Petrogenesis of the Dadaoerji ophiolite from the Gansu Province, NW China: Constraints on the Early Paleozoic tectonic evolution of the South Qilian Orogen
-
摘要:
研究目的 南祁连大道尔吉地区赋存有著名的蛇绿岩型中型铬铁矿矿床。为进一步限定大道尔吉蛇绿岩的形成时代、岩石成因及其构造环境,
研究方法 对大道尔吉蛇绿岩堆晶岩系内的辉橄岩进行了LA−ICP−MS锆石U−Pb年龄分析,对辉橄岩和均质辉长岩进行了全岩地球化学分析。
研究结果 辉橄岩锆石U−Pb定年结果显示,年龄主要集中在471~420 Ma,年龄加权平均值为460±15 Ma (MSWD=3.8),限定了大道尔吉蛇绿岩形成年代为中奥陶世晚期。辉长岩属于亚碱性中的低钾拉斑系列,辉橄岩与辉长岩富集大离子亲石元素(如Rb、Ba、U、Sr),亏损高场强元素(如Nb、Ta、Zr、Hf),且具有明显的Th负异常。辉长岩表现为轻稀土元素略富集的近平坦型,δEu具有轻微正异常。全岩地球化学数据表明,辉长岩是受俯冲流体交代作用所导致的亏损尖晶石二辉橄榄岩地幔经过20%~30%部分熔融的产物,岩浆源区可能经历了地壳的混染作用。进一步推测,辉橄岩中较老锆石可能源于受壳源物质混染的岩浆源区。
结论 结合区域地质背景,认为南祁连大道尔吉蛇绿岩形成于中奥陶世晚期柴北缘洋俯冲作用所导致的弧后盆地拉张环境,并被归属为俯冲带(SSZ)型蛇绿岩,同时也为南祁连早古生代存在俯冲消减阶段提供了新的证据。
Abstract:Objective The Dadaoerji region in the South Qilian Orogen hosts medium−sized ophiolite−type chromite deposits. However, the formation age, petrogenesis and tectonic evolution of the Dadaoerji ophiolite suite are still unclear.
Methods Hence, in this study, we conducted systematic LA−ICP−MS zircon U−Pb for pyroxene peridotive dating and whole−rock geochemical studies of both pyroxene peridotite and gabbros within the upper part of this ophiolite suite.
Results Zircon U−Pb dating show 206Pb/238U spot ages that are concordant with the main concentration range of 471~420 Ma, and also yielded a weighted mean age of 460±15 Ma (MSWD=3.8), suggesting that the timing of formation of the Dadaoerji ophiolite suite could be constrained in the Late Middle Ordovician. These gabbros belong to low potassium tholeiitic series, both pyroxene peridotites and gabbros are enriched in large ion lithophile elements (e.g., Rb, Ba, U, Sr) and depleted in high field strength elements (e.g., Nb, Ta, Zr, Hf), with Th negative anomalies. Moreover, these gabbros also display a near flat and slightly right pattern ((La/Yb)N = 1.54~2.43) and slight Eu positive anomalies. These together indicate that the magma of gabbros was derived from a depleted spinel Lherzolite mantle via metasomatism of subduction fluids, and evolved by partial melting of 20%~30%. Furthermore, the magma source of gabbros might have underwent crustal contamination. Accordingly, we also infer that the older zircons in pyroxene peridotite likely inherited from magma source.
Conclusions In combination with the regional geological settings, this study suggests that the Dadaoerji ophiolite suite formed under the extensional environment of the back−arc basin caused by the subduction of the North Qaidam Ocean during the late Middle Ordovician. The Dadaoerji ophiolite was also classified as a subduction zone type (SSZ) ophiolite, which provides new evidence for the subduction evolution of the South Qilian Orogen during the early Paleozoic.
-
Key words:
- Early Paleozoic /
- ophiolite suite /
- pyroxene peridotite /
- gabbro /
- zircon U−Pb geochronology /
- geochemistry /
- Dadaoerji /
- South Qilian Orogen
-
-
图 4 大道尔吉辉长岩SiO2−(Na2O+K2O)图解(a,底图据Middlemost, 1994)和SiO2−K2O图解(b,底图据Rollinson, 1993)
Figure 4.
图 5 大道尔吉辉橄岩与均质辉长岩微量元素原始地幔标准化蜘蛛图(a)和均质辉长岩稀土元素球粒陨石标准化配分图(b)(原始地幔标准化数据据Sun et al., 1989,球粒陨石标准化数据据Boynton, 1984,4类玄武岩稀土数据及3种MORB定义据Gale et al., 2013)
Figure 5.
图 6 大道尔吉均质辉长岩Nb /Yb-Th /Yb 图解(a,底图据Pearce, 2008)和辉橄岩与均质辉长岩Th/Nb-Ba/Th图解(b) (底图据Elliott et al., 1997)
Figure 6.
图 7 大道尔吉均质辉长岩La/Yb−Dy/Yb图解(a,底图据武勇等,2018修改)与La/Sm−Sm/Yb源区判别图解(b,底图据Aldanmaz et al., 2000修改)
Figure 7.
