大兴安岭南段矽卡岩型铁锡矿成矿花岗岩年龄、岩石地球化学及其U−Nb−Ta−REE成矿远景讨论

张博辉, 曹会, 刘翼飞, 王丰翔. 2025. 大兴安岭南段矽卡岩型铁锡矿成矿花岗岩年龄、岩石地球化学及其U−Nb−Ta−REE成矿远景讨论. 地质通报, 44(6): 1106-1131. doi: 10.12097/gbc.2023.02.042
引用本文: 张博辉, 曹会, 刘翼飞, 王丰翔. 2025. 大兴安岭南段矽卡岩型铁锡矿成矿花岗岩年龄、岩石地球化学及其U−Nb−Ta−REE成矿远景讨论. 地质通报, 44(6): 1106-1131. doi: 10.12097/gbc.2023.02.042
ZHANG Bohui, CAO Hui, LIU Yifei, WANG Fengxiang. 2025. Age and petrogeochemistry of ore-forming granites, and the metallogenic prospects of U-Nb-Ta-REE in the southern section of the Daxing'anling Mountains for skarn-type iron-tin deposits. Geological Bulletin of China, 44(6): 1106-1131. doi: 10.12097/gbc.2023.02.042
Citation: ZHANG Bohui, CAO Hui, LIU Yifei, WANG Fengxiang. 2025. Age and petrogeochemistry of ore-forming granites, and the metallogenic prospects of U-Nb-Ta-REE in the southern section of the Daxing'anling Mountains for skarn-type iron-tin deposits. Geological Bulletin of China, 44(6): 1106-1131. doi: 10.12097/gbc.2023.02.042

大兴安岭南段矽卡岩型铁锡矿成矿花岗岩年龄、岩石地球化学及其U−Nb−Ta−REE成矿远景讨论

  • 基金项目: 国家重点研发计划项目课题《全球战略性矿产大数据平台和预警与决策支持技术》(编号:2021YFC2901801)、中国地质调查局项目《全球矿产资源储量动态评估》(编号:DD20221795)、中国地质调查局项目课题《大兴安岭赤峰地区铍等多金属矿调查评价》(编号:DD20221684-6)和国家自然科学基金面上项目《大兴安岭中南段高度演化的花岗岩与大规模成矿》(批准号:41873051)联合资助
详细信息
    作者简介: 张博辉(1998− ),男,在读硕士生,矿物学、岩石学、矿床学专业。E−mail:zbhbohui1030@163.com
    通讯作者: 刘翼飞(1981− ),男,博士,研究员,从事矿床地质和矿床地球化学研究工作。E−mail:lyfsky@126.com
  • 中图分类号: P59; P612; P618.44

Age and petrogeochemistry of ore-forming granites, and the metallogenic prospects of U-Nb-Ta-REE in the southern section of the Daxing'anling Mountains for skarn-type iron-tin deposits

  • Fund Project: Supported by National Key R&D Program of China (No. 2021YFC2901801), China Geological Survey Projects (Nos. DD20221795, DD20221684-6), and National Natural Science Foundation of China (No.41873051)
More Information
    Author Bio: ZHANG Bohui, male, born in 1998, master student, majoring in mineralogy, petrology and mineral deposits; E−mail:zbhbohui1030@163.com .
    Corresponding author: LIU Yifei, male, born in 1981, Ph.D., professor, engaged in the research of ore deposit geology and ore deposit geochemistry; E−mail:lyfsky@126.com
  • 研究目的

    大兴安岭南段是中国北方重要的锡多金属成矿带,黄岗和莫古吐矽卡岩型铁锡矿床是其中典型代表,其成因与高分异的碱长花岗岩或正长花岗岩有直接的时空和成因联系,花岗岩的岩石地球化学特征及其对找矿的意义还有待进一步研究。

    研究方法

    通过锆石U−Pb定年、全岩主量、微量和稀土元素测试和矿物学研究,探讨成矿花岗岩的特征和对找矿的启示。

    研究结果

    矿物学研究发现,成矿花岗岩样品中钠质斜长石、碱性长石、石英具有低温共结熔体结晶的特点,且镜下可见文象结构和蠕虫状石英。锆石U−Pb年龄显示,黄岗矿床碱长花岗岩结晶年龄131.8±2.0 Ma(MSWD=1.3),大莫古吐矿床碱长花岗岩结晶年龄为为137.1±1.3 Ma(MSWD=0.8),均侵位于早白垩世。全岩主量元素显示花岗岩具有高硅(73.97%~79.05%)、高碱(7.83%~8.88%),低钙、铁、镁、钛和磷的特征,为准铝质—弱过铝质(A/CNK=0.93~1.09)高分异花岗岩。全岩微量和稀土元素显示,花岗岩具有高Rb、Th、Pb,低Ba、Sr、P、Ti的特征,稀土元素配分曲线较平坦(LaN/YbN=0.96~12.04),具有强烈的负Eu异常(Eu/Eu*=0.01~0.03)及弱的负Ce到正Ce异常的过渡特点(Ce/Ce*=0.96~1.56),微量元素配分图具有弱的四分组效应(TE1,3=0.99~1.14)。成矿花岗岩中,随着分异程度的增加,Th、U、Nb、Ta、Yb元素富集。

    结论

    大兴安岭南段黄岗和莫古吐矽卡岩型铁锡矿床成矿花岗岩为早白垩世高硅高分异花岗岩,其形成过程对U、Sn、Nb、REE等成矿元素具有显著的富集作用。本次年代学、矿物学和地球化学的研究结合区内地质、地球物理勘探、地球化学勘探、遥感研究进展显示,大兴安岭南段燕山晚期分异花岗岩分布区域除具有Sn−Pb−Zn−Ag多金属成矿潜力外,还具有U−Nb−Ta−REE的找矿潜力。

  • 加载中
  • 图 1  研究区大地构造背景(a)和大兴安岭南段地质图(b)(据Liu, et al., 2016修改)

    Figure 1. 

    图 2  黄岗矿区地质简图(据王莉娟等,2001修改

    Figure 2. 

    图 3  莫古吐矿区地质简图(据杨朝磊等,2019修改)

    Figure 3. 

    图 4  黄岗和莫古吐花岗岩岩相学照片(图a、b、d、e拍摄于正交偏光,图c、f拍摄于单偏光)

    Figure 4. 

    图 5  黄岗和莫古吐矿床成矿花岗岩QAP图解

    Figure 5. 

    图 6  黄岗(a)和莫古吐(b)成矿花岗岩LA−ICP−MS锆石U−Pb谐和年龄图和206Pb/238U年龄加权平均值图

    Figure 6. 

    图 7  黄岗和莫古吐成矿花岗岩SiO2−K2O图解(a,底图据Peccerillo et al., 1976)和A/CNK−A/NK图解(b,底图据Papu et al., 1989

    Figure 7. 

    图 8  黄岗和莫古吐成矿花岗岩协变图解

    Figure 8. 

    图 9  黄岗和莫古吐成矿花岗岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蜘蛛网图(b)(标准化值Sun et al., 1989

    Figure 9. 

    图 10  SiO2−TFeO/(TFeO+Mg)(a)和SiO2−(Na2O+K2O–CaO)(b)判别图解(底图据Frost et al., 2001

    Figure 10. 

    图 11  高分异花岗岩判别图解(判别界线据Whalen et al., 1987吴福元等,2017;图a数据据武广等,2021季根源等,2022

    Figure 11. 

    图 12  黄岗和莫古吐成矿花岗岩SiO2−Zr/Hf(a)和SiO2−Zr协变图(b)

    Figure 12. 

