湘中涟源凹陷石炭系测水组页岩气富集主控因素与成藏模式

苗凤彬, 张国涛, 张保民, 罗胜元, 王强, 田巍, 陈林. 2024. 湘中涟源凹陷石炭系测水组页岩气富集主控因素与成藏模式. 地质通报, 43(10): 1689-1704. doi: 10.12097/gbc.2023.06.016
引用本文: 苗凤彬, 张国涛, 张保民, 罗胜元, 王强, 田巍, 陈林. 2024. 湘中涟源凹陷石炭系测水组页岩气富集主控因素与成藏模式. 地质通报, 43(10): 1689-1704. doi: 10.12097/gbc.2023.06.016
MIAO Fengbin, ZHANG Guotao, ZHANG Baomin, LUO Shengyuan, WANG Qiang, TIAN Wei, CHEN Lin. 2024. Main controlling factors of enrichment and accumulation pattern of Carboniferous Ceshui Formation shale gas in Lianyuan sag, Central Hunan. Geological Bulletin of China, 43(10): 1689-1704. doi: 10.12097/gbc.2023.06.016
Citation: MIAO Fengbin, ZHANG Guotao, ZHANG Baomin, LUO Shengyuan, WANG Qiang, TIAN Wei, CHEN Lin. 2024. Main controlling factors of enrichment and accumulation pattern of Carboniferous Ceshui Formation shale gas in Lianyuan sag, Central Hunan. Geological Bulletin of China, 43(10): 1689-1704. doi: 10.12097/gbc.2023.06.016

湘中涟源凹陷石炭系测水组页岩气富集主控因素与成藏模式

  • 基金项目: 中国地质调查局项目《洞庭盆地及周缘页岩油气调查评价》(编号:DD20243464)和《洞庭−沅麻盆地页岩气战略性矿产调查评价》(编号:DD20230323)
详细信息
    作者简介: 苗凤彬(1986− ),男,硕士,高级工程师,从事非常规油气地质研究。E−mail:mfb.52163@163.com
    通讯作者: 张国涛(1985− ),男,硕士,高级工程师,从事沉积学与页岩气地质研究。E−mail:kpasino@163.com
  • 中图分类号: P534.45; P618

Main controlling factors of enrichment and accumulation pattern of Carboniferous Ceshui Formation shale gas in Lianyuan sag, Central Hunan

More Information
  • 湘中坳陷是是四川盆地外围页岩气勘探的重要区域,石炭系测水组是页岩气重点产出层位。以区内次级构造涟源凹陷为研究对象,基于野外剖面和钻井资料、分析测试及现场实测含气性数据,开展测水组页岩气地质条件与差异分布特征研究,并探讨页岩气富集主控因素与成藏模式。结果表明:①潟湖沉积相区测水组发育暗色泥页岩,厚度为30~80 m,有机质以Ⅱ型为主,总有机碳含量(TOC)大于1.5%,2.0%<Ro<3.0%,具备良好的生烃基础;②测水组主要为高脆性矿物的硅质页岩,储集空间包括有机质孔、无机质孔与裂缝,具特低孔特低渗特征;③测水组气藏的形成主要经历早期原地聚集—中期调整改造—晚期逸散−残留3个演化阶段,主成藏改造期为中侏罗世—早白垩世;④潟湖相还原环境发育的富有机质页岩是测水组气藏形成的物质基础,热演化程度是富集成藏的重要影响因素,保存条件是成藏的关键,层内滑脱是气体富集程度的控制条件。通过综合分析,建立了测水组“沉积环境控区、构造−滑脱双重控保定富”的页岩气成藏模式,潟湖相区的向斜构造为有利富集区,翼部封闭性逆断层下盘为有利富集部位。

  • 加载中
  • 图 1  涟源凹陷地质概况

    Figure 1. 

    图 2  涟源凹陷石炭系测水组沉积相展布与岩性组合变化

    Figure 2. 

    图 3  涟源凹陷测水组下段页岩TOC和Ro分布

    Figure 3. 

    图 4  测水组页岩储层孔隙度(a)和渗透率(b)分布

    Figure 4. 

    图 5  湘涟页1井测水组页岩气成藏演化过程

    Figure 5. 