表 1 大道尔吉辉橄岩LA−ICP−MS锆石U−Th−Pb分析结果
Table 1. LA−ICP−MS zircon U−Pb data of the Dadaoerji pyroxene peridotite
测点号 元素含量/10−6 Th/U 同位素比值 同位素年龄/Ma Th U Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 6.26 13.1 10.87 0.48 0.0988 0.0015 3.2078 0.0526 0.2353 0.0030 1602 27.6 1459 12.7 1362 15.5 2 6.54 12.7 17.37 0.52 0.1501 0.0018 7.4064 0.1028 0.3577 0.0044 2347 20.4 2162 12.4 1971 20.9 3 6.37 8.73 2.35 0.73 0.0614 0.0030 0.5968 0.0290 0.0704 0.0012 654 101.7 475 18.4 439 7.3 4 4.43 9.65 7.37 0.46 0.0953 0.0015 2.6362 0.0459 0.2006 0.0026 1533 30.0 1311 12.8 1179 13.8 5 1.89 4.64 1.18 0.41 0.0658 0.0030 0.5933 0.0264 0.0654 0.0011 800 91.2 473 16.8 408 6.6 6 7.25 12.4 20.38 0.59 0.1698 0.0020 10.1783 0.1363 0.4346 0.0053 2556 19.1 2451 12.4 2326 23.8 7 11.1 19.2 12.77 0.58 0.0806 0.0013 1.9629 0.0344 0.1765 0.0022 1212 31.7 1103 11.8 1048 12.2 8 1.92 4.42 4.90 0.43 0.1150 0.0020 4.5775 0.0849 0.2885 0.0039 1880 30.6 1745 15.5 1634 19.4 9 6.01 6.22 1.61 0.97 0.0649 0.0022 0.5967 0.0202 0.0666 0.0010 772 69.6 475 12.9 416 5.9 10 4.86 6.39 1.92 0.76 0.0578 0.0016 0.5948 0.0171 0.0746 0.0010 522 61.3 474 10.9 464 6.1 11 11.0 24.7 7.12 0.45 0.0568 0.0014 0.5947 0.0154 0.0759 0.0010 482 55.3 474 9.8 472 6.0 12 9.97 10.6 3.16 0.94 0.0619 0.0014 0.6081 0.0141 0.0712 0.0009 672 47.7 482 8.9 443 5.6 13 7.68 8.72 2.61 0.88 0.0637 0.0016 0.6471 0.0165 0.0736 0.0010 733 52.0 507 10.2 458 5.9 14 8.30 10.7 2.97 0.78 0.0573 0.0019 0.5659 0.0191 0.0716 0.0010 503 72.7 455 12.4 446 6.2 15 5.14 15.6 7.18 0.33 0.0648 0.0020 1.1538 0.0354 0.1292 0.0019 767 62.6 779 16.7 783 10.7 16 5.36 7.22 2.16 0.74 0.0586 0.0018 0.6120 0.0189 0.0758 0.0011 551 65.6 485 11.9 471 6.3 17 10.2 18.3 19.13 0.56 0.1364 0.0018 5.3943 0.0785 0.2867 0.0036 2182 22.4 1884 12.5 1625 17.8 18 8.76 11.3 3.07 0.78 0.0625 0.0021 0.5944 0.0196 0.0690 0.0010 691 68.6 474 12.5 430 6.0 19 9.32 14.0 3.94 0.67 0.0619 0.0014 0.5918 0.0140 0.0693 0.0009 672 48.7 472 8.9 432 5.4 20 3.27 51.7 12.96 0.06 0.0593 0.0013 0.5554 0.0125 0.0679 0.0009 579 47.0 449 8.2 423 5.2 21 19.9 30.4 8.86 0.65 0.0574 0.0017 0.5719 0.0169 0.0723 0.0010 505 63.8 459 10.9 450 6.0 表 2 大道尔吉辉橄岩与均质辉长岩主量和微量元素含量
Table 2. Major and trace element concentrations of pyroxene peridotites and gabbros from the Dadaoerji ophiolite
元素 dd01 dd02 dd03 dd04 dd05 dd06 dd07 dd08 辉橄岩 辉橄岩 辉橄岩 辉橄岩 辉长岩 辉长岩 辉长岩 辉长岩 SiO2 40.00 40.10 39.73 40.92 48.55 47.16 49.48 46.91 TiO2 0.06 0.03 0.04 0.04 0.32 0.54 0.64 0.10 Al2O3 1.10 1.79 2.12 1.37 19.36 19.76 21.27 18.03 TFe2O3 11.02 11.26 9.27 8.65 9.54 9.98 6.89 7.14 MnO 0.15 0.10 0.11 0.07 0.13 0.15 0.11 0.13 MgO 33.66 32.89 33.36 33.74 5.10 4.14 3.81 9.11 CaO 3.74 4.13 3.79 4.35 11.53 12.18 11.65 13.34 Na2O <0.01 <0.01 <0.01 0.01 2.92 2.28 3.56 1.27 K2O <0.01 <0.01 0.01 <0.01 0.05 0.03 0.04 0.04 P2O5 0.01 0.01 0.01 0.01 0.04 0.05 0.10 0.02 烧失量 11.10 9.82 10.26 10.16 2.16 2.37 1.94 2.94 总计 100.84 100.13 98.70 99.32 99.70 98.64 99.49 99.03 Mg# 85.81 85.26 87.69 88.54 51.42 45.10 52.27 71.64 Li 0.56 0.80 0.94 0.78 1.24 1.04 1.23 1.51 Be 0.018 0.023 0.026 0.012 0.36 0.30 0.39 0.11 Sc 37.52 12.21 12.21 33.22 39.97 39.70 15.89 67.08 V 113.1 97.68 114.4 83.70 302.3 497.1 233.7 199.7 Cr 3625 6368 10869 3551 42.49 3.34 38.44 131.0 Co 123.6 146.5 172.9 119.4 43.84 47.29 22.12 45.43 Ni 1590 2246 2368 1758 24.16 16.21 33.54 70.10 Cu 23.81 10.44 7.38 5.77 2.08 5.67 2.59 4.59 Zn 34.74 64.87 119.0 34.94 30.03 36.39 25.62 35.88 Ga 1.44 2.40 2.63 1.93 17.01 20.03 17.70 13.54 Rb 0.52 0.050 1.33 0.030 6.93 4.28 4.08 1.60 Sr 5.32 8.40 10.68 22.18 316.2 364.7 428.1 221.4 Y 1.49 0.59 0.50 0.60 3.83 3.15 7.49 2.68 Cd 0.033 0.016 0.029 0.016 0.031 0.025 0.039 0.042 In 0.005 0.001 0.001 0.002 0.024 0.024 0.010 0.018 Cs 0.53 0.005 0.004 0.004 0.005 0.005 0.003 0.004 Ba 1.10 0.75 3.78 0.52 29.15 22.69 40.39 14.95 Pb 0.45 0.23 0.32 0.093 0.99 0.57 0.65 1.33 Bi 0.003 0.002 0.003 0.003 0.002 0.036 0.003 0.004 Th 0.005 0.003 0.004 0.004 0.003 0.005 0.004 0.005 U 0.005 0.004 0.017 0.003 0.11 0.075 0.15 0.12 Nb 0.038 0.022 0.041 0.013 0.12 0.17 0.31 0.10 Ta 0.025 0.013 0.012 0.008 0.009 0.020 0.013 0.012 Zr 0.74 0.56 0.88 0.39 2.83 2.27 13.64 3.52 Hf 0.039 0.024 0.036 0.018 0.10 0.081 0.38 0.10 注:主量元素含量单位为%,微量元素含量单位为10−6 表 3 大道尔吉均质辉长岩稀土元素含量
