiO2. They have a relatively high total rare earth content, depleted heavy rare earths, and obvious fractionation between light and heavy rare earths elements. These characteristics are highly similar to those of the Permian Emeishan basalts in the study area, suggesting that they are the same origin. They may be the metasomatized and enriched mantle at the tail of the Emeishan mantle plume formed in the Permian. Under the long−range extrusion effect of the subduction−collision in the Bangonghu−Nujiang suture zone, partial melting of the asthenosphere occurred. During the ascending and emplacement process, they underwent mild contamination with the crust, forming basic−ultrabasic intrusive rocks.
Conclusions The Early Cretaceous olivine basaltic porphyrite indicates that the continental−margin collision orogeny between the Tethys tectonic domain and the western margin of the Yangtze Block has a significant long−range effect. Its discovery has extended the research on Yanshanian magmatic activities in western Yunnan to the Wumengshan area east of the Xiaojiang Fault Zone, filling the gap in the study of Yanshanian magmatic activities around the Sichuan Basin. The formation of olivine basaltic porphyrite also indicates that the large−scale intra−continental compressional orogeny in the western margin of the Yangtze Plate reached its peak. 134 Ma is the time record when the temperature and pressure of the intra−continental orogeny in the western margin of the Yangtze block reached their peak.
-
-
图 1 研究区大地构造位置(a)及地质简图(b)(据Hou et al., 2002;潘江涛等,2022a修改)
Figure 1.
图 4 橄榄玄武玢岩TAS图解(a)及Nb/Y−Zr/(TiO2×104)图解(b)(图a据Middlemost, 1994);图b据Winchester and Floyd, 1977)
Figure 4.
图 5 橄榄玄武玢岩稀土元素配分曲线图(a)及微量元素蛛网图(b)(二叠纪斜斑辉绿玢岩数据据潘江涛等,2022b;球粒陨石和原始地幔标准化值据Sun et al., 1989)
Figure 5.
图 6 橄榄玄武玢岩(La/Sm)N−(Tb/Yb)N图解(a)及Sm/Yb−La/Sm图解(b)(a据McKenzie et al., 1991;b据Lassiter et al., 1997;峨眉山玄武岩数据及斜斑辉绿玢岩玢岩据潘江涛等,2022b;丽江玄武岩、宾川和永胜玄武岩数据据张招崇等,2005)
Figure 6.
图 7 橄榄玄武玢岩的Ti/100−Zr−Y×3图解(a,据Pearce and Cann, 1973修改)及Zr−Y/Zr图解(b,据Pearce and Norry, 1979修改)
Figure 7.
表 1 乌蒙山地区橄榄玄武玢岩LA−ICP−MS锆石U−Th−Pb分析结果
Table 1. LA−ICP−MS zircon U−Th−Pb data for the olivine basaltic porphyrite in Wumengshan area
点号 元素含量/10−6 232Th/
238U同位素比值及误差 年龄/Ma 谐和
度/%Pb* 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄 1σ 年龄 1σ 年龄 1σ 年龄 1σ 1 6.7 163.2 294.5 0.55 0.0488 0.0047 0.1400 0.0130 0.0208 0.0005 0.0064 0.0005 60.0 190.0 132.0 11.0 132.4 3.0 129.7 10.0 100 2 3.8 62.9 160.4 0.39 0.0505 0.0043 0.1510 0.0130 0.0213 0.0004 0.0070 0.0006 120.0 160.0 141.0 11.0 135.8 2.7 141.4 11.0 96 3 5.5 108.2 228.7 0.47 0.0489 0.0039 0.1450 0.0120 0.0212 0.0003 0.0065 0.0005 40.0 150.0 135.5 10.0 135.4 2.2 130.1 9.3 100 4 5.4 111.4 227.2 0.49 0.0513 0.0040 0.1440 0.0110 0.0206 0.0004 0.0062 0.0004 120.0 150.0 136.4 10.0 131.4 2.2 124.3 8.5 96 5 5.2 86.0 224.2 0.38 0.0501 0.0041 0.1450 0.0120 0.0212 0.0004 0.0066 0.0005 80.0 150.0 137.0 11.0 135.1 2.2 132.2 11.0 99 6 7.1 103.3 302.4 0.34 0.0489 0.0033 0.1423 0.0099 0.0210 0.0003 0.0070 0.0005 60.0 130.0 133.7 8.8 134.0 2.1 140.4 10.0 100 7 5.1 92.4 211.5 0.44 0.0515 0.0036 0.1540 0.0110 0.0217 0.0004 