Theory and method of mapping the lower crust
-
摘要:
一个地区某个时段的下地壳是什么情况,很难了解清楚,究其原因是没有有效的方法手段。最近对花岗岩起源的研究表明,花岗岩来源于下地壳变质岩的部分熔融,与熔融残留相处于平衡,因此,可以根据地表花岗岩的特征反演下地壳变质岩的特征。变质岩研究的进展表明,可以根据不同温压条件构建不同组成变质岩的视剖面图,据此推测发生部分熔融时形成的熔体性质。这2个方面结合起来,即构成下地壳填图的理论基础,据此了解下地壳底部的情况,下地壳填图方法也由此而来。本文探讨了下地壳填图的方法,讨论目前下地壳地质图可能表达的图面内容,并着重讨论花岗岩可以给出的下地壳信息,提出对待争论问题的处理原则;讨论在没有花岗岩出露的情况下如何填图的问题,以及沉积、地层、古生物、矿产、构造等可能提供的下地壳信息,重点推荐镜质组反射率方法。此外,基于下地壳填图的意义及其局限性,以山西省早白垩世下地壳地质图作为实例,探讨了下地壳填图的作用和意义。
Abstract:The condition of the lower crust in a region at a certain time is a question that has not been considered by academia, for the reason that there is no means. Our recent research on the origin of granite shows that granite is derived from partial melting of lower crust metamorphic rocks, and the granite is in equilibrium with the melt residual phase. Therefore, we can invert the characteristics of metamorphic rocks in the lower crust based on the characteristics of granite at the surface. On the other hand, the progress in the research of metamorphic rock indicate that it is possible to construct apparent profiles of metamorphic rocks of different compositions according to different temperature and pressure conditions, and to infer the properties of the melts formed during partial melting. The combination of these two aspects forms the theoretical basis for the mapping of the lower crustal, based on which to understand the conditions at the bottom of the lower crust, and thus the mapping method of the lower crust is derived. This paper discusses the method of mapping the lower crust, discusses the content of the lower crustal geological map that may be expressed in the current situation, focuses on the lower crustal information can be given by granite, and puts forward the principles for dealing with controversial issues. It also discusses how to map the lower crust in the absence of granite outcropping, and the information of the lower crust that may be provided by sedimentation, stratigraphy, paleontology, minerals, and structure are discussed, and the vitrinite reflectance method is recommended. In addition, the significance and limitations of lower crustal mapping are also discussed. At last, we discussed the function and significance of lower crust mapping by taking the geological map of the lower crust in the Early Cretaceous of Shanxi Province as an example.
-
Key words:
- geological map of lower crust /
- mapping methods /
- granite /
- vitrinite reflectance
-
-
图 2 岩浆热场示意图(单位:°C, 据张旗等,2017)
Figure 2.
图 3 山西中部至河南平顶山深成岩浆热变质示意剖面(据杨起等,1987)
Figure 3.
图 4 山东省枣庄煤田剖面图(据杨起等,1987)
Figure 4.
图 5 镜质组反射率与变质级别、温度、煤阶、有机碳,有机氮等的关系(据Fjeldskaar et al., 2008)
Figure 5.
图 6 山西省早白垩世下地壳地质图(据中酸性岩浆岩资料,张旗等,2024)
Figure 6.
图 7 修正后山西省早白垩世下地壳地质图(综合已有资料,其中主要是岩浆岩及镜质组反射率的资料,据焦守涛等,2024)
Figure 7.
图 8 山西省镜质组反射率分布图(a)及山西省下一步找矿示意图(b)(据焦守涛等,2024)
Figure 8.
-
[1] Ayres M, Harris N. 1997. REE fractionation and Nd−isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites[J]. Chemical Geology, 139(1/4): 249−269. doi: 10.1016/S0009-2541(97)00038-7
[2] Bohlen S R, Mezger K. 1989. Origin of granulite terranes and the formation of the lowermost continental crust[J]. Science, 244(4902): 326−329. doi: 10.1126/science.244.4902.326
[3] Bonin B, Janousek V, Moyen J F. 2020. Chemical variation, modal composition and classification of granitoids[J]. Geological Society, London, Special Publications, 491(1): 9−51.