Table 3. REE composition of the Dadaoerji gabbros
10−6 样号 dd05 dd06 dd07 dd08 La 0.72 0.51 1.27 0.41 Ce 2.03 1.24 3.69 1.20 Pr 0.26 0.17 0.48 0.15 Nd 1.23 0.90 2.70 0.83 Sm 0.30 0.28 0.67 0.26 Eu 0.11 0.10 0.33 0.10 Gd 0.34 0.33 0.98 0.29 Tb 0.069 0.065 0.16 0.064 Dy 0.41 0.39 1.05 0.38 Ho 0.079 0.074 0.17 0.073 Er 0.22 0.21 0.51 0.20 Tm 0.038 0.036 0.076 0.034 Yb 0.20 0.18 0.43 0.18 Lu 0.031 0.032 0.074 0.032 ∑REE 6.03 4.52 12.58 4.21 ∑LREE 4.65 3.20 9.13 2.95 ∑HREE 1.38 1.32 3.45 1.25 LREE/HREE 3.37 2.43 2.65 2.36 δEu 1.06 1.00 1.22 1.11 δCe 1.10 0.99 1.11 1.13 (La/Yb)N 2.43 1.91 2.00 1.54 -
[1] Abati J, Dunning G R, Arenas R, et al. 1999. Early Ordovician orogenic event in Galicia (NW Spain): Evidence from U−Pb ages in the uppermost unit of the Ordenes Complex[J]. Earth and Planetary Science Letters, 165(2): 213−228. doi: 10.1016/S0012-821X(98)00268-4
[2] Aldanmaz E, Pearce J A, Thirlwall M F, et al. 2000. Petrogenetic evolution of Late Cenozoic, post−collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 102(1/2): 67−95. doi: 10.1016/S0377-0273(00)00182-7
[3] Bao P S, Wang X B. 1989. Some new ideas on the genesis of the Dadaoerji chromite deposit[J]. Mineral Deposits, 8(1): 3−18 (in Chinese with English abstract).
[4] Belousova E A, Gonzalez Jimenez J M, Graham I, et al. 2015. The enigma of crustal zircons in upper−mantle rocks: Clues from the Tumut ophiolite, southeast Australia[J]. Geology, 43(2): 119−122. doi: 10.1130/G36231.1
[5] Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier: 63–114.
[6] Chen B, Zhu Y F. 2014. Magmatism and metamorphism of gabbro in Ophiolite: A Review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 226–237 (in Chinese with English abstract).
[7] Chen D L, Sun Y, Liu L. 2007. The metamorphic ages of the country rock of the Yukahe eclogites in the North Qaidam and its geological significance[J]. Earth Science Frontiers, 14(1): 108−116 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60005-0
[8] Class C, Roex A P. 2008. Ce anomalies in gough island lavas−trace element characteristics of a recycled sediment component[J]. Earth and Planetary Science Letters, 265: 475−486. doi: 10.1016/j.jpgl.2007.10.030
[9] Coleman R G. 1977. Ophiolites: Ancient oceanic lithosphere[M]. Berlin Heidelberg: Springer−Verlag.
[10] Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 123(3/4): 387−411. doi: 10.1130/B30446.1
[11] Dilek Y, Furnes H. 2014. Ophiolite and their origins[J]. Elements, 10(2): 93−100. doi: 10.2113/gselements.10.2.93
[12] Dong X Y, Li J M. 1981. Tectonism during metallization of Dadaoerji chromite deposit in Northwest China[J]. Northwestern Geology, 2(1): 23–39 (in Chinese with English abstract).
[13] Dunning G R, Pedersen R B. 1988. U/Pb ages of ophiolites and arc−related plutons of the Norwegian Caledonides: Implications for the development of Iapetus[J]. Contributions to Mineralogy and Petrology, 98(1): 13−23. doi: 10.1007/BF00371904
[14] Elliott T, Plank T, Zindler A, et al. 1997. Element transport from slab to volcanic front at the Mariana arc[J]. Journal of Geophysical Research Solid Earth, 102: 14991−15019. doi: 10.1029/97JB00788
[15] Feng Y M, He S P. 1996. Geotectonics and orogeny of the Qilian Mountains [M]. Beijing: Geological Publishing House (in Chinese).
