内蒙古东部中生代马拉格复式岩体成因及对区域构造演化的启示

李猛兴, 王丽娟, 李珍, 王权, 李娟. 2025. 内蒙古东部中生代马拉格复式岩体成因及对区域构造演化的启示. 地质通报, 44(6): 1087-1105. doi: 10.12097/gbc.2022.06.030
引用本文: 李猛兴, 王丽娟, 李珍, 王权, 李娟. 2025. 内蒙古东部中生代马拉格复式岩体成因及对区域构造演化的启示. 地质通报, 44(6): 1087-1105. doi: 10.12097/gbc.2022.06.030
LI Mengxing, WANG Lijuan, LI Zhen, WANG Quan, LI Juan. 2025. Petrogenesis of the Mesozoic Malage complex pluton in Eastern Inner Mongolia and its enlightenment to the regional tectonic evolution. Geological Bulletin of China, 44(6): 1087-1105. doi: 10.12097/gbc.2022.06.030
Citation: LI Mengxing, WANG Lijuan, LI Zhen, WANG Quan, LI Juan. 2025. Petrogenesis of the Mesozoic Malage complex pluton in Eastern Inner Mongolia and its enlightenment to the regional tectonic evolution. Geological Bulletin of China, 44(6): 1087-1105. doi: 10.12097/gbc.2022.06.030

内蒙古东部中生代马拉格复式岩体成因及对区域构造演化的启示

  • 基金项目: 中国地质调查局项目《1∶5万勃洛浑迪幅(L50E011020)等四幅区调》(编号:1212010781033)及自然资源部研究项目《我国典型地区大气水-地表水-地下水资源综合评估与水平衡研究——以滹滏平原为例》(编号:B201905)
详细信息
    作者简介: 李猛兴(1985− ),男,硕士,高级工程师,从事多金属矿的勘查、调查评价工作。E−mail:282665774@qq.com
    通讯作者: 王丽娟(1981− ),女,硕士,高级工程师,从事地球化学研究。E−mail:32737195@qq.com
  • 中图分类号: P588.1; P542.4

Petrogenesis of the Mesozoic Malage complex pluton in Eastern Inner Mongolia and its enlightenment to the regional tectonic evolution

  • Fund Project: Supported by the China Geological Survey Project (No.1212010781033) and Ministry of Natural Resources Research Project (No. B201905)
More Information
    Author Bio: LI Mengxing, male, born in 1985, master, senior engineer, mainly engaged in the exploration, investigation and evaluation of polymetallic ores; E−mail: 282665774@qq.com .
    Corresponding author: WANG Lijuan, female, born in 1981, master, senior engineer, mainly engaged in geochemical researchp; E-mail: 32737195@qq.com
  • 研究目的

    以兴安地块南段马拉格复式岩体作为研究对象,进一步解读蒙古-鄂霍茨克洋、古太平洋两大构造体系对东北地区影响的时空范围。

    研究方法

    对该岩体不同岩性系统采集样品,进行岩相学、锆石U−Pb定年、岩石地球化学分析研究。

    研究结果

    研究表明,马拉格复式岩体由2期花岗岩组成,早期为石英二长岩、二长花岗岩、碱长花岗岩的岩性组合,形成于晚三叠世(225±2~220±2 Ma);晚期为花岗斑岩,形成于早白垩世晚期(124±1 Ma)。2期岩体属于高钾钙碱性I型花岗岩,区别在于分异程度不同,均具有(Rb、Ba、K)大离子亲石元素及轻稀土元素(LREE)明显富集、(Ta、Nb、P、Ti)高场强元素及重稀土元素不同程度亏损、稀土元素总量偏低(ΣREE为34.25×10−6~217.91×10−6)、中等负Eu异常(δEu=0.40~0.84)的特点。

    结论

    结合区域构造演化,马拉格复式岩体2期岩体指示:晚三叠世兴安地块南段已受到蒙古-鄂霍茨克洋俯冲的远程影响;早白垩世晚期区域上处于伸展背景,推断为蒙古-鄂霍茨克洋闭合后伸展、古太平洋俯冲后撤的共同作用,尤其与后者联系密切。

  • 加载中
  • 图 1  兴蒙造山带东段大地构造略图(a,据Wu et al., 2011)和马拉格复式岩体地质图(b,据山西省地质调查院,2012

    Figure 1. 