[4] Bonin B. 2007. A−type granites and related rocks: evolution of a concept, problems and prospects[J]. Lithos, 97(1/2): 1−29. doi: 10.1016/j.lithos.2006.12.007
[5] Brown M. 1994. The generation, segregation, ascent and emplacement of granite magma: the migmatite−to−crustally−derived granite connection in thickened orogens[J]. Earth−Science Reviews, 36(1/2): 83−130. doi: 10.1016/0012-8252(94)90009-4
[6] Brown M. 2007. Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences[J]. Journal of the Geological Society, 164(4): 709−730. doi: 10.1144/0016-76492006-171
[7] Brown M. 2010. The spatial and temporal patterning of the deep crust and implications for the process of melt extraction[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1910): 11−51.
[8] Brown M. 2013. Granite: From genesis to emplacement[J]. GSA Bulletin, 125(7/8): 1079−1113. doi: 10.1130/B30877.1
[9] Brown, M. 2004. Melt extraction from lower continental crust[J]. Transactions of the Royal Society of Edinburgh−Earth Sciences, 95: 35-48.
[10] Chappell B W, White A J R, Wyborn D. 1987. The importance of residual source material (restite) in granite petrogenesis[J]. Journal of Petrology, 28(6): 1111−1138. doi: 10.1093/petrology/28.6.1111
[11] Chappell B W, White A J R. 1992. I−and S−type granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 1−26. doi: 10.1017/S0263593300007720
[12] Chappell B W. 1974. Two contrasting granite types[J]. Pacif. Geol. 8: 173−174.
[13] Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust: A global view[J]. Journal of Geophysical Research: Solid Earth, 100(B6): 9761−9788. doi: 10.1029/95JB00259
[14] Clemens J D, Petford N. 1999. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings[J]. Journal of the Geological Society, 156(6): 1057−1060. doi: 10.1144/gsjgs.156.6.1057
[15] Clemens J D, Stevens G. 2012. What controls chemical variation in granitic magmas?[J]. Lithos, 134: 317−329.
[16] Clemens J D. 2006. Melting of the continental crust: Fluid regimes, melting reactions, and source−rock fertility[M]. Cambridge University Press: 297−331.
[17] Cottle J M, Lederer G W, Larson K P. 2019. Petrochronologic insight into the assembly of Himalayan plutons[C]//GSA Annual Meeting in Phoenix, Arizona, USA.
[18] Couzinié S, Laurent O, Poujol M, et al. 2017. Cadomian S−type granites as basement rocks of the Variscan belt (Massif Central, France): Implications for the crustal evolution of the north Gondwana margin[J]. Lithos, 286: 16−34.
[19] Creaser R A, Price R C, Wormald R J. 1991. A−type granites revisited: assessment of a residual−source model[J]. Geology, 19(2): 163−166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
[20] DeCelles P G, Quade J, Kapp P, et al. 2007. High and dry in central Tibet during the Late Oligocene[J]. Earth and Planetary Science Letters, 253(3/4): 389−401. doi: 10.1016/j.jpgl.2006.11.001
[21] Dong S B. 1995. A general review on the recent sudies of granite[J]. Geological Journal of Universities, (2): 1−12(in Chinese with English abstract).
[22] Drummond M S, Defant M J. 1990. A model for trondhjemite−tonalite−dacite genesis and crustal growth via slab melting: Archean to modern comparisons[J]. Journal of Geophysical Research: Solid Earth, 95(B13): 21503−21521. doi: 10.1029/JB095iB13p21503
[23] Eby G N. 1979. Mount Johnson, Quebec−An example of silicate−liquid immiscibility?[J]. Geology, 7(10): 491−494. doi: 10.1130/0091-7613(1979)7<491:MJQAEO>2.0.CO;2
[24] Eby G N. 1992. Chemical subdivision of the A−type granitoids: petrogenetic and tectonic implications[J]. Geology, 20(7): 641−644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[25] Fiannacca P, Cirrincione R, Bonanno F, et al. 2015. Source−inherited compositional diversity in granite batholiths: The geochemical message of Late Paleozoic intrusive magmatism in central Calabria (southern Italy)[J]. Lithos, 236: 123−140.