[16] Fu C L, Yan Z, Guo X Q, et al. 2014. Geochemistry and SHRIMP zircon U−Pb age of diabases in the Lajishankou ophiolitic mélange, South Qilian terrane[J]. Acta Petrologica Sinica, 30(6): 1695-1706 (in Chinese with English abstract).
[17] Gale A, Dalton C A, Langmuir C H, et al. 2013. The mean composition of ocean ridge basalts[J]. Geochem. Geophys. Geosyst., 14(3): 489–518.
[18] Gao X F, Xiao P X, Jia Q Z. 2011. Redetermination of the Tanjianshan Group: Geochronological and geochemical evidence of Basalts from the margin of the Qaidam Basin[J]. Acta Geologica Sinica, 85(9): 1452−1463 (in Chinese with English abstract).
[19] Hawkins J W. 2003. Geology of supra−subduction zones−Implications for the origin of ophiolites[J]. Geological Society of America Special Papers, 373: 227−268.
[20] Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy & Geochemistry, 53: 27-62.
[21] Hu W L, Hou R N, Zhang C et al. 2016a. Geochemical characteristics and tectonic implications of basaltic porphyry in the western segment of the central Qilian Mountains[J]. Journal of Lanzhou University (Natural Sciences), 52(3): 287-294 (in Chinese with English abstract).
[22] Hu W L, Jia Z L, Wang J R, et al. 2016b. Geochronology and geochemistry characteristics of the granites from the Huashigou area, South Qilian and their tectonic significance[J]. Geological Journal of China Universities, 22(2): 242-253 (in Chinese with English abstract).
[23] Huang Z B, Zheng J P, Li B H, et al. 2016. Age and geochemistry of the Early Paleozoic back−arc type ophiolite in Dadaoerji area, South Qilian, China[J]. Geotectonica et Metallogenia, 40(04): 826−838 (in Chinese with English abstract).
[24] Huang Z B. 2012. Geochemical characteristics and significances of the Dadao Erji chromite deposit ore−forming rock in Gansu province[D]. Master's Thesis of Chengdu University of Technology (in Chinese with English abstract).
[25] Li C, Arndt N T, Tang Q, et al. 2015. Trace element indiscrimination diagrams[J]. Lithos, 232: 76−83. doi: 10.1016/j.lithos.2015.06.022
[26] Liu X M, Gao S, Diwu C R, et al. 2007. Simultaneous determination of LA−ICP−MS U−Pb age and trace elements of single grain zircon in situ microzone by 20 µm specular beam[J]. Chinese Science Bulletin, 52(2): 228−235 (in Chinese with English abstract). doi: 10.1360/csb2007-52-2-228
[27] Mattinson C G, Wooden J L, Liou J G, et al. 2006. Age and duration of eclogite−facies metamorphism, North Qaidam HP/UHP terrane, western China[J]. American Journal of Science, 306: 683−711. doi: 10.2475/09.2006.01
[28] McDonough W F, Sun S. 1995. The composition of the Earth[J]. Chemical Geology, 120(3): 223−253.
[29] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Science Reviews, 37(3/4): 0−224.
[30] Nebel O, Nebel−Jacobsen Y, Mezger K, et al. 2007. Initial Hf isotope compositions in magmatic zircon from Early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages[J]. Chemical Geology, 241(1/2): 23−37. doi: 10.1016/j.chemgeo.2007.02.008
[31] Pan G T, Li X Z, Wang L Q, et al. 2002. Preliminary division of tectonic units of the Qinghai−Tibet plateau and its adjacent regions[J]. Geological Bulletin of China, 21(11): 701−707(in Chinese with English abstract).
[32] Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 19(2): 290−300. doi: 10.1016/0012-821X(73)90129-5
[33] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956
[34] Pearce J A, Stern R J. 2006. Origin of back−arc basin magmas: Trace element and isotope perspectives[J]. Monograph Series American Geophysical Union, 166: 63–86.
[35] Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean Oceanic crust[J]. Lithos, 100(1/4): 14−48. doi: 10.1016/j.lithos.2007.06.016
[36] Pearce J A. 2014. Immobile element fingerprinting of ophiolites[J]. Elements, 10(2): 101−108. doi: 10.2113/gselements.10.2.101
[37] Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internet structures of zircons from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U−Pb ages[J]. Contributions to Mineralogy and Petrology, 132: 288−299. doi: 10.1007/s004100050422
[38] Plank T. 2005. Constraints from thorium / lanthanum on sediment recycling at subduction zones and the evolution of the continents[J]. Journal of Petrology, 4: 921−944.
[39] Qi R R. 2012. LA−ICP−MS zircon U−Pb ages and geological implications for the Bagadeerji granitic plutons in the central Qilian Mountains, Gansu[J]. Sedimentary Geology and Tethyan Geology, 32(4): 86−93 (in Chinese with English abstract).
[40] Qiang W, Feng J X, Ping J, et al. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47: 119−144. doi: 10.1093/petrology/egi070
[41] Qiu j X, Zeng G C, Zhu Y H, et al. 1998. Characteristics and latitudinal comparative research on the early Palaeozoic volcanic rocks of rifted orogenic belts and small ocean basin ophiolite suit from Northern Qinling Mountains and Southern Qilian Mountains[J]. Geological Journal of China Universities, 4(4): 393−405 (in Chinese with English abstract).