    图 13  黄岗和莫古吐成矿花岗岩岩浆分异判别图解(底图据Blundy and Shimizu, 1991Ewart et al., 1994Wu et al., 2003Janoušek et al., 2004Yang et al., 2012Zhang et al.,2013

    Figure 13. 

    图 14  黄岗和莫古吐成矿花岗岩ΣLREE/ΣHREE值与Eu/Eu*、Rb协变图解

    Figure 14. 

    图 15  黄岗和莫古吐成矿花岗岩成矿元素Pb、U、Th、Ta、Rb、Yb与Eu/Eu*值协变图解

    Figure 15. 

    表 1  黄岗和莫古吐成矿花岗岩LA−ICP−MS锆石U−Th−Pb测年分析数据

    Table 1.  LA−ICP−MS zircon U−Th−Pb dating analysis data of Huanggang and Mogutu metallogenic granites

    测点号 含量/10−6 Th/U 同位素比值 年龄/Ma
    Th U 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
    HG16-1
    HG16-1-1 3186 2381 1.34 0.2721 0.0111 0.0257 0.0005 244 9 164 3
    HG16-1-2 701 4081 0.17 0.1467 0.0063 0.0211 0.0004 139 6 134 3
    HG16-1-3 1239 5410 0.23 0.1921 0.0101 0.0196 0.0002 178 9 125 1
    HG16-1-4 888 3742 0.24 0.2581 0.0091 0.0253 0.0003 233 7 161 2
    HG16-1-5 1205 4762 0.25 0.1931 0.0059 0.0208 0.0004 179 5 133 2
    HG16-1-6 1180 2818 0.42 0.1784 0.0043 0.0241 0.0004 167 4 153 3
    HG16-1-7 1906 2981 0.64 0.2908 0.0156 0.0249 0.0005 259 12 159 3
    HG16-1-8 1500 4053 0.37 0.2612 0.0084 0.0219 0.0003 236 7 139 2
    HG16-1-9 733 1829 0.40 0.1482 0.0048 0.0207 0.0004 140 4 132 3
    HG16-1-10 400 1099 0.36 0.1401 0.0043 0.0207 0.0003 133 4 132 2
    HG16-1-11 758 2065 0.37 0.1755 0.0101 0.0197 0.0004 164 9 126 3
    HG16-1-12 846 1928 0.44 0.1432 0.0040 0.0208 0.0004 136 4 133 2
    HG16-1-13 869 2060 0.42 0.1383 0.0030 0.0207 0.0003 131 3 132 2
    HG16-1-14 830 1986 0.42 0.1590 0.0058 0.0218 0.0004 150 5 139 2
    HG16-1-15 1046 2541 0.41 0.1397 0.0042 0.0198 0.0004 133 4 127 2
    HG16-1-16 660 1604 0.41 0.1473 0.0081 0.0200 0.0005 139 7 128 3
    HG16-1-17 792 1765 0.45 0.1597 0.0049 0.0224 0.0004 150 4 143 3
    HG16-1-18 1219 1938 0.63 0.1454 0.0042 0.0207 0.0003 138 4 132 2
    HG16-1-19 604 1520 0.40 0.1450 0.0041 0.0210 0.0003 137 4 134 2
    MGT16-3
    MGT16-3-1 301 867 0.35 0.1598 0.0078 0.0216 0.0004 151 7 138 3
    MGT16-3-2 590 1019 0.58 0.1956 0.0083 0.0222 0.0005 181 7 141 3
    MGT16-3-3 300 1015 0.29 0.1423 0.0046 0.0212 0.0004 135 4 135 2
    MGT16-3-4 135 305 0.44 0.1435 0.0072 0.0216 0.0004 136 6 138 2
    MGT16-3-5 233 771 0.30 0.2351 0.0084 0.0203 0.0003 214 7 130 2
    MGT16-3-6 120 365 0.33 0.1457 0.0078 0.0212 0.0004 138 7 135 2
    MGT16-3-7 431 1335 0.32 0.1544 0.0042 0.0215 0.0003 146 4 137 2
    MGT16-3-8 107 195 0.55 0.1343 0.0070 0.0213 0.0004 128 6 136 3
    MGT16-3-9 117 275 0.42 0.1526 0.0105 0.0222 0.0005 144 9 141 3
    MGT16-3-10 695 2042 0.34 0.1549 0.0054 0.0210 0.0004 146 5 134 2
    MGT16-3-11 324 450 0.72 0.1589 0.0109 0.0213 0.0006 150 10 136 4
    MGT16-3-12 125 305 0.41 0.1597 0.0097 0.0221 0.0005 150 8 141 3
    MGT16-3-13 67 157 0.43 0.1820 0.0160 0.0243 0.0005 170 14 155 3
    MGT16-3-14 158 377 0.42 0.1533 0.0077 0.0212 0.0004 145 7 135 3
    MGT16-3-15 656 339 1.93 1.1225 0.0523 0.0247 0.0005 764 25 157 3
    MGT16-3-16 151 230 0.66 0.1503 0.0078 0.0216 0.0004 142 7 138 3
    MGT16-3-17 72 140 0.52 0.1997 0.0149 0.0238 0.0006 185 13 151 4
    MGT16-3-18 150 350 0.43 0.6214 0.0474 0.0239 0.0006 491 30 152 4
    MGT16-3-19 134 362 0.37 0.1655 0.0100 0.0225 0.0006 155 9 143 4
    MGT16-3-20 206 379 0.54 0.1541 0.0058 0.0216 0.0004 145 5 138 3
    MGT16-3-21 65 194 0.34 0.1445 0.0095 0.0216 0.0005 137 8 138 3
    MGT16-3-22 1085 2402 0.45 0.1985 0.0065 0.0231 0.0003 184 6 147 2
    下载: 导出CSV

    表 2  黄岗和莫古吐成矿花岗岩主量、微量和稀土元素组成

    Table 2.  Composition of major, trace and rare earth elements in the metallogenic granites of Huanggang and Mogutu