[26] Fjeldskaar W, Helset H M, Johansen H, et al. 2008. Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: implications for vitrinite reflectance and hydrocarbon maturation[J]. Basin Research, 20(1): 143−159. doi: 10.1111/j.1365-2117.2007.00347.x
[27] Fyfe W S. 1973. The granulite facies, partial melting and the Archaean crust. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 273: 457−461.
[28] Gao L E, Zeng L, Asimow P D. 2017. Contrasting geochemical signatures of fluid−absent versus fluid−fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites[J]. Geology, 45(1): 39−42.
[29] Gray C M. 1984. An isotopic mixing model for the origin of granitic rocks in southeastern Australia[J]. Earth and Planetary Science Letters, 70(1): 47−60. doi: 10.1016/0012-821X(84)90208-5
[30] Guo J, Zheng Y F, Zhao Z F, et al. 2022. Generation of aluminous A−type granite by partial melting of felsic restite: Evidence from Mesozoic granitoids in the southern margin of the North China Craton[J]. Lithos, 428: 106837.
[31] Hacker B R, Kelemen P B, Behn M D. 2011. Differentiation of the continental crust by relamination[J]. Earth and Planetary Science Letters, 307(3/4): 501−516. doi: 10.1016/j.jpgl.2011.05.024
[32] Hacker B R, Kelemen P B, Behn M D. 2015. Continental lower crust[J]. Annual Review of Earth and Planetary Sciences, 43(1): 167−205. doi: 10.1146/annurev-earth-050212-124117
[33] Harley S L. 2016. A matter of time: the importance of the duration of UHT metamorphism[J]. Journal of Mineralogical and Petrological Sciences, 111(2): 50−72. doi: 10.2465/jmps.160128
[34] Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision−zone magmatism[J]. Geological Society, London, Special Publications, 19(1): 67−81.
[35] Healy B, Collins W J, Richards S W. 2004. A hybrid origin for Lachlan S−type granites: The Murrumbidgee batholith example[J]. Lithos, 78(1/2): 197−216. doi: 10.1016/j.lithos.2004.04.047
[36] Inger S, Harris N. 1993. Geochemical constraints on leucogranite magmatism in the Langtang valley, Nepal Himalaya[J]. Journal of Petrology, 34(2): 345−368. doi: 10.1093/petrology/34.2.345
[37] Jacob J B, Moyen J F. 2021. Granite and related rocks[C]//Alderton D, Elias S A. Encyclopedia of Geology (Second Edition). Academic Press.
[38] Ji M, Gao X Y, Zheng Y F, et al. 2021. Metapelites record two episodes of decompressional metamorphism in the Himalayan orogen[J]. Lithos, 394: 106−183.
[39] Ji M, Gao X Y, Zheng Y F. 2022. Geochemical evidence for partial melting of progressively varied crustal sources for leucogranites during the Oligocene−Miocene in the Himalayan orogen[J]. Chemical Geology, 589: 120−674.
[40] Jiao S T, Zhang Q, Jin W J, et al. 2016. A good method for finding concealed rock: Magma-thermal field method[J]. Acta Petrologica Sinica, 32(2): 617−628 (in Chinese with English abstract).
[41] Jiao S T, Liu D N, Zhang Q, et al. 2024. Lower Crust Geological map of the Early Cretaceous of Shanxi Province(Ⅱ)- Based on vitrinite reflectance data[J/OL]. Earth Science Frontiers[2024-10-15], https://doi.org/10.13745/j.esf.sf.2024.10.20.