    图 6  涟源凹陷测水组下段富有机质页岩发育模式

    Figure 6. 

    图 7  车田江向斜区不同构造部位页岩气富集特征

    Figure 7. 

    图 8  车田江向斜区水文地质特征

    Figure 8. 

    图 9  涟源凹陷测水组页岩气富集成藏模式示意图

    Figure 9. 

    图 10  涟源凹陷测水组页岩气有利区分布

    Figure 10. 

    表 1  涟源凹陷测水组页岩全岩矿物含量

    Table 1.  The whole rock mineral content of Ceshui Formation shale in Lianyuan sag

    井名 样品数量/个 石英/% 粘土矿物/% 碳酸盐矿物/% 脆性矿物/%
    涟页2井 18 51.8~87.7/72.6 8.6~26.6/18.5 0~9.6/2.4 53.0~95.1/77.9
    2015H-D6井 10 52.3~86.4/70.1 10.0~33.4/24.2 0~5.4/3.5 60.2~83.2/71.25
    湘涟页1井 10 43.0~85.0/54.4 10.0~51.0/31.6 0~22.0/3.6 49.0~90.0/68.3
    涟参1井 8 48.3~79.7/68.8 14.0~39.7/24.6 0~22.6/3.1 59.7~86.0/75.1
      注:51.8~87.7/72.6分别代表数据的最小值、最大值和平均值
    下载: 导出CSV

    表 2  涟源凹陷不同构造位置测水组页岩含气性差异

    Table 2.  The gas-bearing differences of Ceshui Formation in different structural positions of Lianyuan sag

    井号 构造位置 含气层深度/m 录井气测全烃值变化/% 含气量/(m3·t−1
    最小值 最大值 平均值
    2015H-D6井 车田江向斜东翼 1265~1341 0.1~9.7 1.22 3.95 2.29
    涟参1井 车田江向斜西翼次级向斜内 443~536 0.1~46 0.3 5.2 1.27
    涟参2井 车田江向斜西翼 534~592 0.1~82 0.29 5.09 1.75
    湘涟页1井 车田江向斜核部 2700~2755 0.11~1.83 0.11 0.38 0.15
    涟页2井 车田江向斜与桥头河向斜之间背斜带 136~214 0.16 0.49 0.31
    下载: 导出CSV

    表 3  涟源凹陷梓门桥组膏岩厚度分布

    Table 3.  Thickness distribution of gypsum rock of Zimenqiao Formation in Lianyuan sag

    井名膏岩厚度/m层位构造位置
    涟7井14.5梓门桥组车田江向斜西南翼
    涟10井>10.0梓门桥组车田江向斜西南翼
    涟参1井8.2梓门桥组车田江向斜西翼
    邵5井7.5梓门桥组车田江向斜西翼
    湘涟页1井14.0梓门桥组车田江向斜核部
    2015H-D6井14.1梓门桥组车田江向斜东翼
    涟页2井2.5梓门桥组车田江与桥头河向斜之间背斜带
    涟深2井1.5梓门桥组桥头河东翼
    下载: 导出CSV

    表 4  涟源凹陷测水组地层突破压力

    Table 4.  Breakthrough pressure of Ceshui Formation in Lianyuan sag

    取样位置样品深度/m岩性突破压力/MPa中值半径/μm
    冷水江庙湾200泥页岩28.193.15
    涟8井360泥灰岩22.74.18
    涟7井230泥灰岩10.358.53
    冷水江金竹山地表粉砂质泥岩1.8347.06
    下载: 导出CSV

    表 5  不同构造部位测水组气体组分含量

    Table 5.  The gas composition proportion of Ceshui Formation in different structural positions

    井名氮气/%二氧化碳/%烃类/%
    涟页2井33.645.218.1
    涟参1井26.330.839.5
    涟参2井19.011.666.3
    下载: 导出CSV
  • [1]

    Bao S J, Lin T, Nie H K, et al. 2016. Preliminary study of the transitional facies shale gas reservoir characteristics: Taking Permian in Xiangzhong depression as an example[J]. Earth Science Frontiers, 23(1): 44−53(in Chinese with English abstract).