0.0075 0.0005 150.0 140.0 144.1 9.5 138.2 2.4 150.2 9.4 96 8 8.0 151.0 329.7 0.46 0.0465 0.0031 0.1339 0.0090 0.0207 0.0003 0.0063 0.0004 0.0 130.0 126.5 8.0 132.1 1.8 126.2 7.5 96 9 4.2 77.6 191.8 0.40 0.0456 0.0039 0.1380 0.0120 0.0217 0.0004 0.0065 0.0005 90.0 150.0 130.0 11.0 138.1 2.6 131.4 11.0 94 10 5.7 383.0 254.8 1.50 0.0514 0.0028 0.1506 0.0086 0.0211 0.0003 0.0036 0.0003 230.0 120.0 143.6 8.0 134.4 1.9 72.6 5.8 93 11 3.5 58.1 151.4 0.38 0.0495 0.0046 0.1430 0.0130 0.0211 0.0004 0.0067 0.0006 50.0 170.0 134.0 12.0 134.5 2.5 135.0 12.0 100 12 4.6 82.0 189.9 0.43 0.0501 0.0041 0.1430 0.0120 0.0206 0.0004 0.0066 0.0005 100.0 160.0 135.0 11.0 131.6 2.5 133.6 11.0 97 13 3.0 39.0 129.5 0.30 0.0455 0.0046 0.1340 0.0130 0.0213 0.0005 0.0068 0.0008 100.0 180.0 126.0 12.0 135.8 3.0 137.0 15.0 93 14 7.8 147.4 331.3 0.44 0.0506 0.0031 0.1455 0.0093 0.0205 0.0003 0.0064 0.0004 150.0 120.0 136.8 8.2 131.2 2.0 129.0 8.9 96 15 5.2 95.5 215.1 0.44 0.0502 0.0039 0.1460 0.0110 0.0211 0.0004 0.0064 0.0005 80.0 150.0 136.8 10.0 134.6 2.4 129.6 9.3 98 16 4.8 68.1 217.3 0.31 0.0524 0.0060 0.1490 0.0170 0.0207 0.0004 0.0073 0.0009 140.0 210.0 139.0 15.0 132.1 2.8 148.0 17.0 95 17 7.7 135.7 322.9 0.42 0.0475 0.0032 0.1368 0.0095 0.0209 0.0003 0.0066 0.0004 20.0 130.0 128.9 8.5 133.1 1.9 132.9 8.4 97 18 6.8 120.9 297.9 0.41 0.0451 0.0029 0.1304 0.0088 0.0208 0.0003 0.0065 0.0004 50.0 120.0 123.5 7.8 132.4 1.9 130.4 8.8 93 19 5.9 89.4 243.6 0.37 0.0496 0.0044 0.1420 0.0120 0.0212 0.0005 0.0064 0.0006 90.0 170.0 135.0 11.0 135.2 3.0 128.0 12.0 100 20 4.9 72.6 206.7 0.35 0.0477 0.0036 0.1351 0.0100 0.0208 0.0004 0.0063 0.0005 0.0 140.0 128.3 9.2 132.7 2.2 127.6 11.0 97 21 6.4 94.1 277.8 0.34 0.0470 0.0032 0.1363 0.0096 0.0211 0.0003 0.0068 0.0005 10.0 130.0 128.6 8.5 134.5 2.0 136.5 10.0 96 22 4.8 67.0 201.5 0.33 0.0461 0.0039 0.1340 0.0110 0.0212 0.0004 0.0071 0.0006 60.0 150.0 127.5 10.0 135.0 2.8 142.0 13.0 94 23 6.3 129.0 275.1 0.47 0.0487 0.0046 0.1380 0.0120 0.0209 0.0005 0.0066 0.0006 60.0 170.0 132.0 12.0 133.6 3.3 134.0 13.0 99 24 6.8 106.7 271.0 0.39 0.0484 0.0032 0.1420 0.0098 0.0211 0.0003 0.0067 0.0004 50.0 130.0 133.5 8.6 134.3 2.1 134.3 8.4 99 25 4.7 69.3 191.2 0.36 0.0529 0.0046 0.1580 0.0140 0.0216 0.0004 0.0074 0.0006 140.0 170.0 146.0 12.0 137.5 2.5 148.0 13.0 94 26 4.3 78.6 191.7 0.41 0.0482 0.0038 0.1370 0.0110 0.0205 0.0004 0.0064 0.0005 20.0 140.0 128.7 9.5 130.8 2.3 128.9 10.0 98 27 4.2 60.5 188.7 0.32 0.0527 0.0055 0.1500 0.0150 0.0211 0.0004 0.0069 0.0007 100.0 190.0 139.0 13.0 134.3 2.8 138.0 15.0 97 28 6.4 104.2 269.2 0.39 0.0466 0.0035 0.1344 0.0100 0.0209 0.0004 0.0065 0.0005 20.0 140.0 126.6 9.2 133.2 2.2 130.5 9.7 95 29 4.8 69.4 203.8 0.34 0.0475 0.0038 0.1370 0.0110 0.0211 0.0004 0.0063 0.0006 0.0 150.0 129.1 9.8 134.7 2.6 126.0 11.0 96 30 4.3 60.2 181.4 0.33 0.0470 0.0045 0.1360 0.0130 0.0212 0.0004 0.0064 0.0006 30.0 180.0 130.0 12.0 135.1 2.5 129.0 12.0 96 31 9.5 208.5 375.8 0.55 0.0494 0.0026 0.1469 0.0082 0.0214 0.0003 0.0068 0.0004 140.0 110.0 138.3 7.2 136.5 2.0 136.7 7.7 99 32 6.7 115.8 292.0 0.40 0.0574 0.006 0.1680 0.0170 0.0212 0.0006 0.0212 0.0006 330.0 210.0 156.2 14.9 135.4 3.5 160.2 15.3 86 33 3.8 123.2 204.8 0.60 0.0582 0.0044 0.1650 0.0130 0.0205 0.0004 0.0205 0.0004 380.0 160.0 154.3 11.2 130.9 2.3 120.9 10.2 84 34 5.5 85.3 219.1 0.39 0.0593 0.0084 0.1720 0.0140 0.0211 0.0004 0.0078 0.0006 390.0 170.0 159.5 12.3 134.7 2.5 158.3 12.1 83 注:Pb*为全Pb;谐和度计算公式为:谐和度=100*(1−abs((206Pb/238U)age−(207Pb/235U)age))/(((206Pb/238U)age+(207Pb/235U)age)/2))) 表 2 乌蒙山地区橄榄玄武玢岩样品主量、稀土和微量元素分析结果及相关参数