[42] Johnson T, Yakymchuk C, Brown M. 2021. Crustal melting and suprasolidus phase equilibria: From first principles to the state−of−the−art[J]. Earth−Science Reviews, 221: 103−778.
[43] Kempton P D, Downes H, Sharkov E V, et al. 1995. Petrology and geochemistry of xenoliths from the Northern Baltic shield: Evidence for partial melting and metasomatism in the lower crust beneath an Archaean terrane[J]. Lithos, 36(3/4): 157−184. doi: 10.1016/0024-4937(95)00016-X
[44] Kempton P D, Harmon R S, Hawkesworth C J, et al. 1990. Petrology and geochemistry of lower crustal granulites from the Geronimo volcanic field, southeastern Arizona[J]. Geochimica et Cosmochimica Acta, 54(12): 3401−3426. doi: 10.1016/0016-7037(90)90294-U
[45] Kern H, Gao S, Liu Q S. 1996. Seismic properties and densities of middle and lower crustal rocks exposed along the North China geoscience transect[J]. Earth and Planetary Science Letters, 139(3/4): 439−455. doi: 10.1016/0012-821X(95)00240-D
[46] Ketcham R A. 1996. Thermal models of core−complex evolution in Arizona and New Guinea: Implications for ancient cooling paths and present−day heat flow[J]. Tectonics, 15(5): 933−951. doi: 10.1029/96TC00033
[47] Knesel K M, Davidson J P. 2002. Insights into collisional magmatism from isotopic fingerprints of melting reactions[J]. Science, 296(5576): 2206−2208. doi: 10.1126/science.1070622
[48] Kriegsman L M. 2001. Partial melting, partial melt extraction and partial back reaction in anatectic migmatites[J]. Lithos, 56(1): 75−96. doi: 10.1016/S0024-4937(00)00060-8
[49] Li X H, Xu B L, Chen Y H, et al. 2008. Clay Minerals of the Middle−Late Mesozoic Mudrocks from North and Northeast China: Implications to Paleoclimate and Paleohighland[J]. Acta Geologica Sinica, (5): 683−691(in Chinese with English abstract).
[50] Liu Y Y, Li Y, Shao Y X, et al. 2022. Research on the accuracy of Beidou Navigation Satellite System (BDS) in crustal motion monitoring[J]. Seismological and Geomagnetic Observation and Research, 43(3): 65−69(in Chinese with English abstract).
[51] Loiselle M C. 1979. Characteristics and origin of anorogenic granites[J]. Geol. Soc. Am., 11: 468.
[52] Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite−trondhjemite−granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 79(1/2): 1−24. doi: 10.1016/j.lithos.2004.04.048
[53] Morfin S, Sawyer E W, Bandyayera D. 2013. Large volumes of anatectic melt retained in granulite facies migmatites: an injection complex in northern Quebec[J]. Lithos, 168: 200−218.
[54] Moyen J F, Stevens G. 2006. Experimental Constraints on TTG Petrogenesis: Implications for Archean Geodynamics[J]. Archean Geodynamics and Environments, 164: 149−175.
[55] Patiño Douce A E, Harris N. 1998. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 39(4): 689−710. doi: 10.1093/petroj/39.4.689
[56] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956
[57] Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra−subduction zone ophiolites[J]. Geological Society, London, Special Publications, 16(1): 77−94.
[58] Petford N, Clemens J D, Vigneresse J L. 1997. Application of information theory to the formation of granitic rocks[C]//Granite: From segregation of melt to emplacement fabrics: 3−10.
[59] Petford N, Cruden A R, McCaffrey K J W, et al. 2000. Granite magma formation, transport and emplacement in the Earth's crust[J]. Nature, 408(6813): 669−673. doi: 10.1038/35047000
[60] Pitcher W S. 1993. The Nature and Origin of Granite. Blackie[M], Glasgow and London: 1−316.
[61] Quade J, Cerling T E. 1995. Expansion of C4 grasses in the late Miocene of northern Pakistan: evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 115(1/4): 91−116.