    [2]

    Cao T T, Deng M, Liu H, et al. 2019. Shale gas potential of Yanguanjie Formation and Longtan Formation in central and southeastern Hunan Province[J]. Coal Geology & Exploration, 47(4): 94−103(in Chinese with English abstract).

    [3]

    Chen A D. 2005. Nitrogen as an index of oil−gas preservation conditions in marine strata[J]. Petroleum Geology & Experiment, 27(1): 85−89(in Chinese with English abstract).

    [4]

    Guo J H, Kuang L X, Zhu R, et al. 2008. Gas accumulation conditions of Lower Carboniferous in Yangjiashan region of Lianyuan Sag[J]. Journal of Central South University(Science and Technology), 39(1): 178−184(in Chinese with English abstract).

    [5]

    Hou G J. 1998. Discussion on the tectonic nature of Jiangnan ancient land: Evidence from the features of the Banxi Group in Madiyi area, Hunan Province[J]. Geological Science and Technology Information, 17(3): 1−6(in Chinese with English abstract).

    [6]

    Huang Y R, Cao Y J, Yang R F, et al. 2017. The characteristic of shale gas generation and accumulation and its exploration potential in Devonian, Xiangzhong Depression[J]. Unconventional Oil & Gas, 4(3): 8−14(in Chinese with English abstract).

    [7]

    Jarvie D M, Hill R J, Ruble T E, et al. 2007. Unconventional shale−gas systems: The Mississippian Barnett Shale of north−central Texas as one model for thermogenic shale−gas assessment[J]. AAPG Bulletin, 91(4): 475−499. doi: 10.1306/12190606068

    [8]

    Jiang S, Tang X L, Steve O, et al. 2017. Enrichment Factors and Current Misunderstanding of Shale Oil and Gas: Case Study of Shales in U. S. , Argentina and China[J]. Earth Science, 42(7): 1083−1091(in Chinese with English abstract).

    [9]

    Li Y X, Wu Y W, Wang Q L, et al. 2023. Main controlling factors of continental shale gas enrichment: A case study of Shanxi Formation in Yan'an exploration area, Ordos Basin[J]. Geological Bulletin of China, 42(9): 1423−1431(in Chinese with English abstract).

    [10]

    Liu G X, Wo Y J, Pan W L, et al. 2011. Fluid characteristics and hydrocarbon preservation conditions in marine facies strata of middle-upper Yangtze region[J]. Petroleum Geology & Experiment, 33(1): 17−21(in Chinese with English abstract).

    [11]

    Liu X S. 2008. Characteristics and hydrocarbon generation model of Upper Paleozoic Carbonate source rocks in Xiangzhong Depression[J]. Marine Origin Petroleum Geology, 13(1): 13−17(in Chinese with English abstract).

    [12]

    Lou Z H, Li M, Jin A M, et al. 2008. Hydrogeological and hydrogeochemical characteristics and hydrocarbon preservation conditions for marine strata in China[J]. Acta Geologica Sinica, 82(3): 387−396(in Chinese with English abstract).

    [13]

    Ma Y S, Lou Z H, Guo T L, et al. 2006. An exploration on a technological system of petroleum preservation evaluation for marine strata in South China[J]. Acta Geologica Sinica, 80(3): 406−417(in Chinese with English abstract).

    [14]

    Miao F B, Tan H, Wang Q, et al. 2016. Preservation conditions research on shale gas for Ceshui Formation of Carboniferous in Lianyuan Depression in the middle of Hunan Province[J]. Geological Science and Technology Information, 35(6): 90−97(in Chinese with English abstract).

    [15]

    Miao F B, Zhang B M, Zhang G T, et al. 2023. Controlling factors for the differential enrichment of Devonian Shetianqiao Formation shale gas in Lianyuan Sag, central Hunan[J]. Natural Gas Geoscience, 34(9): 1482−1499(in Chinese with English abstract).

    [16]

    Nie H K, He Z L, Liu G X, et al. 2020. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 49(1): 13−35(in Chinese with English abstract).

    [17]

    Tian W, Peng Z Q, Bai Y S, et al. 2019. Reservoir Characteristics and Exploration Potential of Lower Carboniferous Shale Gas in Lianyuan Sag, Central Hunan[J]. Earth Science, 44(3): 939−952(in Chinese with English abstract).