Table 2. Analysis results and related parameters of major, rare earth and trace elements of samples for the olivine basaltic porphyrite in Wumengshan area
样品编号 SiO2 Al2O3 CaO MgO Fe2O3 FeO TiO2 P2O5 Na2O K2O MnO CO2 烧失量 TFe2O3 P24-1QY 44.82 13.81 9.04 5.07 4.31 9.03 3.99 0.42 2.02 0.83 0.22 5.51 6.23 14.35 P24-5YQ 48.02 13.44 8.47 4.85 2.75 9.91 3.84 0.39 1.92 1.18 0.20 4.09 4.77 13.77 P24-6YQ 47.23 13.75 9.01 4.91 3.08 9.45 3.84 0.44 2.03 1.13 0.20 4.24 4.70 13.60 P24-7YQ 47.87 12.65 8.31 6.16 5.21 8.63 3.81 0.29 1.96 0.80 0.21 3.61 3.88 14.82 P24-8YQ 48.38 13.27 7.80 5.90 5.14 8.73 3.79 0.29 1.81 0.81 0.20 3.13 3.66 14.86 P24-9YQ 48.58 13.02 8.76 6.19 5.89 7.85 3.77 0.29 1.81 0.93 0.21 4.25 2.51 14.63 P24-10YQ 48.13 12.52 8.89 5.80 4.60 8.54 3.75 0.29 1.91 0.89 0.20 4.16 4.32 14.11 P24-11YQ 46.50 12.41 9.34 6.09 5.26 8.05 3.63 0.30 1.89 0.89 0.19 4.51 5.28 14.22 P24-20YQ 44.24 12.23 8.87 5.51 5.88 8.89 3.70 0.27 1.43 1.37 0.09 6.23 7.34 15.78 P24-21YQ 44.60 11.81 8.70 5.66 5.38 9.37 3.63 0.26 1.32 1.51 0.09 6.03 7.59 15.81 P24-22YQ 44.12 12.10 8.95 5.74 5.80 9.02 3.77 0.28 1.45 1.15 0.10 5.72 7.29 15.84 样品编号 Na2O+K2O Mg# TFeO/MgO Ir La Ce Pr Nd Sm Eu Gd Tb Dy Ho P24-1QY 2.85 50.06 4.81 0.89 46.3 99.9 13.9 59.1 11.4 3.51 10.2 1.49 7.84 1.34 P24-5YQ 3.11 46.59 5.12 1.32 45.5 95.6 12.5 52.5 10.1 3.23 9.49 1.31 6.81 1.16 P24-6YQ 3.16 48.10 4.91 0.83 45.6 97.9 13.2 56.4 10.5 3.41 9.76 1.37 7.31 1.3 P24-7YQ 2.76 55.97 3.97 0.79 45 94.4 13.4 57.4 11.8 3.5 10.2 1.51 7.86 1.36 P24-8YQ 2.62 54.64 4.17 1.27 42.6 92 13 56 11.6 3.44 9.91 1.47 7.65 1.33 P24-9YQ 2.74 58.41 3.78 0.39 45 95.7 13.3 56.7 11.6 3.39 9.96 1.48 7.7 1.35 P24-10YQ 2.80 54.75 4.07 0.71 47.8 98.9 13.7 58.5 11.9 3.42 10.1 1.48 7.72 1.35 P24-11YQ 2.78 57.41 3.81 0.99 51.4 104 14.2 59.8 12 3.42 10.3 1.5 7.73 1.35 P24-20YQ 2.81 52.52 4.65 1.33 46.6 94.8 13.4 56.9 11.6 3.64 9.8 1.44 7.54 1.32 P24-21YQ 2.83 51.85 4.64 0.21 45.1 92.7 13.1 55.9 11.4 3.46 9.61 1.42 7.39 1.28 P24-22YQ 2.60 53.14 4.51 0.05 47.4 96.2 13.6 58.2 11.7 3.62 9.89 1.48 7.63 1.33 样品编号 Er Tm Yb Lu Y ΣREE LREE HREE LREE/HREE Sm/Nd (La/Yb)N (Tb/Yb)N (La/Sm)N δEu P24-1QY 3.54 0.47 2.82 0.44 35.5 262.25 234.11 28.14 8.32 0.19 11.78 2.35 2.62 1.00 P24-5YQ 3.16 0.43 2.5 0.33 31.7 244.62 219.43 25.19 8.71 0.19 13.05 2.10 2.91 1.01 P24-6YQ 3.44 0.46 2.74 0.37 32.7 253.76 227.01 26.75 8.49 0.19 11.94 2.49 2.80 1.03 P24-7YQ 3.67 0.48 2.92 0.42 36.9 253.92 225.50 28.42 7.93 0.21 11.05 2.50 2.46 0.98 P24-8YQ 3.54 0.48 2.83 0.41 35.9 246.26 218.64 27.62 7.92 0.21 10.80 2.29 2.37 0.98 P24-9YQ 3.58 0.48 2.9 0.41 36.1 253.55 225.69 27.86 8.10 0.20 11.13 2.38 2.50 0.96 P24-10YQ 3.59 0.49 2.9 0.41 36.3 262.26 234.22 28.04 