    元素 HGT16-1 HGT16-2 HGT16-3 HGT16-4 HGT16-5 HG16-1 HG16-2 HG16-3 HG16-4 HG16-5
    碱长花岗岩 碱长花岗岩 碱长花岗岩 正长花岗岩 正长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩
    SiO2 76.22 76.14 77.37 74.65 76.08 79.05 77.38 73.97 74.69 74.52
    TiO2 0.07 0.09 0.05 0.10 0.06 0.07 0.06 0.19 0.18 0.18
    Al2O3 12.31 12.36 12.12 12.75 12.11 12.13 12.38 13.04 12.70 12.73
    Fe2O3 0.69 0.88 0.71 0.63 0.77 0.01 0.01 0.84 0.82 0.60
    FeO 1.08 1.07 1.29 1.33 1.25 0.53 0.50 1.66 1.44 1.68
    MnO 0.06 0.07 0.07 0.07 0.08 0.04 0.03 0.07 0.07 0.06
    MgO 0.06 0.06 0.04 0.10 0.05 0.04 0.02 0.16 0.17 0.18
    CaO 0.45 0.44 0.28 0.65 0.35 0.11 0.25 0.35 0.24 0.37
    Na2O 3.85 3.91 3.88 3.98 3.63 3.95 4.37 3.36 3.12 3.37
    K2O 4.49 4.56 4.52 4.56 4.58 4.10 4.07 4.55 4.87 4.88
    P2O5 - - - 0.02 - - - 0.04 0.04 0.04
    烧失量 0.16 0.14 0.26 0.27 0.23 0.24 0.19 0.78 0.68 0.56
    总计 99.45 99.73 100.60 99.11 99.20 100.30 99.27 99.01 99.02 99.17
    H2O+ 0.44 0.58 0.58 0.82 0.88 0.78 0.42 1.38 1.24 1.12
    TFeO 1.70 1.86 1.93 1.90 1.94 0.54 0.51 2.42 2.18 2.22
    A/CNK 1.03 1.02 1.03 1.01 1.05 1.09 1.03 1.18 1.17 1.11
    A/NK 1.10 1.09 1.08 1.11 1.11 1.11 1.07 1.25 1.22 1.18
    F 0.07 0.11 0.03 0.20 0.07 0.02 0.12 0.08 0.03 0.10
    Li 12.40 9.84 10.40 26.40 14.50 33.50 41.50 146.00 54.00 33.70
    Be 5.76 6.19 3.89 6.29 8.66 1.37 1.64 5.24 4.83 4.89
    Sc 1.91 2.03 1.96 2.52 1.90 1.26 1.34 3.37 3.37 3.34
    V 0.85 0.98 0.93 2.80 0.67 0.85 0.63 5.78 6.39 5.64
    Mn 386 492 507 563 575 256 229 518 472 442
    Co 0.74 0.82 0.96 1.23 1.06 0.59 0.48 1.97 2.12 1.81
    Ni 1.59 2.65 2.36 1.74 2.16 2.05 2.12 2.14 2.20 2.03
    Cu 5.17 4.21 5.26 3.79 4.47 5.71 7.38 7.82 5.46 6.60
    Zn 49.20 43.30 38.50 30.20 43.40 28.40 35.00 70.30 52.20 49.20
    Ga 23.10 22.20 23.80 23.00 24.20 27.40 25.90 24.40 23.80 23.40
    As 11.80 7.96 12.90 10.60 16.40 259.00 5.53 30.80 19.80 16.90
    Mo 1.96 1.96 3.27 1.95 2.15 0.51 1.32 1.58 0.56 0.52
    Ag 0.11 0.12 0.14 0.04 0.09 0.05 0.05 0.10 0.01 0.03
    Cd 0.13 0.12 0.16 0.05 0.22 0.05 0.07 0.17 0.12 0.15
    In 0.08 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06
    Cs 2.75 4.67 1.48 23.90 2.28 2.47 1.98 8.17 5.23 4.28
    W 1.82 1.68 3.24 1.25 2.62 4.16 1.90 2.60 4.76 2.38
    Tl 0.66 0.52 0.72 1.13 0.82 2.21 1.90 2.28 2.20 1.85
    Pb 20.90 19.50 17.30 18.90 24.30 26.60 25.60 41.70 39.50 30.70
    Bi 0.31 0.15 1.06 0.13 0.14 10.80 7.67 2.78 15.80 5.10
    Rb 165 163 148 255 198 161 181 208 250 237
    Ba 111.0 157.0 30.6 274.0 47.3 109.0 12.7 355.0 347.0 336.0
    Th 35.00 27.50 43.10 29.20 38.00 9.59 24.50 26.80 24.40 26.60
    U 7.72 8.86 18.10 10.50 7.08 4.57 4.32 4.45 4.40 4.53
    Ta 2.20 2.28 3.81 3.41 4.13 1.95 2.14 1.67 1.73 1.73
    Nb 20.90 21.50 33.90 28.10 31.40 19.10 21.30 16.50 17.20 17.00
    Sr 17.60 18.50 7.87 42.00 9.78 11.20 4.97 60.10 57.90 62.00
    Zr 178 133 173 167 138 158 140 203 198 213
    Hf 9.99 5.66 9.37 6.90 7.58 7.73 7.25 7.41 7.28 7.79
    La 31.40 33.70 16.90 39.30 25.70 3.96 4.58 54.80 25.00 37.00
    Ce 73.60 74.80 48.20 86.00 63.60 8.18 11.60 116.00 77.80 93.90
    Pr 9.72 9.67 8.11 10.70 8.61 0.95 1.90 14.00 5.98 8.86
    Nd 38.10 38.30 36.80 41.90 34.90 3.53 9.85 53.20 22.80 33.70
    Sm 8.93 8.49 10.60 9.24 8.84 0.83 3.88 10.70 4.97 6.85
    Eu 0.17 0.22 0.10 0.36 0.11 0.05 0.05 0.60 0.43 0.48
    Gd 7.79 7.10 9.51 7.55 7.49 0.76 4.82 8.17 4.66 5.73
    Tb 1.38 1.19 1.73 1.33 1.29 0.15 0.90 1.35 0.92 1.06
    Dy 7.93 6.88 10.10 7.85 7.34 0.99 5.74 7.11 6.09 6.62
    Ho 1.66 1.41 2.05 1.61 1.48 0.24 1.26 1.38 1.36 1.47
    Er 4.53 3.82 5.51 4.47 4.01 0.83 3.49 3.48 4.00 4.17
    Tm 0.72 0.59 0.86 0.72 0.65 0.15 0.54 0.53 0.65 0.68
    Yb 4.38 3.59 5.20 4.58 4.07 1.04 3.32 3.17 4.08 4.24
    Lu 0.66 0.55 0.79 0.72 0.62 0.18 0.51 0.47 0.64 0.67
    Y 39.90 34.30 46.00 39.50 35.20 4.82 29.60 25.20 28.00 31.80
    ΣREE 230.87 224.61 202.46 255.83 203.91 26.66 82.04 300.20 187.40 237.20
    ΣLREE 161.92 165.18 120.71 187.50 141.76 17.50 31.86 249.30 137.00 180.80
    ΣHREE 68.95 59.43 81.75 68.33 62.15 9.16 50.18 50.86 50.40 56.44
    ΣLREE/ΣHREE 2.35 2.78 1.48 2.74 2.28 1.91 0.63 4.90 2.72 3.20
    Eu/Eu* 0.06 0.09 0.03 0.13 0.04 0.19 0.04 0.20 0.27 0.23
    TE1,3 1.04 1.02 1.07 1.03 1.05 1.01 0.99 1.03 1.14 1.07
    下载: 导出CSV
    元素 MGT16-1 MGT16-2 MGT16-3 MGT16-4 MGT16-5 MGT16-6 DSS16-1 DSS16-2 DSS16-3 DSS16-4
    碱长花岗岩 正长花岗岩 碱长花岗岩 正长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩
    SiO2 75.91 77.58 75.15 77.20 78.75 77.30 75.50 76.10 76.10 76.00
    TiO2 0.08 0.07 0.08 0.06 0.05 0.08 0.06 0.05 0.06 0.05
    Al2O3 12.28 11.82 12.95 11.07 11.31 11.96 12.20 12.50 12.10 12.40
    Fe2O3 0.23 0.01 0.22 0.01 0.01 0.01 0.32 0.39 0.22 0.02
    FeO 1.56 0.93 0.83 1.15 0.72 1.09 1.42 1.11 1.59 1.36
    MnO 0.08 0.06 0.08 0.07 0.04 0.07 0.07 0.07 0.09 0.06
    MgO 0.06 0.05 0.07 0.05 0.05 0.06 0.05 0.05 0.04 0.04
    CaO 0.54 0.54 0.52 1.16 0.23 0.49 0.55 0.39 0.58 0.43
    Na2O 3.85 3.02 2.84 2.24 2.44 2.97 3.62 3.79 3.71 3.84
    K2O 4.28 5.05 6.04 5.59 5.54 5.19 4.65 4.58 4.36 4.55
    P2O5 - - - - - - - - - -
    烧失量 0.30 0.29 0.41 0.52 0.17 0.27 0.42 0.36 0.40 0.40
    总计 99.18 99.43 99.20 99.13 99.32 99.50 98.90 99.50 99.30 99.10
    下载: 导出CSV
    续表2-2
    元素 MGT16-1 MGT16-2 MGT16-3 MGT16-4 MGT16-5 MGT16-6 DSS16-1 DSS16-2 DSS16-3 DSS16-4
    碱长花岗岩 正长花岗岩 碱长花岗岩 正长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩 碱长花岗岩
    H2O+ 0.98 0.74 0.98 0.90 0.74 0.80 0.88 1.00 0.98 0.86
    TFeO 1.77 0.94 1.03 1.16 0.73 1.10 1.71 1.46 1.79 1.38
    F 0.27 0.2 0.25 0.67 0.057 0.18 0.29 0.18 0.3 0.21
    A/CNK 1.03 1.04 1.07 0.93 1.08 1.05 1.02 1.05 1.02 1.03
    A/NK 1.12 1.13 1.16 1.14 1.13 1.14 1.11 1.12 1.12 1.10
    Li 24.60 16.20 23.30 55.80 25.10 22.90 25.10 18.80 31.60 23.30
    Be 7.35 9.90 4.64 3.78 4.60 5.97 6.31 5.85 9.26 5.94
    Sc 2.13 1.96 2.11 1.45 1.20 1.50 1.66 1.54 1.54 1.58
    V 1.14 1.84 2.54 1.71 1.10 1.81 1.01 0.90 0.80 0.78
    Mn 562 431 574 524 310 504 534 458 625 387
    Co 1.12 0.81 1.19 0.97 0.74 0.96 1.08 0.92 1.15 0.76
    Ni 2.05 2.20 2.69 2.61 1.42 2.35 2.21 2.11 2.14 1.50
    Cu 5.49 11.90 21.90 11.40 9.30 14.30 7.02 3.71 5.56 2.43
    Zn 18.80 48.50 99.30 34.80 33.90 54.10 12.90 11.80 29.50 15.10
    Ga 26.60 19.60 20.50 18.30 17.60 20.30 26.10 27.20 27.10 27.00
    As 12.50 121.00 55.30 50.60 85.80 66.70 7.80 37.10 28.00 24.80
    Mo 0.83 0.28 0.51 0.39 0.22 0.51 0.83 0.87 3.17 0.29
    Ag 0.02 0.03 0.05 0.02 0.05 0.03 0.03 0.03 0.09 0.00
    Cd 0.05 0.13 0.19 0.10 0.08 0.08 0.05 0.08 0.25 0.05
    In 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
    Cs 9.92 7.02 9.94 7.48 7.26 7.47 8.39 10.9 7.16 9.12
    W 3.8 2.21 1.55 2.97 1.81 2.49 4.82 10.5 6.63 2.59
    Tl 2.07 2.18 2.4 2.39 2.43 2.26 2.14 2.35 2.22 2.32
    Pb 32 26.8 26.4 26.1 27.2 29 34 30.8 48.6 31.9
    Bi 0.13 17.4 34 6.2 16.7 7.37 0.06 0.06 0.07 0.05
    Rb 425 275 331 302 297 286 427 453 445 461
    Ba 37.3 65.1 390 81.6 76.2 78.9 38.1 30.3 14.2 18.4
    Th 56.8 55.8 17 42.6 41.2 52.9 62.6 44.8 58.4 57.2
    U 9.22 5.95 2.26 4.91 3.02 4.69 12.2 5.44 11 8.58
    Ta 5.29 2.24 1.89 3.58 2.68 3.73 4.47 4.02 5.53 4.28
    Nb 41.9 13.3 11.9 21.4 16.4 19.5 39.6 34.9 41.3 34.9
    Sr 13.1 23.4 47.6 23.5 22 23.5 11.9 11.1 10.4 10.7
    Zr 115.0 116.0 69.1 98.1 67.1 160.0 161.0 90.7 138.0 121.0
    Hf 8.06 6.64 3.57 6.16 4.14 8.13 9.81 6.54 9.15 8.6
    La 70.7 25.7 20.4 28.4 15.8 31.6 41.2 36.5 49.6 34.8
    Ce 160 61.6 45 63.7 35.8 71.9 93.7 83.2 111 80.9
    Pr 18.7 7.7 5.22 7.76 4.14 8.2 11.8 10.2 14 10.2
    Nd 63.4 30.6 19.5 27.3 14.7 28.6 44.5 38.1 52.9 39.2
    Sm 13 8.65 4.56 5.45 3.12 5.81 11 9.4 13.3 9.66
    Eu 0.12 0.17 0.47 0.18 0.15 0.17 0.09 0.07 0.05 0.05
    Gd 10.9 9.08 4.06 4.64 2.79 5.18 10.5 9.06 12.8 9.34
    Tb 2.03 1.82 0.73 0.83 0.53 0.97 2.07 1.82 2.61 1.86
    Dy 12.4 11.5 4.64 5.38 3.37 6.15 13.3 11.8 16.8 11.8
    Ho 2.76 2.51 1 1.25 0.76 1.39 3.03 2.69 3.84 2.69
    Er 8.21 7.41 2.9 3.92 2.25 4.14 8.9 8.21 11.5 8.08
    Tm 1.42 1.24 0.49 0.7 0.38 0.73 1.51 1.42 2 1.39
    Yb 9.28 7.77 3.06 4.74 2.43 4.77 9.66 9.19 13 9.02
    Lu 1.48 1.2 0.48 0.78 0.38 0.76 1.49 1.42 2.02 1.42
    Y 78.4 68.1 26.8 40 18.3 36.4 85.6 77.3 97.4 79.4
    ΣREE 452.80 245.05 139.31 195.03 104.90 206.77 338.35 300.38 402.82 299.81
    ΣLREE 325.92 134.42 95.15 132.79 73.71 146.28 202.29 177.47 240.85 174.81
    ΣHREE 126.88 110.63 44.16 62.24 31.19 60.49 136.06 122.91 161.97 125.00
    ΣLREE/ΣHREE 2.57 1.22 2.15 2.13 2.36 2.42 1.49 1.44 1.49 1.40
    Eu/Eu* 0.03 0.06 0.33 0.11 0.16 0.09 0.03 0.02 0.01 0.02
    TE1,3 1.07 1.07 1.04 1.03 1.06 1.06 1.05 1.06 1.05 1.05
      注:TE1,3值指示岩石的熔体−流体相互作用强度 (Irber et al., 1999)。主量元素含量单位为%,微量和稀土元素含量单位为10−6
    下载: 导出CSV