    [18]

    Wang F Y, Guan J, Feng W P, et al. 2013. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 40(6): 764−768(in Chinese with English abstract).

    [19]

    Wang M Y, Guo J H, Kuang L X, et al. 2010. Geochemical characteristics and evolution of the hydrocarbon source rocks from Lianyuan Depression in the Middle of Hunan Province[J]. Natural Gas Geoscience, 21(5): 721−726(in Chinese with English abstract).

    [20]

    Wang Q, Bai Y S, Miao F B. 2016. Study on mineral composition and brittleness characteristics of the Ceshui formation shale in Lianyuan Depression[J]. Geology and Mineral Resources of South China, 32(2): 166−171(in Chinese with English abstract).

    [21]

    Wang Y M, Huang J L, Li X J, et al. 2015. Quantitative characterization of fractures and pores in shale beds of the Lower Silurian, Longmaxi Formation, Sichuan Basin[J]. Natural Gas Industry, 35(9): 8−15(in Chinese with English abstract).

    [22]

    Xia Z Y, Ma H Y, Fang K, et al. 2019. Rock mechanical properties and fracability of continental shale in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 41(1): 134−141(in Chinese with English abstract).

    [23]

    Yun W, Xu Z B, Yang X T. 1994. Charaeteristics of detaehment struetures in theWest of Lianyuan Depression[J]. Journal of China University of Mining & Technology, 23(1): 16−25(in Chinese with English abstract).

    [24]

    Zhai G Y, Wang Y F, Bao S J, et al. 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7): 1057−1068 (in Chinese with English abstract).

    [25]

    Zhang L T, Guo J H, Jiao P, et al. 2014. Accumulation conditions and exploration potential of shale gas of Lower Carboniferous in Lianyuan Depression in the middle of Hunan Province[J]. Journal of Central South University(Science and Technology), 45(7): 2268−2277(in Chinese with English abstract).

    [26]

    Zhao P, Li X Q, Sun J, et al. 2014. Study on mineral composition and brittleness characteristics of shale gas reservoirs from the Lower Paleozoic in the southern Sichuan Basin[J]. Geoscience, 28(2): 396−403(in Chinese with English abstract).

    [27]

    Zhou J G, Deng H Y, Feng J L. 2003. Tectonic evolution and forming of hydrocarbon reservoir in the Lianyuan Depression, Hunan[J]. Chinese Journal of Geology, 38(1): 44−51(in Chinese with English abstract).

    [28]

    包书景, 林拓, 聂海宽, 等. 2016. 海陆过渡相页岩气成藏特征初探: 以湘中坳陷二叠系为例[J]. 地学前缘, 23(1): 44−53.

    [29]

    曹涛涛, 邓模, 刘虎, 等. 2019. 湘中与湘东南岩关阶组和龙潭组页岩气潜力[J]. 煤田地质与勘探, 47(4): 94−103. doi: 10.3969/j.issn.1001-1986.2019.04.015

    [30]

    陈安定. 2005. 氮气对海相地层油气保存的指示作用[J]. 石油实验地质, 27(1): 85−89. doi: 10.3969/j.issn.1001-6112.2005.01.015

    [31]

    郭建华, 旷理雄, 朱锐, 等. 2008. 湘中涟源凹陷杨家山地区下石炭统天然气成藏条件[J]. 中南大学学报(自然科学版), (1): 178−184.

    [32]

    侯光久. 1998. 江南古陆的构造属性讨论——以湖南马底驿地区板溪群为例[J]. 地质科技情报, 17(3): 1−6.

    [33]

    黄俨然, 曹运江, 杨荣丰, 等. 2017. 湘中坳陷泥盆系页岩气生储特征及勘探潜力研究[J]. 非常规油气, 4(3): 8−14. doi: 10.3969/j.issn.2095-8471.2017.03.002

    [34]

    蒋恕, 唐相路, Steve O, 等. 2017. 页岩油气富集的主控因素及误辩: 以美国、阿根廷和中国典型页岩为例[J]. 地球科学, 42(7): 1083−1091.