8.35 0.20 11.82 2.39 2.59 0.95 P24-11YQ 3.59 0.48 2.88 0.42 37 273.07 244.82 28.25 8.67 0.20 12.80 2.35 2.77 0.94 P24-20YQ 3.52 0.47 2.84 0.42 36.6 254.29 226.94 27.35 8.30 0.20 11.77 2.32 2.59 1.04 P24-21YQ 3.39 0.45 2.71 0.4 35.1 248.31 221.66 26.65 8.32 0.20 11.94 2.27 2.55 1.01 P24-22YQ 3.56 0.48 2.83 0.42 37 258.34 230.72 27.62 8.35 0.20 12.01 2.48 2.62 1.03 样品编号 δCe Ni Co Cu Pb W As Se Cr V Ga In Rb Cs P24-1QY 0.97 49.6 48.6 226 10.3 1.83 0.72 0.28 79.4 487 28.5 0.1 23.3 1.17 P24-5YQ 0.98 44.7 46.8 217 10.5 2.43 0.83 0.32 73.8 447 25.6 0.09 31.7 0.85 P24-6YQ 0.98 47.9 48.3 217 8.65 4.32 0.73 0.3 75.9 450 26.5 0.1 24.1 0.9 P24-7YQ 0.94 47.3 48.1 220 10.7 15.8 0.98 0.29 78.6 463 28.1 0.097 20.5 1.2 P24-8YQ 0.96 49.3 75.6 226 11.4 41.7 0.68 0.28 77.6 455 28.5 0.099 20.1 1.23 P24-9YQ 0.96 47.4 47.8 219 10.7 21.1 0.83 0.29 73.4 448 28.1 0.1 23.5 1.64 P24-10YQ 0.95 47.8 45.4 231 12.9 4.04 0.51 0.28 76 445 28.3 0.099 22.2 1.02 P24-11YQ 0.94 45.8 46.4 211 11.1 3.56 0.77 0.28 73.5 452 29 0.1 25.2 1.1 P24-20YQ 0.93 45.4 43.8 198 9.82 0.61 0.34 0.27 76 463 26.8 0.096 44.1 1.54 P24-21YQ 0.94 44.1 44.6 195 9.86 0.61 0.34 0.26 74.4 445 27.2 0.1 42.8 1.6 P24-22YQ 0.93 46.4 45.6 204 7.92 0.53 0.34 0.27 76.6 472 27.7 0.11 35.1 1.64 样品编号 Th Hf Zr Nb Ta U Li B Sr Cd Ge Sn F Ba P24-1QY 5.75 10.9 327 34.4 2.71 1.29 20.5 4.04 592 0.062 1.37 2.64 892 255 P24-5YQ 4.81 9.26 317 32.3 2.48 1.16 18 4.68 561 0.06 1.47 2.98 792 358 P24-6YQ 5.29 9.75 317 33 2.68 1.27 17.6 4.43 573 0.05 1.38 2.52 944 324 P24-7YQ 5.64 9.37 332 34.6 2.61 1.33 19.8 7.15 567 0.062 1.46 2.88 789 327 P24-8YQ 5.77 9.51 342 34.8 2.68 1.33 19.2 9.27 544 0.055 1.5 3.4 783 342 P24-9YQ 5.98 9.47 333 33.8 2.6 1.46 19.6 12.5 553 0.06 1.48 2.62 737 423 P24-10YQ 5.39 9.29 330 33.7 2.58 1.29 17.3 7.35 562 0.058 1.41 2.86 823 322 P24-11YQ 5.34 9.06 319 33.5 2.51 1.27 21.6 6.88 568 0.059 1.46 3.24 671 324 P24-20YQ 5.54 9 320 36 2.48 1.28 27.8 5.41 583 0.07 1.02 3.15 560 350 P24-21YQ 5.53 9.19 307 33.4 2.53 1.3 27.9 5.13 580 0.063 0.98 3.19 511 386 P24-22YQ 5.34 9.23 315 34.1 2.49 1.26 28.3 4.85 618 0.061 1.09 2.7 529 306 注:Mg#=(100×Mg2+)/(Mg2++Fe2+);Mg2+= MgO/ 40.30;TFeO= FeO+ Fe2O3× 0.8998;TFe2O3=Fe2O3+FeO× 1.1113; δCe=CeN/((LaN+PrN)/2);δEu=EuN/((SmN+GdN)/2);主量元素含量单位为%,微量和稀土元素含量单位为10−6 表 3 橄榄玄武玢岩和OIB端元及各主要化学储库不相容元素比值
Table 3. Ratio of incompatible elements for the olivine basaltic porphyrite and end member component
元素 Zr/Nb La/Nb Ba/Nb Ba/Th Rb/Nb Th/Nb Th/La Ba/La 原始地幔 14.8 0.94 9 77 0.91 0.117 0.125 9.6 N-MORB 330 1.07 4.3 60 0.36 0.071 0.067 4 EMⅠ-OIB 5~13.1 0.78~1.32 9.1~23.4 80~204 0.69~1.41 0.094~0.130 0.089~0.147 11.2~19.1 EMⅡ-OIB 4.4~7.8 0.79~1.19 6.4~11.3 57~105 0.58~0.87 0.105~0.168 0.108~0.183 7.3~13.5 HIMU-OIB 3.2~5 0.66~0.77 4.9~5.9 63~77 0.35~0.38 0.078~0.101 0.107~0.133 6.8~8.7 橄榄玄武玢岩 9.52 1.36 9.95 61.56 0.83 0.16 0.12 7.31 斜斑辉绿玢岩 10.48 1.48 12.64 71.92 1.53 0.17 0.12 8.53 注:原始地幔、N-MORB、HIMU-OIB、EMⅠ-OIB和EMⅡ-OIB元素比值据Weaver, 1991 -
[1] Baker M B, Wyllie P J. 1992. High−pressure apatite solubility in carbonate−rich liquids: Implications for mantle metasomatism[J]. Geochimica et Cosmochimica Acta, 56(9): 3409−3422.