[42] Robinson P T, Trumbull R B, Schmitt A, et al. 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites[J]. Gondwana Research, 27(2): 486−506. doi: 10.1016/j.gr.2014.06.003
[43] Roex A L, Dick H, Erlank A J, et al. 1983. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between the Bouvet triple Junction and 11 degrees east[J]. Journal of Petrology, 24(3): 267−318.
[44] Rollinson H R. 1993. Using geochemical data: Evaluation, presentation, interpretation[M]. New York: Longman Group UK Ltd.
[45] Rubatto D. 2000. Zircon trace element geochemistry: Partitioning with garnet and the link between U−Pb age and metamorphism[J]. Chemical Geology, 184: 123−138.
[46] Rudnick R L, Gao S. 2014. Composition of the continental crust[C]//Holland H D, Turekian K K. Treatise on Geochemistry (2nd Edition) Amsterdam: Elsevier, 4: 1–51.
[47] Shen T T, Zhang L F, Yang J S, et al. 2017. The characteristics and significance of age of zircon from ultramafic rocks: A case study from UHP serpentinites in Chinese southwestern Tianshan[J]. Acta Petrologica Sinica, 33(12): 3783−3800 (in Chinese with English abstract).
[48] Shi R D. 2005. Comment on the Progress in and Problems on Ophiolite Study[J]. Geological Review, 51(6): 681−693 (in Chinese with English abstract).
[49] Shinjo R, Chung S I, Kato Y, et al. 1999. Geochemical and Sr−Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin[J]. Journal of Geophysical Research, 104: 10591−10608.
[50] Song S G, Niu Y L, Li S, et al. 2014a. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China[J]. Earth−Science Reviews, 129: 59−84. doi: 10.1016/j.earscirev.2013.11.010
[51] Song S G, Niu Y L, Su L, et al. 2013. Tectonics of the North Qilian Orogen, NW China[J]. Gondwana Research, 23: 1378−1401. doi: 10.1016/j.gr.2012.02.004
[52] Song S G, Niu Y L, Su L, et al. 2014b. Adakitic (tonalitic−trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision[J]. Geochimica et Cosmochimica Acta, 130: 42−62. doi: 10.1016/j.gca.2014.01.008
[53] Song S G, Niu Y L. 2004. Ultra−deep origin of garnet peridotite from the North Qaidam ultrahigh−pressure belt, Northern Tibetan Plateau, NW China[J]. American Mineralogist, 90: 1330−1336.
[54] Song S G, Wu Z Z, Yang L M, et al. 2019. Ophiolite belts and evolution of the Proto−Tethys Ocean in the Qilian Orogen[J]. Acta Petrologica Sinica, 35(10): 2948−2970 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.02
[55] Song S G, Zhang C, Li X H, et al. 2011. HP/UHP metamorphic time of eclogite in the Xitieshan terrane, North Qaidam UHPM belt, NW China[J]. Acta Petrologica Sinica, 27(4): 1191−1197 (in Chinese with English abstract).
[56] Song S G, Zhang L F, Niu Y L, et al. 2006. Evolution from oceanic subduction to continental collision: A case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data[J]. Journal of Petrology, 47: 435−455. doi: 10.1093/petrology/egi080
[57] Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes[J]. Geological Society of America Bulletin, 42: 313−345.
[58] Tao G. 2018. The ocean−continent evolution process in Shule River, Qilian: Constraints from the Early Paleozoic geological records[D]. PhD Dissertation of Chengdu University of Technology (in Chinese with English abstract).
[59] Taylor S R, Mclennan S M. 1985. The continental crust: Its composition and evolution[J]. Journal of Geology, 94: 632−633.
[60] Todd E, Gill J B, Pearce J A. 2012. A variably enriched mantle wedge and contrasting melt types during arc stages following subduction Initiation in Fiji and Tonga, Southwest Pacific[J]. Earth and Planetary Science Letters, 335/336: 180−194. doi: 10.1016/j.jpgl.2012.05.006
[61] Tseng C Y, Yang H J, Yang H Y, et al. 2007. The Dongcaohe ophiolite from the North Qilian Mountains: A fossil oceanic crust of the Paleo−Qilian ocean[J]. Chinese Science Bulletin, 52: 2390−2401. doi: 10.1007/s11434-007-0300-3
[62] Wang J R, Wu C J, Cai Z H, et al. 2006. Early Paleozoic high−Mg adakite from Yindongliang in the eastern section of the North Qilian: Implications for geodynamics and Cu−Au minerallzation[J]. Acta Petrologica Sinca, 22(11): 2655−2664 (in Chinese with English abstract).
[63] Wang J R, Wu J C, Jia Z L. 2008, Sujiashan high−Mg adakite in the eastern section of North Qilian Mountains: Implications for geodynamic[J]. Journal of Lanzhou University (Natural Science), 44(3): 16–23 (in Chinese with English abstract).
[64] Wang Y, Wang M X, Jiao J G. 2019. Mineral composition and platinum−group elements of the Neoproterozoic Wangjiangshan layered intrusion in the northern margin of the Yangtze Block: Implications for the processes of magma evolution and tectonic setting[J]. Journal of Geomechanics, 25(2): 267−285 (in Chinese with English abstract).
[65] Woodhead J D, Hergt J M, Davidson J P, et al. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes[J]. Earth and Planetary Science Letters, 192: 331−346. doi: 10.1016/S0012-821X(01)00453-8
[66] Wu C L, Gao Y H, Wu S P, et al. 2008. Geochemistry and zircon SHRIMP U−Pb dating of granitoids from the west segment of the North Qaidam[J]. Science in China: Earth Sciences, 38(8): 930−949 (in Chinese with English abstract).