    图 2  马拉格复式岩体野外(a,c,e,g)及镜下照片(b,d,f,h)

    Figure 2. 

    图 3  马拉格复式岩体锆石阴极发光图像

    Figure 3. 

    图 4  马拉格复式岩体U−Pb谐和图

    Figure 4. 

    图 5  马拉格复式岩体的SiO2−(K2O+Na2O)(a,据Le et al., 2002)、SiO2−K2O(b,据Morrison et al., 1980)及A/CNK−A/NK图解(c,据Maniar et al., 1989

    Figure 5. 

    图 6  马拉格复式岩体稀土元素球粒陨石标准化配分模式(a)及原始地幔标准化蛛网图(b)(标准化数值据Sun et al., 1989

    Figure 6. 

    图 7  马拉格复式岩体的岩石成因图解(c, d据Whalen et al., 1987

    Figure 7. 

    图 8  马拉格复式岩体Sr−Ba图(a,底图据Wu et al., 2003)、La−La/Yb图(b,底图据Allegre et al., 1978)和La−(La/Yb)N图(c,底图据Wu et al., 2003,分异趋势线上数字代表分离结晶程度)

    Figure 8. 

    图 9  马拉格复式岩体构造环境图(图a,b据Pearce et al., 1984;图c据Condie et al., 1989;图d、e据Gorton et al., 2000;图f据Brown et al., 1982

    Figure 9. 