    表 3  大兴安岭南段物探、遥感、化探等手段下的找矿发现

    Table 3.  Mineral exploration discoveries obtained through geophysical exploration, remote sensing, geochemical exploration and other means in the southern segment of the Daxing’anling Mountains

    区域/矿种 主要技术手段 成矿花岗岩特征 成矿花岗岩与矿的关系 资料来源
    炒米房地区铀矿 物探 燕山期黑云母花岗岩、花岗斑岩等 铀矿化赋存在不整合面附近,与燕山期花岗岩有关,钍矿化为与燕山期花岗岩中 于兵等,2022
    黄岗地区铜、锡、铅、锌、银多金属矿 遥感 燕山期花岗岩 有色金属成矿与燕山期含锡中-酸性花岗岩浆侵入于二叠系含锡多金属地层有关 荆凤,2005
    后卜河-马场地区钼、锡、铜、铅、锌、银多金属矿 野外地质调查 燕山晚期高演化的黑云母花岗岩、细粒斑状黑云母花岗岩和黑云母花岗斑岩 矿产围绕燕山晚期胡都格绍荣岩体分布,岩体内部和不同距离外发育不同类型矿化 吕耿毅等,2025
    黄岗和莫古吐矿区铁锡矿,具有铀矿、铌钽矿、重稀土矿找矿潜力 地球化学、
    矿物学研究
    燕山期高分异的碱长花岗岩或
    正长花岗岩
    黄岗和莫古吐铁锡矿矿体产于燕山期
    花岗岩与地层接触带矽卡岩中
    本文
    下载: 导出CSV
  • [1]

    Bai D M, Liu G H. 1996. Discussion on the comprehensive geophysical−geochemical prospecting model of the Haobugao Pb−Zn−Cu−Sn deposit[J]. Nonferrous Metals Mineral Exploration, (6): 42−48(in Chinese with English abstract).