[2] Chuan M S, Hu L, Lin R X, et al. 2024. Origin and tectonic implication of early Mesozoic “mung bean rock” in the western margin of the Yangtze Platform: Zircon U−Pb age, trace element and Hf isotope constraints[J]. Earth Science Frontiers, 31(2): 204−223(in Chinese with English abstract).
[3] Dai C G, Wang X H, Chen J S, et al. 2017. Editorial Board of the Regional Geology of China, Guizhou Province[M]. Beijing: Geological Publishing House (in Chinese with English abstract).
[4] Deng J F, Luo Z H, Su S G, et al. 2004. Petrogenesis, Tectonic Environment and Mineralization[M]. Beijing: Geological Publishing House (in Chinese).
[5] Deng J, Yang L Q, Wang C M. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys[J]. Acta Petrologica Sinica, 27(9) : 2501−2509(in Chinese with English abstract).
[6] Dong S W, Wu X H , Wu Z H, et al. 2000. On tectonic seesawing of the East Asia Continent—Global implieation of the Yanshanian movement[J]. Geological Review, 46(1): 8−13(in Chinese with English abstract).
[7] Dong S W, Zhang Y Q, Chen X H, et al. 2008. The formation and deformational characteristics of East Asia multi−direction convergent tectonic system in Late Jurassic[J]. Acta Geoscientica Sinica, 29(3): 306−317(in Chinese with English abstract).
[8] Dong S W, Zhang Y Q, Li H L, et al. 2019. The Yanshan orogeny and late Mesozoic multi−plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”[J]. Science China Earth Sciences, 49(6): 913−938(in Chinese with English abstract).
[9] Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19(3): 463−513. doi: 10.1093/petrology/19.3.463
[10] Gorczyk W, Hobbs B, Gessner K, et al. 2013. Intracratonic geodynamics[J]. Gondwana Research, 24(3): 838−848.
[11] Green H D, Ringwood E A. 1967. The genesis of basaltic magmas[J]. Contributiona to Mineralogy and Petrology, 15(2): 103−190. doi: 10.1007/BF00372052
[12] He B, Xu Y G, Xiao L, et al. 2003. Generation and spatial distribution of the Emeishan large igneous province: New evidence from stratigraphic records[J]. Acta Geological Sinica, 77(2): 194−202(in Chinese with English abstract). doi: 10.1111/j.1755-6724.2003.tb00562.x
[13] He X Q, Liu A M, Xiao J F, et al. 2004. Report on the results of 1∶250 000 regional geological survey of Bijie County Sheet[R]. Guiyang: Guizhou Institute of Geological Survey(in Chinese).
[14] Huang C, Ding W P, Zhang H H, et al. 2019. Report on 1∶50 000 regional geological survey of Dianweijie, Cangxi, Majie and Duomaga Sheets in Western Wumengshan, Yunnan[R]. Haikou: The 9th Detachment of the PAP gold force(in Chinese).
[15] Hou Z Q, Chen W, Lu J R. 2002. Collision event during 177−135 Ma on the eastern margin of the Qinghai−Tibet Plateau: Evidence from 40Ar/ 39Ar dating for basalts on the western margin of the Yangtze Platform[J]. Acta Geologica Sinica, 76(2): 194−204. doi: 10.1111/j.1755-6724.2002.tb00085.x
[16] Houseman G A, Mckenzie D P, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts[J]. Journal of Geophysical Research, 86(B7): 6115−6132. doi: 10.1029/JB086iB07p06115
[17] Houseman G A, Molnar P. 1997. Gravitational (rayleigh−taylor) instability of a layer with non−linear viscosity and convective thinning of continental lithosphere[J]. Geophysical Journal of the Royal Astronomical Society, 128(1): 125−150. doi: 10.1111/j.1365-246X.1997.tb04075.x
[18] Irvine T N, Baragar W R. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8(5): 523−548. doi: 10.1139/e71-055
[19] Lassiter J C, Depaolo D J, Mahoney J J, et al. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints[J]. Geophysical Monograph, 100: 335−355.