[67] Wu C L, Yang J S, Ireland T, et al. 2001. Zircon SHRIMP ages of Aolaoshan granite from the south margin of Qilianshan and its geological significance[J]. Acta Petrologica Sinica, 17(2): 215−221 (in Chinese with English abstract).
[68] Wu Y B, Zheng Y F. 2004. Genetic Mineralogy of zircon and its restriction on U−Pb age interpretation[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589
[69] Wu Y, Chen S Y, Qin M K, et al. 2018. Zircon U−Pb ages of Dongcuo ophiolite in western Bangonghu−Nujiang suture zone and their geological significance[J]. Earth Science, 43(4): 1070–1084 (in Chinese with English Abstract).
[70] Xia L Q, Xia Z C, Xu X Y, et al. 1998. Volcanism in the Early Paleozoic ridge island and backarc basin of the North Qilian Mountains[J]. Acta Geologica Sinica, 72(3): 301−312 (in Chinese with English Abstract).
[71] Xiao W J, Windley B F, Yong Y, et al. 2009. Early Paleozoic to Devonian multiple−accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 35(3/4): 323−333. doi: 10.1016/j.jseaes.2008.10.001
[72] Xiao X C, Chen G M, Zhu Z Z. 1978. A preliminary study on the tectonics of ancient ophiolites in the Qilian Mountain, Northwest China[J]. Acta Geologica Sinica, 52(2): 281−295, 338 (in Chinese with English Abstract).
[73] Xu X Z, Yang J S, Xiong F H, et al. 2016. Zircon SHRIMP U–Pb age of the mantle peridotite in the Kangjinla chromite deposit, Tibet and its geological significance[J]. Acta Geologica Sinica, 90(11): 3215−3226 (in Chinese with English abstract).
[74] Xu Y G, Menzies M A, Thirlwall M F, et al. 2001. Exotic Lithosphere Mantle Beneath the Western Yangtze Craton: Petrogenetic Links to Tibet Using Highly Magnesian Ultrapotassic Rocks[J]. Geology, 29(9): 863−866. doi: 10.1130/0091-7613(2001)029<0863:ELMBTW>2.0.CO;2
[75] Xu Z Q, Yang J S, Wu C L, et al. 2006. Timing and mechanism of formation and exhumation of the northern Qaidam ultrahigh−pressure metamorphic belt[J]. Journal of Asian Earth Sciences, 28: 160−173. doi: 10.1016/j.jseaes.2005.09.016
[76] Xu Z Q, Yang J S, Wu C L. 2003. Timing and Machanism of Fomation and Exhumation of the Qaidam Ultra−Pressure Metamorphic Belt[J]. Acta Geologica Sinica, 77(2): 163−176 (in Chinese with English abstract).
[77] Yamamoto S, Komiya T, Yamamoto H, et al. 2013. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Island Arc, 22(1): 89−103. doi: 10.1111/iar.12011
[78] Yang F, Kim S W, Tsunogae T, et al. 2021b. Multiple enrichment of subcontinental lithospheric mantle with Archean to Mesozoic components: Evidence from the Chicheng ultramafic complex, North China Craton[J]. Gondwana research, 94: 201−221. doi: 10.1016/j.gr.2021.03.005
[79] Yang F, Santosh M, Tsunogae T, Li Tang, et al. 2017. Multiple magmatism in an evolving suprasubduction zone mantle wedge: The case of the composite mafic–ultramafic complex of Gaositai, North China Craton[J]. Lithos, 284/285: 525–544.
[80] Yang G X, Li Y J, Tong L L, et al. 2022. Natural observations of subduction initiation: Implications for the geodynamic evolution of the Paleo−Asian Ocean[J]. Geosystems and Geoenvironment, 1: 100009. doi: 10.1016/j.geogeo.2021.10.004
[81] Yang G X, Liu X Y, Zhu Z, et al. 2024. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology, 57(3): 1−10 (in Chinese with English abstract).
[82] Yang G X, Zhu Z, Liu X Y, et al. 2023. Ophiolite in West Junggar: Records of the subduction−accretion process in ancient ocean[J]. Acta Geologica Sinica, 97(6): 2054–2066 (in Chinese with English abstract).
[83] Yang J S, Wu W W, Lian D Y, et al. 2021a. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth and Environment, 2: 198−212. doi: 10.1038/s43017-020-00138-4
[84] Yang J S, Xu Z Q, X Z J, et al. 2002. Early Palaeozoic North Qiadam UHP metamorphic belt on the north−estern Tibetan plateau and a paired subduction model[J]. Terra Nova, 14: 397−404. doi: 10.1046/j.1365-3121.2002.00438.x
[85] Yang J S, Zhang J X, Meng F C, et al. 2003. Ultra high pressure eclogites of the north qaidam and altun mountains, NW China and their Protoliths[J]. Earth Science Frontiers, 10(3): 291–313 (in Chinese with English abstract).
[86] Yong S L, Guang F Y, Ming Z S, et al. 2013. Early Middle Triassic mafic dikes from the Baoshan subterrane, western Yunnan: Implications for the tectonic evolution of the Palaeo−Tethys in Southeast Asia[J]. International Geology Review, 55: 976−993. doi: 10.1080/00206814.2012.758354
[87] Yu S Y, Zhang J X, Real P G D. 2012. Geochemistry and zircon U/Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north Tibet: Constraints on the timing and nature of regional tectonothermal events[J]. Gondwana Research, 21: 167−179. doi: 10.1016/j.gr.2011.07.024
[88] Yuan G B, Wang H C, Li H M, et al. 2002. Zircon U−Pb age of the gabbros in Luliangshan area on the northern margin of Qaidam Basin and its geological implication[J]. Progress In Precambrian Research, 25(1): 36−40 (in Chinese with English abstract).