    [35]

    李艳霞, 吴雨威, 王巧玲, 等. 2023. 陆相页岩气富集主控因素—以鄂尔多斯盆地延安探区山西组为例[J]. 地质通报, 42(9): 1423−1431. doi: 10.12097/j.issn.1671-2552.2023.09.001

    [36]

    刘光祥, 沃玉进, 潘文蕾, 等. 2011. 中上扬子区海相层系流体特征与油气保存条件[J]. 石油实验地质, 33(1): 17−27. doi: 10.3969/j.issn.1001-6112.2011.01.003

    [37]

    刘喜顺. 2008. 湘中坳陷上古生界碳酸盐岩烃源岩特征及生烃模式[J]. 海相油气地质, 13(1): 13−17. doi: 10.3969/j.issn.1672-9854.2008.01.003

    [38]

    楼章华, 李梅, 金爱民, 等. 2008. 中国海相地层水文地质地球化学与油气保存条件研究[J]. 地质学报, 82(3): 387−396. doi: 10.3321/j.issn:0001-5717.2008.03.014

    [39]

    马永生, 楼章华, 郭彤楼, 等. 2006. 中国南方海相地层油气保存条件综合评价技术体系探讨[J]. 地质学报, 80(3): 406−417. doi: 10.3321/j.issn:0001-5717.2006.03.013

    [40]

    苗凤彬, 谭慧, 王强, 等. 2016. 湘中涟源凹陷石炭系测水组页岩气保存条件[J]. 地质科技情报, 35(6): 90−97.

    [41]

    苗凤彬, 张保民, 张国涛等. 2023. 湘中涟源凹陷泥盆系佘田桥组页岩气差异性富集控制因素[J]. 天然气地球科学, 34(9): 1482−1499.

    [42]

    聂海宽, 何治亮, 刘光祥, 等. 2020. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 49(1): 13−35.

    [43]

    田巍, 彭中勤, 白云山, 等. 2019. 湘中涟源凹陷石炭系测水组页岩气成藏特征及勘探潜力[J]. 地球科学, 44(3): 939−952.

    [44]

    王飞宇, 关晶, 冯伟平, 等. 2013. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 40(6): 764−768. doi: 10.11698/PED.2013.06.19

    [45]

    王明艳, 郭建华, 旷理雄, 等. 2010. 湘中坳陷涟源凹陷烃源岩油气地球化学特征[J]. 天然气地球科学, 21(5): 721−726.

    [46]

    王强, 白云山, 苗凤彬. 2016. 湖南涟源凹陷下石炭统测水组泥页岩矿物组分与脆性特征研究[J]. 华南地质与矿产, 32(2): 166−171.

    [47]

    王玉满, 黄金亮, 李新景, 等. 2015. 四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J]. 天然气工业, 35(9): 8−15. doi: 10.3787/j.issn.1000-0976.2015.09.002

    [48]

    夏遵义, 马海洋, 房堃. 2019. 渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J]. 石油实验地质, 41(1): 134−141. doi: 10.11781/sysydz201901134

    [49]

    云武, 徐志斌, 杨雄庭. 1994. 湖南涟源凹陷西部滑脱带构造特征[J]. 中国矿业大学学报, 23(1): 16−25.

    [50]

    翟刚毅, 王玉芳, 包书景, 等. 2017. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 42(7): 1057−1068.

    [51]

    张琳婷, 郭建华, 焦鹏, 等. 2014. 湘中地区涟源凹陷下石炭统页岩气藏形成条件[J]. 中南大学学报(自然科学版), 45(7): 2268−2277.

    [52]

    赵佩, 李贤庆, 孙杰, 等. 2014. 川南地区下古生界页岩气储层矿物组成与脆性特征研究[J]. 现代地质, 28(2): 396−403. doi: 10.3969/j.issn.1000-8527.2014.02.018

    [53]

    周进高, 邓红婴, 冯加良. 2003. 湖南涟源凹陷构造演化与油气成藏研究[J]. 地质科学, 38(1): 44−51. doi: 10.3321/j.issn:0563-5020.2003.01.005

  • 加载中

(11)

(5)

计量
  • 文章访问数:  183
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-06-14
修回日期:  2023-07-09
刊出日期:  2024-10-15

目录