[20] Li X H, Li W X, He B. 2012. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543−559(in Chinese with English abstract).
[21] Li Z Y, Lippert P, Ding L, et al. 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia[J]. Geology, 44(9): 727−730.
[22] Lu H J, Tian X B, Yun K, et al. 2018. Convective removal of the Tibetan Plateau mantle lithosphere by ~26 Ma[J]. Tectonophysics, 731−732: 17−34.
[23] Liu J Q, He L, Chen F L, et al. 2021. Studies on the chronology and geochemistry of the green pisolites at the bottom of the Middle Triassic Guanling Formation in Yanjin area, northeastern Yunnan Province[J]. Acta Petrologica Sinica, 37(7): 2245−2255(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.16
[24] Liu M, Cui X J, Liu F T. 2004. Cenozoic rifting and volcanism in eastern China: A mantle dynamic link to the Indo–Asian collision?[J]. Tectonophysics, 393(1): 29−42.
[25] Ludwig K R. 2003. Isoplot/Ex: a geochronological toolkit for Microsoft Excel, Version 3.00[M]. Berkeley: Geochronology Center, Special Publication.
[26] Ma Y M, Yang T S, Bian W W, et al. 2018. A stable southern margin of Asia during the Cretaceous: Paleomagnetic constraints on the Lhasa−Qiangtang collision and the maximum width of the Neo−Tethys[J]. Tectonics, 37(9/10): 3853−3876.
[27] McDonough W F. 1990. Constraints on the composition of the continental lithospheric mantle[J]. Earth Planet. Sci. Lett., 101(1): 1−18. doi: 10.1016/0012-821X(90)90119-I
[28] McKenzie D P, O'Nions R K. 1991. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal of Petrology, 32(1): 21−91.
[29] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Sci. Rev., 37(3/4): 215−224.
[30] Nickel K G. 1986. Phase equilibria in the system SiO2–MgO–Al2O3–CaO–Cr2O3 (SMACCR) and their bearing on spinel/garnet lherzolite relationships[J]. Neues Jahrbuch Für Mineralogie−Abhandlungen, 155(3): 259−287.
[31] Pan J T, Liu H H, Yuan Y S, et al. 2022a. Late Permian Xuanwei Formation tuff from the western margin of the Upper Yangtze: Constraints on volcanica ctivity and Paleotethyan arc volcanism in the Emeishan Large Igneous Province[J]. Acta Geologica Sinica, 96(6): 1985−2000(in Chinese with English abstract).
[32] Pan J T, Wu L, Zhang H H, et al. 2022b. Report on 1∶50 000 regional geological survey of 9 Sheets including Wagang, Huanggeshu, Dawazi, Shiziba, Lianfeng, Daguan County, Huoshaoba, Wuzhai and Zhashang in Wumeng Mountain Area, Yunnan [R]. Kunming: Kunming General Resources Comprehensive Investigation Center of China Geological Survey(in Chinese).
[33] Paton C, Woodhead J D, Hellstrom J C, et al. 2010. Improved laser ablation U−Pb zircon geochronology through robust downhole fractionation correction[J]. Geochem. Geophys. Geosyst., 11(3): 1−36.
[34] Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth Planet. Sci. Lett., 19(2): 290−300. doi: 10.1016/0012-821X(73)90129-5
[35] Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contrib. Mineral. Petrol., 69(1): 33−47. doi: 10.1007/BF00375192
[36] Ramsey M H, Potts P J, Webb P C, et al. 1995. An objective assessment of analytical method precision: Comparison of ICP−AES and XRF for the analysis of silicate rocks[J]. Chemical Geology, 124(1/2): 1−19.
[37] Ruddiman W F, Raymo M E, Prell W L, et al. 1997. The uplift−climate connection: A synthesis[M]. New York and London: Plenum Press: 471−515.
[38] Slama J, Kosler J, Condon D J, et al. 2008. Plesovice zircon: A new natural reference material for U/Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1/2): 1−35.
[39] Sun S S, McDonough W F, Saunders A D, et al. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[40] Tatsumi Y, Sakuyama M, Fukuyama H, et al. 1983. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones[J]. Journal of Geophysical Research, 88(B7): 5815−5825. doi: 10.1029/JB088iB07p05815
[41] Thompson J M, Meffre S, Danyushevsky L. 2018. Impact of air, laser pulse width and fluence on U–Pb dating of zircons by lA−ICPMS[J]. Journal of Analytical Atomic Spectrometry, 33(2): 221−230. doi: 10.1039/C7JA00357A
[42] Turner S, Hawkesworth C, Liu J Q, et al. 1993. Timing of tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 364(6432): 50−54. doi: 10.1038/364050a0
[43] Weaver B L. 1991. Trace element evidence for the origin of ocean−island basalts[J]. Geology, 19(2): 123−127. doi: 10.1130/0091-7613(1991)019<0123:TEEFTO>2.3.CO;2
[44] Wei J. 2018. Petrology, petrogeochemistry and geodynamic significance of Emeishan basalt[D]. Master's Thesis of Chengdu University of Technology (in Chinese with English abstract).