    [2]

    Blundy J D, Shimizu N. 1991. Trace element evidence for plagioclase recycling in calc−alkaline magmas[J]. Earth and Planetary Science Letters, 102(2): 178−197. doi: 10.1016/0012-821X(91)90007-5

    [3]

    Chen Y, Han Y, Xu B, et al. 2021. Geochemical characteristics and genesis of red fluorite from the Huanggangliang Fe−Sn deposit in Inner Mongolia[J]. Acta Petrologica Sinica, 37(12): 3869−3879(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.12.15

    [4]

    Clemens J D. 1997. Petrogenesis and experimental petrology of granitic rocks[J]. Mineralogical Magazine, 61(1): 149−150.

    [5]

    Ewart A, Griffin W L. 1994. Application of proton−microprobe data to trace−element partitioning in volcanic rocks[J]. Chemical Geology, 117(1): 251−284.

    [6]

    Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033

    [7]

    Gu Y C, Chen R Y, Du J Y, et al. 2025. Petrogenesis and tectonic implications of the Early Cretaceous syenogranite in Huanggangliang area, southern Great Hinggan Range: Evidence from zircon U−Pb ages, petrogeochemistry and Sr−Nd−Pb isotopes[J]. Geological Bulletin of China, 44(1): 91−116.

    [8]

    Hou K J, Li Y H, Tian Y R. 2009. In−situ Zircon U−Pb Dating by LA−MC−ICP−MS[J]. Mineral Deposits, 28(4): 481−492(in Chinese with English abstract).

    [9]

    Hua R M, Zhang W L, Gu S Y, et al. 2007. Comparison between REE granite and W - Sn granite in the Nanling region, South China, and their mineralizations[J]. Acta Petrologica Sinica, 23(10): 2321−2328(in Chinese with English abstract).

    [10]

    Huang S Q, Lin D F, Yan R X, et al. 1986. The Dajing Sn−Ag−Cu Deposit and Its Genesis[J]. Geology and Exploration, (6): 28−32(in Chinese with English abstract).

    [11]

    Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 63(3): 489−508.

    [12]

    Janoušek V, Finger F, Roberts M, et al. 2004. Deciphering the petrogenesis of deeply buried granites: whole−rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95: 141−159.

    [13]

    Ji G Y, Jiang S H, Zhang L S, et al. 2021a. Petrogenetic and metallogenic significance of the Alubaoge Mountain pluton in the Maodeng mining area, Southern Da Hinggan Mountains: Mineralogical evidence from zircon, hornblende and biotite[J]. Mineral Deposits, 40(3): 449−474(in Chinese with English abstract).

    [14]

    Ji G Y, Jiang S H, Li G F, et al. 2021b. Magmatic constraints on mineralization of the Maodeng Sn−Cu Deposit in Southern Da Hinggan Mountains: Geochronological, geochemical and Sr−Nd−Pb isotopic evidence[J]. Geotectonica et Metallogenia, 45(4): 681−704(in Chinese with English abstract).

    [15]

    Ji G Y, Jiang S H, Zhang L S, et al. 2022. Petrogenetic age and geochemical characteristics of highly fractionated alkali−feldspar granite in Maodeng, Southern Da Hinggan Mountains[J]. Acta Petrologica Sinica, 38(3): 855−882(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.03.15

    [16]

    Jiang S H, Liang Q L, Liu Y F, et al. 2012. Zircon U-Pb ages of the magmatic rocks occurring in and around the Daingeo Cu-Ag-Sn polymetallic deposit of Inner Mongolia and constrains to the ore-forming age[J]. Acta Petrologica Sinica, 28(2): 495−513(in Chinese with English abstract).

    [17]

    Jiang S H, Zhang L L, Liu Y F, et al. 2018. Metallogeny of Xing–Meng Orogenic Belt and some related problems[J]. Mineral Deposits, 37(4): 671−711 (in Chinese with English abstract).

    [18]

    King P L, White A J, Chappell B W, et al. 1997. Characterization and origin of aluminous A−type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371−391. doi: 10.1093/petroj/38.3.371

    [19]

    King P L, Chappell B W, Allen C M, et al. 2001. Are A−type granites the high−temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J]. Australian Journal of Earth Sciences, 48(4): 501−514. doi: 10.1046/j.1440-0952.2001.00881.x

    [20]

    Li C H, Wu Y Q, Wang S C, et al. 2018. Metallogenic conditions and prospect prediction of volcanic−type uranium deposits in the central−southern Da Hinggan Mountains[J]. Uranium Geology, 34(6): 329−336(in Chinese with English abstract).

    [21]

    Li H, Wu J H, Sun W B, et al. 2023. Research Progress and Prospect of Cu−Sn Composite Mineralization[J]. Acta Geologica Sinica (English Edition), 97(1): 262−279(in Chinese with English abstract).

    [22]

    Li J, Huang X L. 2013. Magmatic Evolution and Ta−Nb Enrichment Mechanism of the Yashan Granite in Jiangxi Province[J]. Acta Petrologica Sinica, 29(12): 4311−4322(in Chinese with English abstract).

    [23]

    Li J Y, Zhang J, Yang T N, et al. 2009. Crustal tectonic division and evolution of the Southern North Asia Orogenic Belt and adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 39(4): 584−605(in Chinese with English abstract).

    [24]

    Liang X J, Qiao L. 1991. Experimental study on metasomatite and iron ore in volcanic rocks[J]. Acta Petrologica et Mineralogica, (4): 300−314,385(in Chinese with English abstract).

    [25]

    Liu Y F, Fan Z Y, Jiang H C, et al. 2014. Porphyry−hydrothermal vein−type metallogenic system in the Weilasituo−Bairendaba area, Inner Mongolia[J]. Acta Geologica Sinica (English Edition), 88(12): 2373−2385(in Chinese with English abstract).

    [26]

    Liu Y F, Jiang SH, Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag–Zn–Pb–Cu–(Sn–W) deposits in the shallow part of a porphyry Sn–W–Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 75: 150−173.

    [27]

    Liu Y J, Zhang X Z, Jin W, et al. 2010. Late Paleozoic regional tectonic evolution in Northeast China[J]. Geology in China, 37(4): 943−951(in Chinese with English abstract).

    [28]

    Liu Y Q. 1996a. Geology and genesis of the Maodeng Sn−Cu deposit in Inner Mongolia[J]. Mineral Deposits, (2): 133−143(in Chinese with English abstract).

    [29]

    Liu Y Q. 1996b. Metallogenic zoning and genetic discussion of the Maodeng Sn−Cu deposit[J]. Mineral Deposits, (4): 31−42(in Chinese with English abstract).

    [30]

    Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.

    [31]

    Long X Y, Chen Z Q, Liu Z J, et al. 2021. Comparative analysis of metallogenic characteristics between the 414 and Songshugang Ta−Nb deposits in Yashan, Jiangxi[J]. Journal of East China University of Technology (Natural Science Edition), 44(3): 239−248(in Chinese with English abstract).

    [32]

    Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[J]. Geol Soc Am Abstr With Progr, 11: 468.

    [33]

    Lyu G Y, Fu G Q, Li Y X, et al. 2025. Geological characteristics and prospecting prospects of mineralization in the Houbuhe-Machang area of the southern section of the DaHingganLing[J]. World Nonferrous Metals, (2): 56−58(in Chinese with English abstract).