    表 1  马拉格复式岩体LA−ICP−MS锆石U−Th−Pb测试结果

    Table 1.  LA−ICP−MS zircon U−Th−Pb dating results of the Malage complex pluton

    测点号 含量/10−6 Th/U 同位素比值 年龄/Ma
    Pb* Th U 207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    PM202TW-3:花岗斑岩
    1 2 83 88 0.94 0.0512 0.004 0.1495 0.0118 0.0212 0.0002 249 20 141 11 135 1
    2* 172 307 475 0.65 0.1287 0.0007 5.8833 0.0279 0.3317 0.0022 2080 11 1959 9 1846 12
    3* 85 151 234 0.64 0.1271 0.0007 5.8028 0.0274 0.3311 0.0022 2058 11 1947 9 1844 12
    4 8 325 342 0.95 0.0482 0.0013 0.1283 0.0035 0.0193 0.0001 110 3 123 3 123 1
    5* 77 158 217 0.73 0.1339 0.0007 5.8669 0.0252 0.3178 0.0021 2150 12 1956 8 1779 12
    6 12 496 531 0.93 0.0503 0.0007 0.136 0.0017 0.0196 0.0001 209 3 129 2 125 1
    7* 33 68 90 0.76 0.1296 0.0008 5.8451 0.0295 0.3271 0.0023 2092 12 1953 10 1825 13
    8 10 488 470 1.04 0.0502 0.0009 0.1355 0.0024 0.0196 0.0001 202 4 129 2 125 1
    9 12 515 555 0.93 0.0486 0.0007 0.1317 0.0019 0.0197 0.0001 127 2 126 2 126 1
    10 8 287 348 0.83 0.0500 0.0012 0.1343 0.0029 0.0195 0.0002 196 5 128 3 124 1
    11 23 1151 971 1.19 0.0486 0.0005 0.1310 0.0010 0.0195 0.0001 129 1 125 1 125 1
    12 11 453 515 0.88 0.0485 0.0007 0.1310 0.0018 0.0196 0.0001 124 2 125 2 125 1
    13 6 209 300 0.70 0.0499 0.0014 0.1345 0.0038 0.0196 0.0001 190 5 128 4 125 1
    14 10 388 484 0.80 0.0481 0.0008 0.1299 0.0019 0.0196 0.0001 103 2 124 2 125 1
    15 6 225 294 0.76 0.0496 0.0015 0.1328 0.0040 0.0194 0.0001 176 5 127 4 124 1
    16* 6 225 270 0.83 0.0489 0.0014 0.1460 0.0041 0.0216 0.0001 145 4 138 4 138 1
    17* 121 237 329 0.72 0.1259 0.0007 5.6780 0.0261 0.3272 0.0022 2041 11 1928 9 1825 12
    18 8 260 379 0.69 0.0484 0.0009 0.1298 0.0024 0.0194 0.0001 119 2 124 2 124 1
    19 4 141 145 0.97 0.0496 0.0021 0.1482 0.0064 0.0217 0.0002 176 7 140 6 138 1
    20* 7 245 292 0.84 0.0481 0.0009 0.1433 0.0027 0.0216 0.0001 102 2 136 3 138 1
    21 5 198 243 0.82 0.0492 0.0019 0.1312 0.0049 0.0193 0.0001 159 6 125 5 123 1
    22 23 865 1071 0.81 0.0489 0.0008 0.1305 0.0016 0.0194 0.0001 142 2 125 2 124 1
    23 12 390 571 0.68 0.0492 0.0011 0.1321 0.0025 0.0195 0.0001 158 3 126 2 124 1
    24 5 187 252 0.74 0.0502 0.0023 0.1333 0.0058 0.0193 0.0001 206 9 127 6 123 1
    25* 8 327 331 0.99 0.0507 0.001 0.151 0.0028 0.0216 0.0001 228 4 143 3 138 1
    PM202TW-2:碱长花岗岩
    1 13 379 277 1.37 0.0517 0.0009 0.2486 0.0043 0.0349 0.0002 274 5 225 4 221 1
    2* 15 439 311 1.41 0.0510 0.0007 0.2356 0.0035 0.0335 0.0002 242 3 215 3 212 1
    3* 15 524 277 1.89 0.0526 0.0004 0.2402 0.0016 0.0331 0.0002 313 3 219 1 210 1
    4 17 471 399 1.18 0.0528 0.0008 0.2543 0.0035 0.0349 0.0002 322 5 230 3 221 1
    5* 10 261 223 1.17 0.0509 0.0012 0.2584 0.0065 0.0368 0.0002 236 6 233 6 233 1
    6* 13 313 489 0.64 0.0506 0.0009 0.1775 0.0029 0.0255 0.0002 221 4 166 3 162 1
    7 9 215 215 1.00 0.0522 0.0011 0.2503 0.0046 0.0348 0.0003 292 6 227 4 221 2