[62] Rapp R P, Watson E B, Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites[J]. Precambrian Research, 51(1/4): 1−25. doi: 10.1016/0301-9268(91)90092-O
[63] Rowley D B, Currie B S. 2006. Palaeo−altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 439(7077): 677−681. doi: 10.1038/nature04506
[64] Rudnick R L, Gao S. 2003. Composition of the continental crust[C]//Treatise on Geochemistry.3: 1−64.
[65] Rudnick R L. 1992. Xenoliths−samples of the lower continental crust[J]. Continental Lower Crust, 23(797): 269−316.
[66] Sawyer E W, Cesare B, Brown M. 2011. When the continental crust melts[J]. Elements, 7(4): 229−234. doi: 10.2113/gselements.7.4.229
[67] Sawyer E W. 2001. Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks[J]. Journal of metamorphic Geology, 19(3): 291−309. doi: 10.1046/j.0263-4929.2000.00312.x
[68] Schwindinger M, Weinberg R F. 2017. A felsic MASH zone of crustal magmas−feedback between granite magma intrusion and in situ crustal anatexis[J]. Lithos, 284: 109−121.
[69] Stevens G, Villaros A, Moyen J F. 2007. Selective peritectic garnet entrainment as the origin of geochemical diversity in S−type granites[J]. Geology, 35(1): 9−12. doi: 10.1130/G22959A.1
[70] Villaseca C, Orejana D, Belousova E A. 2012. Recycled metaigneous crustal sources for S−and I−type variscan granitoids from the Spanish Central System Batholith: constraints from Hf isotope zircon composition[J]. Lithos, 153: 84−93. doi: 10.1016/j.lithos.2012.03.024
[71] Wei C J, Guan X, Dong J, et al. 2017. HT−UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 33(5): 1381−1404(in Chinese with English abstract).
[72] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407−41. doi: 10.1007/BF00402202
[73] White A J R, Chappell B W. 1977. Ultrametamorphism and granitoid genesis[J]. Tectonophysics, 43(1/2): 7−22. doi: 10.1016/0040-1951(77)90003-8
[74] White R W, Powell R. 2010. Retrograde melt−residue interaction and the formation of near−anhydrous leucosomes in migmatites[J]. Journal of Metamorphic Geology, 28(6): 579−597. doi: 10.1111/j.1525-1314.2010.00881.x
[75] White R W, Stevens G, Johnson T E. 2011. Is the crucible reproducible? Reconciling melting experiments with thermodynamic calculations[J]. Elements, 7(4): 241−246. doi: 10.2113/gselements.7.4.241
[76] Wu F Y, Lin Q. 1990. The melting experiment of natural massive granite and its petrological significance[J]. Journal of Changchun University of Earth Science, (2): 139−146(in Chinese with English abstract).
[77] Xu B L, Li X H, Chen Y H, et al. 2007. Clay Minerals in Northeast of the "Eastern Plateau", China[J]. Acta Geologica Sichuan, (3): 166−170(in Chinese with English abstract).
[78] Yang J H, Wu F Y, Chung S L, et al. 2006. A hybrid origin for the Qianshan A−type granite, northeast China: geochemical and Sr−Nd−Hf isotopic evidence[J]. Lithos, 89(1/2): 89−106. doi: 10.1016/j.lithos.2005.10.002
[79] Yang Q, Pan Z G, Wong C M, et al. 1987. Telemagmatic Metamorphism and its Effects on Chinese Coal Properties[J]. Geoscience, (1): 123−130(in Chinese with English abstract).
[80] Yang Q, Wu C L, Tang D Z, et al. 1996. Coal metamorphism in China[J]. Earth Science, (3): 79−87(in Chinese with English abstract).
[81] Yang Q. 1989. A study on coal metamorphism in China[J]. Earth Science, (4): 341−345(in Chinese with English abstract).
[82] Zhai M G, Zhang Y B, Li Q L, et al. 2021. Cratonization, lower crust and continental lithosphere[J]. Acta Petrologica Sinica. 37(1): 1−23(in Chinese with English abstract).