    [34]

    Ma X H, Chen B. 2009. Geological characteristics, geochemistry of ore−bearing porphyry and zircon Hf isotopes of the Aolunhua Mo deposit in Inner Mongolia[J]. Acta Mineralogica Sinica, 29(S1): 19−20(in Chinese with English abstract).

    [35]

    Mao J W, Zhou Z H, Wu G, et al. 2013. Metallogenic regularity and metallogenic series of deposits in Inner Mongolia and adjacent areas[J]. Mineral Deposits, 32(4): 716−730(in Chinese with English abstract).

    [36]

    Mei W, Lü X B, Cao X F, et al. 2015. Ore genesis and hydrothermal evolution of the Huanggang skarn iron-tin polymetallic deposit, southern Great Xing'an Range: Evidence from fluid inclusions and isotope analyses[J]. Ore Geology Reviews, 64: 239−252.

    [37]

    Nie F J, Wen Y W, Zhao Y Y, et al. 2007. Geological characteristics and prospecting direction of the Baiyinchagan Ag−polymetallic mineralization area in Inner Mongolia[J]. Mineral Deposits, (2): 213−220(in Chinese with English abstract).

    [38]

    Papu D, Maniar P M, Piccoli P. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [39]

    Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63−81. doi: 10.1007/BF00384745

    [40]

    Pan L J, Sun E S. 1992. Geological characteristics of the Jiawula Ag−Pb−Zn deposit in Inner Mongolia[J]. Mineral Deposits, (1): 45−53(in Chinese with English abstract).

    [41]

    Pfänder J A, Münker C, Stracke A, et al. 2007. Nb/Ta and Zr/Hf in ocean island basalts—Implications for crust−mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letters, 254(1): 158−172.

    [42]

    Stepanov A S, Mavrogenes J A, Meffre S, et al. 2014. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 167(6): 1−8.

    [43]

    Shao J A, Mu B L, Zhu H Z, et al. 2010. Deep sources and settings of Mesozoic metallogenic materials in the central−southern Da Hinggan Mountains[J]. Acta Petrologica Sinica, 26(3): 649−656(in Chinese with English abstract).

    [44]

    She H Q, Li H H, Li J W, et al. 2009. Metallogenic regularity and prospecting direction of Cu−Pb−Zn−Au−Ag polymetallic deposits in the central−northern Da Hinggan Mountains, Inner Mongolia[J]. Acta Geologica Sinica (English Edition), 83(10): 1456−1472(in Chinese with English abstract).

    [45]

    Sun S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.

    [46]

    Tian L. 2024. Early Cretaceous magmatism and its constraints on rare and rare earth metal mineralization in Kunduleng-Xizhelimu area, Southern Great Xing’an Range[D]. Doctoral Dissertation of Jilin University: 111–119 (in Chinese with English abstract).

    [47]

    Tiepolo M, Vannucci R, Oberti R, et al. 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal–chemical constraints and implications for natural systems[J]. Earth and Planetary Science Letters, 176(2): 185−201. doi: 10.1016/S0012-821X(00)00004-2

    [48]

    Wang C M, Zhang S T, Deng J, et al. 2007. Sedex origin of stratiform skarn in the Huanggangliang Sn−Fe−polymetallic deposit, Inner Mongolia[J]. Acta Petrologica et Mineralogica, (5): 409−417(in Chinese with English abstract).

    [49]

    Wang J F, Li Y J, Li H Y, et al. 2017. LA−ICP−MS zircon U−Pb age and geological significance of Early Cretaceous A−type granite in Nuhete, Xiwuqi, Inner Mongolia[J]. Geological Bulletin of China, 36(8): 1343−1358(in Chinese with English abstract).

    [50]

    Wang J F, Li Y J, Li H Y, et al. 2018a. Formation age of Early Cretaceous A−type granite in Deleha, Xiwuqi, Inner Mongolia: Evidence from zircon U−Pb dating[J]. Geology in China, 45(1): 197−198(in Chinese with English abstract).

    [51]

    Wang J F, Li Y J, Li H Y, et al. 2018b. Zircon U−Pb age and tectonic setting of Late Jurassic−Early Cretaceous A−type granite in Shijiangshan, Xiwuqi, Inner Mongolia[J]. Geological Bulletin of China, 37(Z1): 382−396(in Chinese with English abstract).

    [52]

    Wang L J, Wang J B, Wang Y W, et al. 2001. Fluid−melt inclusions in fluorite from the Huanggangliang skarn−type Fe−Sn deposit and their implications for genesis[J]. Acta Geologica Sinica (English Edition), (2): 287(in Chinese with English abstract).

    [53]

    Wang L J, Wang J B, Wang Y W, et al. 2002. Rare earth element geochemistry of the Huanggangliang skarn−type Fe−Sn deposit, Inner Mongolia[J]. Acta Petrologica Sinica, (4): 575−584(in Chinese with English abstract).

    [54]

    Wang X L, Liu J J, Zhai D G, et al. 2014. Isotope geochemical characteristics and source of metallogenic materials of the Bianjiadayuan Ag−polymetallic deposit, Linxi, Inner Mongolia[J]. Geology in China, 41(4): 1288−1303(in Chinese with English abstract).

    [55]

    Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X

    [56]

    Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202

    [57]

    Wu F Y, Jahn B M, Wilde S A, et al. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 66(3/4): 241−273.

    [58]

    Wu F Y, Li X H, Yang J H, et al. 2007. Some issues in granite genetic research[J]. Acta Petrologica Sinica, 23(6): 1217−1238(in Chinese with English abstract).

    [59]

    Wu F Y, Liu X C, Ji W Q, et al. 2017. Identification and study of highly fractionated granites[J]. Science China Earth Sciences, 60(7): 1129−1149(in Chinese with English abstract).

    [60]

    Wu G, Liu R L, Chen G Z, et al. 2021. Metallogenesis of the Weilasituo rare metal−Sn−polymetallic deposit, Inner Mongolia: Insights from fractional crystallization of granitic magma[J]. Acta Petrologica Sinica, 37(3): 637−664(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.01

    [61]

    Xie C B, Liu M. 2001. Geological characteristics and genetic type of the Chaganbulagen Ag−Pb−Zn (Au) deposit[J]. Global Geology, (1): 25−29(in Chinese with English abstract).

    [62]

    Xu B, Chen B. 1997. Structure and evolution of the Middle Paleozoic Orogenic Belt between the North China and Siberian Plates in Northern Inner Mongolia[J]. Science in China Series D: Earth Sciences, 40(3): 227−232(in Chinese with English abstract).

    [63]

    Xu B, Zhao P, Bao Q Z, et al. 2014. Preliminary division of Pre−Mesozoic tectonic units in the Xingmeng Orogenic Belt[J]. Acta Petrologica Sinica, 30(7): 1841−1857(in Chinese with English abstract).

    [64]

    Xu Q, Tang G, Zou T, et al. 2020. Metallogenic system and target prediction of the Haobugao Sn−polymetallic ore field in Balinzuoqi, Southern Da Hinggan Mountains[J]. Geology and Exploration, 56(2): 265−276(in Chinese with English abstract).

    [65]

    Xu W L, Sun C Y, Tang J, et al. 2019. The basement properties and tectonic evolutionary process of the Xingmeng Orogenic Belt[J]. Earth Science, 44(5): 1620−1646(in Chinese with English abstract).

    [66]

    Yang C L, Yang S S, Zhu X Y, et al. 2019. Geological characteristics and genetic type of the Mogutu Fe−Sn deposit, Inner Mongolia[J]. Mineral Exploration, 10(3): 467−480(in Chinese with English abstract).

    [67]

    Yang J H, Peng J T, Zhao J H, et al. 2012. Petrogenesis of the Xihuashan Granite in Southern Jiangxi Province, South China: Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd Isotopes[J]. Acta Geologica Sinica (English Edition), 86(1): 131−152.