[89] Zeng Y C, Xu J F, Chen J L, et al. 2018. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe−Yunzhug−Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos: An International Journal of Mineralogy, Petrology, and Geochemistry, 300: 250–260.
[90] Zhang G B, Song S G, Zhang L F, et al. 2005. Ophiolite type mantle peridotite from Shaliuhe, North Qaidam UHPM belt, NW China and its tectonic implications[J]. Acta Petrologica Sinica, 21(4): 1049−1058 (in Chinese with English abstract).
[91] Zhang G Y, Ding S H. 2004. Discussing the Strati Graphic Characteristice and its Time of Balonggonggaer Formation in Qingshuigou of the Western of South Qilian[J]. Acta Geologica Gansu, 13(1): 38−45 (in Chinese with English abstract).
[92] Zhang J X, Meng F C, Li J P et al. 2009. Coesite in eclogite from the North Qaidam Mountain and its implications[J]. Chinese Science Bulletin, 54(6): 1150−1110.
[93] Zhang J X, Xu Z Q, Chen W, et al. 1997. A tentative discussion on the ages of the subduction–accretionary complex/volcanic arcs in the middle sector of north Qilian Mountains[J]. Acta Petrol Mineral, 16: 112−119 (in Chinese with English abstract).
[94] Zhang Q, Ren J S, Zhao L. 2022. Review of ophiolites in China—Discuss on a new method for the study of ophiolites[J]. Geological Review, 68(3): 1061−1078 (in Chinese with English abstract).
[95] Zhang Q, Zhou G Q. 2001. Ophiolite of China[M]. Beijing: Science Press (in Chinese).
[96] Zhang W Q, Liu C Z, Liu T. 2022. Compositions of cumulates in lower oceanic crust and implications for ophiolite studies[J]. Acta Petrologica Sinica, 38(6): 1630−1654 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.06.06
[97] Zhao J, Long X, Dong Y, et al. 2019. Petrogenesis, tectonic setting and formation age of the metaperidotites in the Lajishan ophiolite, Central Qilian Block, NW China[J]. Journal of Asian Earth Sciences, 186: 104076. doi: 10.1016/j.jseaes.2019.104076
[98] 鲍佩声, 王希斌. 1989. 对大道尔吉铬铁矿床成因的新认识[J]. 矿床地质, 8(1): 3−18.
[99] 陈博, 朱永峰. 2014. 蛇绿岩中辉长岩的形成和变质过程研究[J]. 矿物岩石地球化学通报, 33(2): 226−237. doi: 10.3969/j.issn.1007-2802.2014.02.011
[100] 陈丹玲, 孙勇, 刘良, 等. 2007. 柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义[J]. 地学前缘, 14(1): 108−116. doi: 10.3321/j.issn:1005-2321.2007.01.010
[101] 董显扬, 李金铭. 1981. 大道尔吉铬铁矿矿床成矿期的构造作用[J]. 西北地质, 2(1): 23−39.
[102] 方春家. 2023. 大道尔吉铬矿床[J]. 甘肃地质, 32(1): 95.
[103] 冯益民, 何世平. 1996. 祁连山大地构造与造山作用[M]. 北京: 地质出版社.
[104] 付长垒, 闫臻, 郭现轻, 等. 2014. 拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U−Pb年龄[J]. 岩石学报, 30(6): 1695−1706.
[105] 高晓峰, 校培喜, 贾群子. 2011. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J]. 地质学报, 85(9): 1452−1463.
[106] 苟国朝, 田培昭, 张新虎, 等. 1994. 大道尔吉蛇绿岩型超镁铁岩铬铁矿中铂族元素分布特征[J]. 西北地质, 15(1): 11−19.
[107] 胡万龙, 侯荣娜, 张铖, 等. 2016a. 中祁连西段玄武玢岩地球化学特征及其构造意义[J]. 兰州大学学报(自然科学版), 52(3): 287−294.
[108] 胡万龙, 贾志磊, 王金荣, 等. 2016b. 南祁连化石沟花岗岩年代学、地球化学特征及其构造意义[J]. 高校地质学报, 22(2): 242−253.
[109] 黄增保, 郑建平, 李葆华, 等. 2016. 南祁连大道尔吉早古生代弧后盆地型蛇绿岩的年代学、地球化学特征及意义[J]. 大地构造与成矿学, 40(4): 826−838.
[110] 黄增保. 2012. 甘肃大道尔吉铬铁矿矿床成矿岩体地球化学特征及其研究意义[D]. 成都理工大学硕士学位论文.
[111] 柳小明, 高山, 第五春荣, 等. 2007. 单颗锆石的20μm小斑束原位微区LA−ICP−MS U−Pb年龄和微量元素的同时测定[J]. 科学通报, 52(2): 228−235. doi: 10.3321/j.issn:0023-074X.2007.02.017
[112] 潘桂棠, 李兴振, 王立全, 等. 2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 21(11): 701−707. doi: 10.3969/j.issn.1671-2552.2002.11.002
[113] 齐瑞荣. 2012. 中祁连西段巴嘎德尔基岩体LA−ICP−MS锆石U−Pb年龄及地质意义[J]. 沉积与特提斯地质, 32(3): 86−93.