[83] Zhai M G. 2008. Lower crust and lithospheric mantle beneath the North China Craton before the Mesozoic lithospheric disruption[J]. Acta Petrologica Sinica, 24(10): 2185−2204(in Chinese with English abstract).
[84] Zhai M, Guo J, Li J, et al. 1996. Retrograded eclogites in the Archaean North China Craton and their geological implication[J]. Chinese Science Bulletin, 41(4): 315−320. doi: 10.1360/csb1996-41-4-315
[85] Zhang Q, Jiao S T, Li C D, et al. 2017. Granite and continental tectonics, magma thermal field and metallgenesis[J]. Acta Petrologica Sinica, 33(5): 1524−1540(in Chinese with English abstract).
[86] Zhang Q, Jiao S T. 2020. Adakite comes from a high−pressure background: A scientific, reliable, predictable scientific discovery[J]. Acta Petrologica Sinica, 36(6): 1675−1683(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.02
[87] Zhang Q, Qian Q, Wang E Q. 2001. An East China Plateau in mid-late Yanshanian Period: Implication from adakites[J]. Chinese Journal of Geology, 36(2): 248−255(in Chinese with English abstract).
[88] Zhang Q, Li C D. 2012a. Granites: Implications for continental geodynamics[M]. Beijing: Ocean Press: 1−287(in Chinese with English abstract).
[89] Zhang Q, Zhai M G. 2012b. What is the Archean TTG?[J]. Acta Petrologica Sinica, 28(11): 3446−3456(in Chinese with English abstract).
[90] Zhang Q, Zhai M G, Wei C J, et al. 2022. Innovative petrogenetic classification of granitoids: Perspective from metamorphic anatexis and big data[J]. Earth Science Frontiers, 29(4): 319−329(in Chinese with English abstract).
[91] Zhang Q, Jin Z B, Xie T J, et al. 2024. Geological map of early Cretaceous lower crust in Shanxi province(Ⅰ): Evidence from Early Cretaceous granite in Shanxi province[J/OL]. Earth Science Frontiers[2024-10-17], https://doi.org/10.13745/j.esf.sf.2024.10.19.
[92] Zheng J, Xia B, Dai H K, et al. 2021. Lithospheric structure and evolution of the North China Craton: An integrated study of geophysical and xenolith data[J]. Scientia Sinica(Terrae), 51(2): 201−217(in Chinese with English abstract).
[93] Zheng Y F, Gao P. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries[J]. Lithos, 402: 106232.
[94] 陈培荣, 章邦桐. 1994. A 型花岗岩类研究综述[J]. 国外花岗岩类地质与矿产, 4: 9−13.
[95] 翟明国. 2008. 华北克拉通中生代破坏前的岩石圈地幔与下地壳[J]. 岩石学报, 24(10): 2185−2204.
[96] 翟明国, 张艳斌, 李秋立, 等. 2021. 克拉通、下地壳与大陆岩石圈——庆贺沈其韩先生百年华诞[J]. 岩石学报, 37(1): 1−23. doi: 10.18654/1000-0569/2021.01.01
[97] 董申保. 1995. 近代花岗岩研究的回顾[J]. 高校地质学报, 1(2): 12.
[98] 焦守涛, 张旗, 金维浚, 等. 2016. 介绍一种寻找隐伏岩体的好方法: 岩浆热场法[J]. 岩石学报, 32(2): 617−628.
[99] 焦守涛,刘东娜,张旗,等.2024. 山西省早白垩世下地壳地质图(Ⅱ)——基于镜质组反射率证据的修正[J/OL].地学前缘[2024-10-15], https://doi.org/10.13745/j.esf.sf.2024.10.20.