    [68]

    Yang Q D, Guo L, Wang T, et al. 2014. Ages, petrogenesis, provenance and tectonic settings of two phases of Late Mesozoic granites in the Ganzhuer Temple area, Central−Southern Da Hinggan Mountains[J]. Acta Petrologica Sinica, 30(7): 1961−1981(in Chinese with English abstract).

    [69]

    Yang W B, Su W C, Liao S P, et al. 2011. Melt and melt−fluid inclusions in the Baerzhe alkaline granite: Insights into magma−hydrothermal transition[J]. Acta Petrologica Sinica, 27(5): 1493−1499(in Chinese with English abstract).

    [70]

    Yang Z L, Qiu J S, Xing G F, et al. 2014. Petrogenesis and evolution of the Yashan granite pluton in Yichun, Jiangxi, and their constraints on mineralization[J]. Acta Geologica Sinica (English Edition), 88(5): 850−868(in Chinese with English abstract).

    [71]

    Yang Z L, Zou T, Zhu X Y, et al. 2021. Chronology and geochemistry of Mogutu granite in Inner Mongolia and its effect of crustal extension and thinning[J]. Geology in China, 48(1): 247−263 (in Chinese with English abstract).

    [72]

    Yao L, Lyu Z C, Ye T Z, et al. 2017. Zircon U−Pb ages, geochemistry and Nd−Hf isotopes of quartz porphyry from the Baiyinchagan Sn−polymetallic deposit, Southern Da Hinggan Mountains, Inner Mongolia, and their geological significance[J]. Acta Petrologica Sinica, 33(10): 3183−3199(in Chinese with English abstract).

    [73]

    Ye J, Liu J M, Zhang A L, et al. 2002. Petrological evidence for sedex mineralization: Examples from the Huanggang and Dajing deposits in Southern Da Hinggan Mountains[J]. Acta Petrologica Sinica, (4): 585−592, 609−610(in Chinese with English abstract).

    [74]

    Yu B, Wang C D, Yu H L, et al. 2022. Application of comprehensive geophysical survey to uranium prospecting in the Chaomifang area, Southern Da Hinggan Mountains[J]. Geology and Exploration, 58(5): 1070−1081(in Chinese with English abstract).

    [75]

    Zhai D G, Liu J J, Zhang H Y, et al. 2014. S–Pb isotopic geochemistry, U–Pb and Re–Os geochronology of the Huanggangliang Fe–Sn deposit, Inner Mongolia, NE China[J]. Ore Geology Reviews, 59: 109−122.

    [76]

    Zhai D G, Liu J J, Zhang H Y, et al. 2018. A magmatic-hydrothermal origin for Ag-Pb-Zn vein formation at the Bianjiadayuan deposit, inner Mongolia, NE China: Evidences from fluid inclusion, stable (C-H-O) and noble gas isotope studies[J]. Ore Geology Reviews, 101: 1−16.

    [77]

    Zhang D H, Wei J H, Fu L B, et al. 2013. Formation of the Jurassic Changboshan-Xieniqishan highly fractionated I - type granites, northeastern China: Implication for the partial melting of juvenile crust induced by asthenospheric mantle upwelling[J]. Geological Journal, 50(2): 122−138.

    [78]

    Zhang D Q, Lei Y F, Luo T Y, et al. 1992. Mineralization Zoning and ore−fluid flow direction of the Baiyinnuoer Pb−Zn deposit[J]. Mineral Deposits, (3): 203−212(in Chinese with English abstract).

    [79]

    Zheng F S, Cai H J, Zhang Z F. 2006. Discovery and prospecting significance of the super−large Bairendaba−Weilastuo Ag−Pb−Zn deposit, Inner Mongolia[J]. Geophysical and Geochemical Exploration, 30(1): 13−20,25(in Chinese with English abstract).

    [80]

    Zhou Z H, Lyu L S, Feng J R, et al. 2010. Molybdenite Re−Os ages of the Huanggang skarn−type Sn−Fe deposit, Inner Mongolia, and their geological significance[J]. Acta Petrologica Sinica, 26(3): 667−679(in Chinese with English abstract).

    [81]

    Zhou Z H, Mao J W, Peter L. 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn–Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 49: 272−286.

    [82]

    白大明, 刘光海. 1996. 浩布高铅锌铜锡矿床地物化综合找矿模式探讨[J]. 有色金属矿产与勘查, (6): 42−48.

    [83]

    陈缘, 韩禹, 许博, 等. 2021. 内蒙古黄岗梁铁锡矿床中红色萤石的地球化学特征及成因探讨[J]. 岩石学报, 37(12): 3869−3879. doi: 10.18654/1000-0569/2021.12.15

    [84]

    顾玉超, 陈仁义, 杜继宇, 鞠楠. 2025. 大兴安岭南段黄岗梁地区早白垩世正长花岗岩成因及构造启示: 锆石 U−Pb 年龄、岩石地球化学和 Sr−Nd−Pb 同位素证据[J]. 地质通报, 44(1): 91−116.

    [85]

    华仁民, 张文兰, 顾晟彦, 等. 2007. 南岭稀土花岗岩、钨锡花岗岩及其成矿作用的对比[J]. 岩石学报, 23(10): 2321−2328.

    [86]

    侯可军, 李延河, 田有荣. 2009. LA−MC−ICP−MS锆石微区原位U−Pb定年技术[J]. 矿床地质, 28(4): 481−492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    [87]

    黄世乾, 林达富, 晏汝逊, 等. 1986. 大井锡-银-铜矿床及其成因[J]. 地质与勘探, (6): 28−32.

    [88]

    江思宏, 梁清玲, 刘翼飞, 等. 2012. 内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束[J]. 岩石学报, 28(2): 495−513.

    [89]

    江思宏, 张莉莉, 刘翼飞, 等. 2018. 兴蒙造山带成矿规律及若干科学问题[J]. 矿床地质, 37(4): 671−711.

    [90]

    荆凤. 2005. 内蒙古大兴安岭南段多金属成矿带遥感多源信息综合研究[D]. 中国地质大学(北京)硕士学位论文: 50−60.

    [91]

    季根源, 江思宏, 张龙升, 等. 2021a. 大兴安岭南段毛登矿区阿鲁包格山岩体成岩成矿意义 — 锆石、角闪石和黑云母矿物学证据[J]. 矿床地质, 40(3): 449−474.

    [92]

    季根源, 江思宏, 李高峰, 等. 2021b. 大兴安岭南段毛登 Sn−Cu 矿床岩浆作用对成矿制约: 年代学、地球化学及 Sr−Nd−Pb 同位素证据[J]. 大地构造与成矿学, 45(4): 681−704.

    [93]

    季根源, 江思宏, 张龙升, 等. 2022. 大兴安岭南段毛登高分异碱长花岗岩成岩时代与地球化学特征[J]. 岩石学报, 38(3): 855−882. doi: 10.18654/1000-0569/2022.03.15

    [94]

    李长华, 吴燕清, 王世成, 等. 2018. 大兴安岭中南段火山岩型铀矿成矿条件及远景预测[J]. 铀矿地质, 34(6): 329−336.

    [95]

    李欢, 吴经华, 孙文博, 等. 2023. 铜锡复合成矿研究进展与展望[J]. 地质学报, 97(1): 262−279.

    [96]

    李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta−Nb富集机制[J]. 岩石学报, 29(12): 4311−4322.

    [97]

    李锦轶, 张进, 杨天南, 等. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报 (地球科学版), 39(4): 584−605.

    [98]

    李鹏川, 刘正宏, 李世超, 等. 2016. 内蒙古巴林右旗胡都格绍荣岩体的年代学、地球化学、Hf 同位素特征及构造背景[J]. 地球科学, 41(12): 1995−2007.