[114] 邱家骧, 曾广策, 朱云海, 等. 1998. 北秦岭-南祁连早古生代裂谷造山带: 火山岩与小洋盆蛇绿岩套特征及纬向对比[J]. 高校地质学报, 4(4): 393−405.
[115] 申婷婷, 张立飞, 杨经绥, 等. 2017. 超基性岩中锆石年龄的特征和意义——以西南天山UHP蛇纹岩中锆石U−Pb年龄为例[J]. 岩石学报, 33(12): 3783−3800.
[116] 史仁灯. 2005. 蛇绿岩研究进展、存在问题及思考[J]. 地质论评, 51(6): 681−693. doi: 10.3321/j.issn:0371-5736.2005.06.010
[117] 宋述光, 吴珍珠, 杨立明, 等. 2019. 祁连山蛇绿岩带和原特提斯洋演化[J]. 岩石学报, 35(10): 2948−2970. doi: 10.18654/1000-0569/2019.10.02
[118] 宋述光, 张聪, 李献华, 等. 2011. 柴北缘超高压带中锡铁山榴辉岩的变质时代[J]. 岩石学报, 27(4): 1191−1197.
[119] 陶刚. 2018. 祁连疏勒河地区早古生代地质记录对洋陆过程的约束[D]. 成都理工大学博士学位论文.
[120] 王金荣, 吴春俊, 蔡郑红, 等. 2006. 北祁连山东段银铜粱早古生代高镁埃达克岩: 地球动力学及成矿意义[J]. 岩石学报, 22(11): 2655−2664. doi: 10.3321/j.issn:1000-0569.2006.11.004
[121] 王金荣, 吴继承, 贾志磊. 2008. 北祁连山东段苏家山高Mg埃达克岩地球动力学意义[J]. 兰州大学学报(自然科学版), 44(3): 16−23.
[122] 王岩, 王梦玺, 焦建刚. 2019. 扬子地块北缘新元古代望江山层状岩体矿物成分和铂族元素特征: 对岩浆演化过程和构造环境的制约[J]. 地质力学学报, 25(2): 267−285.
[123] 吴才来, 郜源红, 吴锁平, 等. 2008. 柴北缘西段花岗岩锆石SHRIMP U−Pb定年及岩石地球化学特征[J]. 中国科学(D辑), 38(8): 930−949. doi: 10.3321/j.issn:1006-9267.2008.08.002
[124] 吴才来, 杨经绥, Trevor Ireland, 等. 2001. 祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义[J]. 岩石学报, 17(2): 215−221.
[125] 吴元保, 郑永年. 2004. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[126] 武勇, 陈松永, 秦明宽, 等. 2018. 西藏班公湖-怒江缝合带西段洞错蛇绿岩中的辉长岩锆石U−Pb年代学及地质意义[J]. 地球科学, 43(4): 1070−1087.
[127] 夏林圻, 夏祖春, 徐学义. 1998. 北祁连山早古生代洋脊-洋岛和弧后盆地火山作用[J]. 地质学报, 72(3): 301−312. doi: 10.3321/j.issn:0001-5717.1998.04.002
[128] 肖序常, 陈国铭, 朱志直. 1978. 祁连山古蛇绿岩带的地质构造意义[J]. 地质学报, 52(2): 281−295, 338.
[129] 徐向珍, 杨经绥, 熊发挥, 等. 2016. 西藏罗布莎康金拉铬铁矿区地幔橄榄岩锆石SHRIMP U−Pb年龄及地质意义[J]. 地质学报, 90(11): 3215−3226. doi: 10.3969/j.issn.0001-5717.2016.11.015
[130] 许志琴, 杨经绥, 吴才来, 等. 2003. 柴达木北缘超高压变质带形成与折返的时限及机制[J]. 地质学报, 77(2): 163−176. doi: 10.3321/j.issn:0001-5717.2003.02.004
[131] 杨高学, 刘晓宇, 朱钊, 等. 2024. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质, 57(3): 1−10.
[132] 杨高学, 朱钊, 刘晓宇, 等. 2023. 西准噶尔蛇绿岩: 古大洋俯冲增生过程的记录[J]. 地质学报, 97(6): 2054−2066.
[133] 杨经绥, 张建新, 孟繁聪, 等. 2003. 中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨[J]. 地学前缘, 10(3): 291−313. doi: 10.3321/j.issn:1005-2321.2003.03.026
[134] 袁桂邦, 王懋功, 李惠民, 等. 2002. 柴北缘绿梁山地区辉长岩的锆石U−Pb年龄及意义[J]. 前寒武纪研究进展, 25(1): 36−40.
[135] 张贵宾, 宋述光, 张立飞, 等. 2005. 柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩的发现及其意义[J]. 岩石学报, 21(4): 1049−1058.
[136] 张国英, 丁书宏. 2004. 南祁连西段清水沟南巴龙贡嘎尔组地层特征及时代讨论[J]. 甘肃地质学报, 13(1): 38−45.
[137] 张建新, 许志琴, 陈文, 等. 1997. 北祁连中段增生杂岩/火山弧的时代探讨[J]. 岩石矿物学杂志, 16(2): 112−119.
[138] 张旗, 任纪舜, 赵磊, 等. 2022. 中国蛇绿岩清理——兼论蛇绿岩研究的新思路[J]. 地质论评, 68(3): 1061−1078.
[139] 张旗, 周国庆. 2001. 中国蛇绿岩[M]. 北京: 科学出版社.
[140] 张维骐, 刘传周, 刘通. 2022. 大洋下地壳堆晶岩组成及其对蛇绿岩研究的启示[J]. 岩石学报, 38(6): 1630−1654.
-