[45] Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325−343. doi: 10.1016/0009-2541(77)90057-2
[46] Xiao L, Xu Y G, Chung S L, et al. 2003. Chemostratigraphic correlation of Upper Permian lavas from Yunnan Province, China: Extent of the emeishan large igneous province[J]. International geology review, 45(8): 753−766. doi: 10.2747/0020-6814.45.8.753
[47] Xie Y X, Ma L Y, Zhao G C, et al. 2020. Origin of the heping granodiorite pluton: Implications for syn−convergent extension and asthenosphere upwelling accompanying the Early Paleozoic orogeny in South China[J]. Gondwana Research, 85(4): 149−168.
[48] Xu T, Zhang Z J, Liu B F, et al. 2015. Crustal velocity structure in the Emeishan large igneous province and evidence of the Permian mantle plume activity[J]. Science China: Earth Sciences, 45(5): 561−576 (in Chinese with English abstract).
[49] Xu Y G. 1999. Roles of thermo−mechanic and chemical erosion in continental lithospheric thinning[J]. Petrology and Geochemistry, 18(1): 1−5.
[50] Yan M D, Zhang D W, Fang X M, et al. 2016. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang block: Implications for the evolution of the Paleo−and Meso−Tethys[J]. Gondwana Research, 39: 292−316. doi: 10.1016/j.gr.2016.01.012
[51] Zhang H, Huang H, Hou M C. 2020. Origin of tuffs from Upper Permian Wujiaping Formation in Chaotian section of Guangyuan area, Sichuan, China and its geological significance[J]. Journal of Earch Sciences and Environment. 42(1): 36−48(in Chinese with English abstract).
[52] Zhang H F. 2009. Peridotite−melt interaction: A key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 54(19): 3417−3437. doi: 10.1007/s11434-009-0307-z
[53] Zhang H H, Wu. L, Li H, et al. 2022. Relation between the Emeishan mantle plume activity and Wumengshan volcanic−sedimentary Basin in Northeastern Yunnan[J]. Geoscience, 2022, 36(1): 225−243(in Chinese with English abstract).
[54] Zhang H H, Yang Z, Li Z W, et al. 2024. Discovery of volcanic matter in the Upper Maokou Formation of the Wumengshan area : Evidence of early activity of the Emeishan mantle plume[J]. Geological Bulletin of China, 43(7): 1207−1220.
[55] Zhang H H, Yuan Y S, Yu Y Z, et al. 2021. The response relationship between Emei mantle plume activity and volcanic sedimentary Basin in Wumengshan area of Northeast Yunnan[J]. Geoscience, 35(5): 1155−1177(in Chinese with English abstract).
[56] Zhang K X, Pan G T, He W H, et al. 2015. New division of tectonic−strata superregion in China[J]. Earth Science—Journal of China University of Geosciences, 40(2): 206−233(in Chinese with English abstract). doi: 10.3799/dqkx.2015.016
[57] Zhang Y Q, Dong S W. 2019. East Asia multi−plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5): 613−641(in Chinese with English abstract).
[58] Zhang Y Q, Dong S W, Li J H, et al. 2011. Mesozoic multi−directional compressive tectonic action and the formation−reformation of the Sichuan Basin[J]. Geology in China, 38(2): 233−250(in Chinese with English abstract).
[59] Zhang Z C, Wang F S, Hao Y L. 2005. Picrites in the Emeishan Large Igneous Province: Evidence for mantle plume activity[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 17−22(in Chinese with English abstract).
[60] Zhao S J, Li S Z, Yu S, et al. 2016. Proto−Tethys ocean in East Asia(Ⅲ): Structures of ductile shear zones in the North Qinling[J]. Acta Petrologica Sinica, 32(9): 2645−2655(in Chinese with English abstract).
[61] Zhong Y T, Roland M, Chen J, et al. 2020. Geochemical, biostratigraphic, and high−resolution geochronological constraints on the Waning stage of Emeishan large igneous province[J]. Geological Society of America bulletin, 132(9/10): 1969−1986.
[62] Zhou J X, Chen Z Y. 2007. Research on cathodoluminescence of zircon under electron probe[M]. Chengdu: University of Electronic Science and Technology Press(in Chinese).
[63] Zhu R X, Zhao P, Zhao Li. 2022. Tectonic evolution and geodynamics of the Neo−Tethys Ocean[J]. Scientia Sinica (Terrae), 52(1): 1−25(in Chinese with English abstract). doi: 10.1360/SSTe-2021-0147
[64] 钏茂山, 胡乐, 蔺如喜, 等. 2024. 扬子板块西缘早中生代 “绿豆岩” 成因及构造启示: 锆石 U−Pb 年龄、微量元素及 Hf 同位素约束[J]. 地学前缘, 31(2): 204−223.
[65] 戴传固, 王雪华, 陈建书, 等. 2017. 中国区域地质志·贵州志 [M]. 北京: 地质出版社.
[66] 邓晋福, 罗照华, 苏尚国, 等. 2004. 岩石成因、构造环境与成矿作用 [M]. 北京: 地质出版社.
[67] 邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展[J]. 岩石学报, 27(9): 2501−2509.