    [99]

    刘翼飞, 樊志勇, 蒋胡灿, 等. 2014. 内蒙古维拉斯托-拜仁达坝斑岩-热液脉状成矿体系研究[J]. 地质学报, 88(12): 2373−2385.

    [100]

    刘永江, 张兴洲, 金巍, 等. 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943−951.

    [101]

    刘玉强. 1996a. 内蒙古毛登锡铜矿床地质及成因[J]. 矿床地质, (2): 133−143.

    [102]

    刘玉强. 1996b. 毛登锡铜矿床成矿分带及其成因讨论[J]. 矿床地质, (4): 31−42.

    [103]

    龙细友, 陈正钱, 刘志军, 等. 2021. 江西雅山 414 和灵山松树岗钽铌矿成矿特征对比分析研究[J]. 东华理工大学学报 (自然科学版), 44(3): 239−248.

    [104]

    吕耿毅, 富广全, 李永新, 等. 2025. 大兴安岭南段后卜河-马场地区成矿地质特征及其找矿前景分析[J]. 世界有色金属, (2): 56−58.

    [105]

    马星华, 陈斌. 2009. 内蒙古敖仑花钼矿床地质特征、含矿斑岩地球化学及锆石 Hf 同位素研究[J]. 矿物学报, 29(S1): 19−20.

    [106]

    毛景文, 周振华, 武广, 等. 2013. 内蒙古及邻区矿床成矿规律与成矿系列[J]. 矿床地质, 32(4): 716−730.

    [107]

    聂凤军, 温银维, 赵元艺, 等. 2007. 内蒙古白音查干银多金属矿化区地质特征及找矿方向[J]. 矿床地质, (2): 213−220.

    [108]

    潘龙驹, 孙恩守. 1992. 内蒙古甲乌拉银铅锌矿床地质特征[J]. 矿床地质, (1): 45−53.

    [109]

    邵济安, 牟保磊, 朱慧忠, 等. 2010. 大兴安岭中南段中生代成矿物质的深部来源与背景[J]. 岩石学报, 26(3): 649−656.

    [110]

    佘宏全, 李红红, 李进文, 等. 2009. 内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向[J]. 地质学报, 83(10): 1456−1472. doi: 10.3321/j.issn:0001-5717.2009.10.010

    [111]

    田丽. 2024. 大兴安岭南部坤都冷—西哲里木地区早白垩世岩浆作用及对稀有稀土金属成矿的制约[D]. 吉林大学博士学位论文: 111–119

    [112]

    王长明, 张寿庭, 邓军, 等. 2007. 内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因[J]. 岩石矿物学杂志, (5): 409−417.

    [113]

    王金芳, 李英杰, 李红阳, 等. 2017. 内蒙古西乌旗努和特早白垩世A型花岗岩LA−ICP−MS锆石U−Pb年龄及其地质意义[J]. 地质通报, 36(8): 1343−1358. doi: 10.3969/j.issn.1671-2552.2017.08.005

    [114]

    王金芳, 李英杰, 李红阳, 等. 2018a. 内蒙古西乌旗德勒哈达早白垩世A型花岗岩形成时代: 锆石U−Pb定年证据[J]. 中国地质, 45(1): 197−198.

    [115]

    王金芳, 李英杰, 李红阳, 等. 2018b. 内蒙古西乌旗石匠山晚侏罗世-早白垩世A型花岗岩锆石U−Pb年龄及构造环境[J]. 地质通报, 37(Z1): 382−396.

    [116]

    王莉娟, 王京彬, 王玉往, 等. 2001. 黄岗梁夕卡岩型铁锡矿床萤石中流体-熔融包裹体及对矿床成因研究的意义[J]. 地质学报, (2): 287.

    [117]

    王莉娟, 王京彬, 王玉往, 等. 2002. 内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学[J]. 岩石学报, 18(4): 575−584. doi: 10.3969/j.issn.1000-0569.2002.04.017

    [118]

    王喜龙, 刘家军, 翟德高, 等. 2014. 内蒙古林西边家大院银多金属矿床同位素地球化学特征及成矿物质来源探讨[J]. 中国地质, 41(4): 1288−1303.

    [119]

    吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    [120]

    吴福元, 刘小驰, 纪伟强, 等. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.

    [121]

    武广, 刘瑞麟, 陈公正, 等. 2021. 内蒙古维拉斯托稀有金属-锡多金属矿床的成矿作用: 来自花岗质岩浆结晶分异的启示[J]. 岩石学报, 37(3): 637−664.

    [122]

    解成波, 刘明. 2001. 查干布拉根银铅锌 (金) 矿床地质特征及成因类型[J]. 世界地质, (1): 25−29.

    [123]

    徐备, 陈斌. 1997. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学 (D辑: 地球科学), (3): 227−232.

    [124]

    徐备, 赵盼, 鲍庆中, 等. 2014. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 30(7): 1841−1857.

    [125]

    徐巧, 唐果, 邹滔, 等. 2020. 大兴安岭南段巴林左旗浩布高锡多金属矿田成矿系统与靶区预测[J]. 地质与勘探, 56(2): 265−276.

    [126]

    许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646.

    [127]

    杨朝磊, 杨尚松, 祝新友, 等. 2019. 内蒙古莫古吐铁锡矿床地质特征及成因类型[J]. 矿产勘查, 10(3): 467−480. doi: 10.3969/j.issn.1674-7801.2019.03.009

    [128]

    杨朝磊, 邹滔, 祝新友, 等. 2021. 内蒙古莫古吐花岗岩年代学、地球化学与地壳伸展-减薄作用[J]. 中国地质, 48(1): 247−263.

    [129]

    杨奇荻, 郭磊, 王涛, 等. 2014. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 30(7): 1961−1981.

    [130]

    杨武斌, 苏文超, 廖思平, 等. 2011. 巴尔哲碱性花岗岩中的熔体和熔体-流体包裹体: 岩浆-热液过渡的信息[J]. 岩石学报, 27(5): 1493−1499.

    [131]

    杨泽黎, 邱检生, 邢光福, 等. 2014. 江西宜春雅山花岗岩体的成因与演化及其对成矿的制约[J]. 地质学报, 88(5): 850−868.

    [132]

    姚磊, 吕志成, 叶天竺, 等. 2017. 大兴安岭南段内蒙古白音查干 Sn 多金属矿床石英斑岩的锆石U−Pb年龄、地球化学和 Nd−Hf 同位素特征及地质意义[J]. 岩石学报, 33(10): 3183−3199.

    [133]

    叶杰, 刘建明, 张安立, 等. 2002. 沉积喷流型矿化的岩石学证据——以大兴安岭南段黄岗和大井矿床为例[J]. 岩石学报, (4): 585−592, 609−610.

    [134]

    于兵, 王常东, 余弘龙, 等. 2022. 综合物探测量在大兴安岭南段炒米房地区铀矿勘查中的应用[J]. 地质与勘探, 58(5): 1070−1081.

    [135]

    张德全, 雷蕴芬, 罗太阳, 等. 1992. 白音诺铅锌矿床矿化分带及矿液流向[J]. 矿床地质, (3): 203−212.

    [136]

    郑翻身, 蔡红军, 张振法. 2006. 内蒙古拜仁达坝维拉斯托超大型银铅锌矿的发现及找矿意义[J]. 物探与化探, (1): 13−20,25.

    [137]

    周振华, 吕林素, 冯佳睿, 等. 2010. 内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re−Os年龄及其地质意义[J]. 岩石学报, 26(3): 667−679.

  • 加载中

(15)

(5)

计量
  • 文章访问数:  34
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-02-20
修回日期:  2023-06-03
刊出日期:  2025-06-15

目录