[100] 李祥辉, 徐宝亮, 陈云华, 等. 2008. 华北—东北南部地区中生代中晚期粘土矿物与古气候[J]. 地质学报, 82(5): 683-691
[101] 刘洋洋, 李瑜, 邵银星, 等. 2022. 北斗导航定位系统(BDS)下地壳运动监测精度分析[J]. 地震地磁观测与研究, 43(3): 65−69. doi: 10.3969/j.issn.1003-3246.2022.03.010
[102] 桑隆康, 马昌前, 王国庆, 等. 2012. 岩石学[M]. 北京: 地质出版社.
[103] 魏春景, 关晓, 董杰. 2017. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 33(5): 1381−1404.
[104] 魏春景. 2016. 麻粒岩相变质作用与花岗岩成因——Ⅱ: 变质泥质岩高温—超高温变质相平衡与 S 型花岗岩成因的定量模拟[J]. 岩石学报, (6): 1625−1643.
[105] 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
[106] 吴福元, 林强. 1990. 天然花岗岩块的熔融实验及其岩石学意义[J]. 长春地质学院学报, 20(2): 139−146.
[107] 吴珍汉, 吴中海, 胡道功, 等. 2009. 青藏高原新生代构造演化与隆升过程[M]. 北京: 地质出版社.
[108] 徐宝亮, 李祥辉, 陈云华, 等. 2007. 中国 “东部高原” 东北部黏土矿物特征研究[J]. 四川地质学报, 27(3): 166−170. doi: 10.3969/j.issn.1006-0995.2007.03.004
[109] 杨起, 任德贻. 1981. 中国煤变质问题的探讨[J]. 煤田地质与勘探, 1: 1−10.
[110] 杨起, 潘治贵, 翁成敏, 等. 1987. 区域岩浆热变质作用及其对我国煤质的影响[J]. 现代地质, 1(1): 123.
[111] 杨起. 1989. 中国煤变质研究[J]. 地球科学: 中国地质大学学报, 1989,14(4): 341−345.
[112] 杨起, 吴冲龙, 汤达祯, 等. 1996. 中国煤变质作用[J]. 地球科学: 中国地质大学学报, 21(3): 311−319.
[113] 张旗, 钱青, 王二七, 等. 2001. 燕山中晚期的中国东部高原: 埃达克岩的启示[J]. 地质科学, 36(2): 248−255. doi: 10.3321/j.issn:0563-5020.2001.02.014
[114] 张旗, 王焰, 熊小林, 等. 2008. 埃达克岩和花岗岩: 挑战与机遇[M]. 北京: 中国大地出版社.
[115] 张旗, 李承东. 2012a. 花岗岩: 地球动力学意义[M]. 北京: 海洋出版社.
[116] 张旗, 翟明国. 2012b. 太古宙TTG岩石是什么含义?[J]. 岩石学报, 28(11): 3446−3456.
[117] 张旗, 焦守涛, 李承东, 等. 2017. 花岗岩与大陆构造, 岩浆热场与成矿[J]. 岩石学报, 33(5): 1524−1540.
[118] 张旗, 焦守涛. 2020. 埃达克岩来自高压背景——一个科学的, 可靠的, 有预见性的科学发现[J]. 岩石学报, 36(6): 1675−1683. doi: 10.18654/1000-0569/2020.06.02
[119] 张旗, 靳职斌, 解团结, 等. 2024. 山西省早白垩世下地壳地质图——来自山西省早白垩世花岗岩的证据[J/OL].地学前缘[2024-10-17], https://doi.org/10.13745/j.esf.sf.2024.10.19.
[120] 张旗, 翟明国, 魏春景, 等. 2022. 一个新的花岗岩成因分类: 基于变质岩深熔作用理论与大数据的证据[J]. 地学前缘, 29(4): 319−329.
[121] 张旗, 原杰, 焦守涛, 等. 2022. 花岗岩三级分类刍议[J]. 矿物岩石地球化学通报, 41(3): 200−210.
[122] 郑建平, 夏冰, 戴宏坤, 等. 2021. 地球物理观察和岩石包体约束华北岩石圈地幔结构、性质及过程[J]. 中国科学: 地球科学, 51(02): 201−217.
-