[68] 董树文, 吴锡浩, 吴珍汉, 等. 2000. 论东亚大陆的构造翘变 —— 燕山运动的全球意义[J]. 地质论评, 46(1): 8−13. doi: 10.3321/j.issn:0371-5736.2000.01.002
[69] 董树文, 张岳桥, 陈宣华, 等. 2008. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征[J]. 地球学报, 29(3): 306−317. doi: 10.3321/j.issn:1006-3021.2008.03.005
[70] 董树文, 张岳桥, 李海龙, 等. 2019. “燕山运动” 与东亚大陆晚中生代多板块汇聚构造 —— 纪念 “燕山运动” 90 周年[J]. 中国科学: 地球科学, 49(6): 913−938.
[71] 何斌, 徐义刚, 肖龙, 等. 2003. 峨眉山大火成岩省的形成机制及空间展布: 来自沉积地层学的新证据[J]. 地质学报, 77(2): 194−202. doi: 10.3321/j.issn:0001-5717.2003.02.007
[72] 何熙琦, 刘爱民, 肖加飞, 等. 2004. 1︰25 万毕节县幅区域地质调查成果报告 [R]. 贵阳: 贵州省地质调查院.
[73] 黄诚, 丁伟品, 张宏辉, 等. 2019. 云南乌蒙山西部甸尾街、沧溪、马街、朵马戛幅 1∶5 万区域地质调查报告 [R]. 海口: 武警黄金第九支队.
[74] 李献华, 李武显, 何斌. 2012. 华南陆块的形成与 Rodinia 超大陆聚合-裂解 —— 观察、解释与检验[J]. 矿物岩石地球化学通报, 31(6): 543−559. doi: 10.3969/j.issn.1007-2802.2012.06.002
[75] 刘建清, 何利, 陈风霖, 等. 2021. 滇东北盐津地区中三叠统关岭组底部绿豆岩年代学及地球化学研究[J]. 岩石学报, 37(7): 2245−2255. doi: 10.18654/1000-0569/2021.07.16
[76] 潘江涛, 刘红豪, 袁永盛, 等. 2022a. 上扬子西缘晚二叠世宣威组凝灰岩: 对峨眉山大火成岩省火山活动及古特提斯弧火山作用的约束[J]. 地质学报, 96(6): 1985−2000.
[77] 潘江涛, 吴亮, 张宏辉, 等. 2022b. 云南乌蒙山区 1∶5 万瓦岗、黄葛树、大湾子、柿子坝、莲峰、大关县、火烧坝、五寨、闸上 9 幅区域地质调查报告 [R]. 昆明: 中国地质调查局昆明自然资源综合调查中心.
[78] 魏杰. 2018. 峨眉山玄武岩岩石学、岩石地球化学及其地球动力学意义 [D]. 成都理工大学硕士学位论文: 1−69.
[79] 徐涛, 张忠杰, 刘宝峰, 等. 2015. 峨眉山大火成岩省地壳速度结构与古地幔柱活动遗迹: 来自丽江-清镇宽角地震资料的约束[J]. 中国科学: 地球科学, 45(5): 561−576.
[80] 张晗, 黄虎, 侯明才. 2020. 四川广元地区朝天剖面上二叠统吴家坪组凝灰岩成因及其地质意义[J]. 地球科学与环境学报, 42(1): 36−48.
[81] 张宏辉, 吴亮, 李鸿, 等. 2022. 滇东北乌蒙山地区峨眉地幔柱活动与火山-沉积盆地的响应关系[J]. 现代地质, 36(1): 225−243.
[82] 张宏辉, 杨朝, 李致伟, 等. 2024. 乌蒙山地区茅口组中上部火山物质的发现: 峨眉地幔柱早期活动的证据[J]. 地质通报, 43(7): 1207−1220.
[83] 张宏辉, 袁永盛, 余杨忠, 等. 2021. 扬子板块西缘中生代 — 新生代碰撞造山事件的记录: 来自峨眉山玄武岩的锆石 U−Pb 同位素证据[J]. 现代地质, 35(5): 1155−1177.
[84] 张克信, 潘桂棠, 何卫红, 等. 2015. 中国构造-地层大区划分新方案[J]. 地球科学 (中国地质大学学报), 40(2): 206−233.
[85] 张岳桥, 董树文. 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报, 25(5): 613−641. doi: 10.12090/j.issn.1006-6616.2019.25.05.059
[86] 张岳桥, 董树文, 李建华, 等. 2011. 中生代多向挤压构造作用与四川盆地的形成和改造[J]. 中国地质, 38(2): 233−250. doi: 10.3969/j.issn.1000-3657.2011.02.001
[87] 张招崇, 王福生, 郝艳丽. 2005. 峨眉山大火成岩省中的苦橄岩: 地幔柱活动证据[J]. 矿物岩石地球化学通报, 24(1): 17−22. doi: 10.3969/j.issn.1007-2802.2005.01.003
[88] 赵淑娟, 李三忠, 余珊, 等. 2016. 东亚原特提斯洋 (Ⅲ): 北秦岭韧性剪切带构造特征[J]. 岩石学报, 32(9): 2645−2655.
[89] 周剑雄, 陈振宇. 2007. 电子探针下锆石阴极发光的研究 [M]. 成都: 电子科技大学出版社.
[90] 朱日祥, 赵盼, 赵亮. 2021. 新特提斯洋演化与动力过程[J]. 中国科学: 地球科学, 52(1): 1−25.
-