    8* 8 169 180 0.94 0.0514 0.0010 0.2663 0.0049 0.0376 0.0003 257 5 240 4 238 2
    9* 7 181 171 1.06 0.0509 0.0011 0.2635 0.0051 0.0376 0.0003 235 5 238 5 238 2
    10* 11 315 197 1.60 0.0504 0.0005 0.2515 0.0029 0.0362 0.0003 216 2 228 3 229 2
    11* 9 255 214 1.19 0.0517 0.0009 0.2689 0.0044 0.0377 0.0002 273 5 242 4 239 2
    12* 15 370 301 1.23 0.0499 0.0006 0.2444 0.0030 0.0355 0.0002 191 2 222 3 225 1
    13 21 565 523 1.08 0.0509 0.0005 0.2460 0.0023 0.0350 0.0002 237 2 223 2 222 1
    14* 16 484 613 0.79 0.0513 0.0005 0.1735 0.0016 0.0245 0.0001 254 3 162 1 156 1
    15 6 149 159 0.94 0.0507 0.0017 0.2431 0.0074 0.0348 0.0003 227 8 221 7 220 2
    16 9 226 233 0.97 0.0515 0.0010 0.2470 0.0047 0.0348 0.0002 263 5 224 4 220 1
    17 21 531 259 2.05 0.0523 0.0007 0.2505 0.0048 0.0347 0.0003 298 4 227 4 220 2
    18 8 184 194 0.95 0.0506 0.0015 0.2427 0.0069 0.0348 0.0002 224 7 221 6 220 1
    19* 11 332 242 1.37 0.0516 0.0008 0.2611 0.0040 0.0367 0.0002 267 4 236 4 232 1
    20 7 155 176 0.88 0.0507 0.0016 0.2431 0.0074 0.0347 0.0002 229 7 221 7 220 2
    21 11 268 288 0.93 0.0508 0.0014 0.2433 0.0062 0.0347 0.0002 231 6 221 6 220 1
    22* 5 207 152 1.36 0.0493 0.0012 0.1774 0.0045 0.0261 0.0002 164 4 166 4 166 1
    PM203TW-1:石英二长岩
    1 10 290 213 1.36 0.0512 0.0008 0.265 0.0044 0.0375 0.0003 252 4 239 4 237 2
    2 10 227 217 1.05 0.0511 0.0011 0.2658 0.0056 0.0377 0.0003 247 5 239 5 239 2
    3 9 177 209 0.85 0.0505 0.0010 0.2612 0.0047 0.0375 0.0003 217 4 236 4 238 2
    4 13 301 296 1.02 0.0519 0.0006 0.2703 0.0033 0.0378 0.0003 281 3 243 3 239 2
    5 9 198 217 0.91 0.0516 0.0010 0.2674 0.0046 0.0376 0.0003 268 5 241 4 238 2
    6 7 168 177 0.95 0.0527 0.0013 0.2525 0.0063 0.0348 0.0002 314 8 229 6 220 1
    7* 10 213 315 0.67 0.0501 0.0006 0.1821 0.0023 0.0264 0.0002 199 3 170 2 168 1
    8 11 261 244 1.07 0.0513 0.0007 0.2647 0.0038 0.0374 0.0002 253 4 238 3 237 2
    9 6 130 157 0.83 0.0508 0.0019 0.2485 0.0092 0.0355 0.0002 230 9 225 8 225 1
    10 8 173 194 0.89 0.0525 0.0012 0.2573 0.0057 0.0356 0.0002 305 7 232 5 225 1
    11 4 79 94 0.84 0.0508 0.0016 0.2614 0.0081 0.0373 0.0003 230 7 236 7 236 2
    12 8 167 180 0.93 0.0512 0.0012 0.2664 0.0062 0.0377 0.0002 251 6 240 6 239 2
    13 5 121 119 1.02 0.0514 0.0011 0.2663 0.0056 0.0376 0.0003 257 6 240 5 238 2
    14* 17 270 262 1.03 0.0530 0.0006 0.4170 0.0043 0.0570 0.0003 331 4 354 4 357 2
    15 16 461 349 1.32 0.0506 0.0008 0.2476 0.0034 0.0355 0.0002 222 3 225 3 225 1
    16 7 146 165 0.88 0.0515 0.0014 0.2666 0.0073 0.0376 0.0002 262 7 240 7 238 1
    17 6 125 124 1.01 0.0496 0.0012 0.2468 0.0060 0.0361 0.0002 177 4 224 5 228 1
    18 6 126 145 0.87 0.0506 0.0012 0.2477 0.0057 0.0355 0.0002 221 5 225 5 225 1
    19 9 212 208 1.02 0.0512 0.0009 0.2497 0.0043 0.0354 0.0002 250 4 226 4 224 1
    20 8 183 162 1.13 0.0510 0.0014 0.2690 0.0073 0.0383 0.0002 239 6 242 7 242 1
    21 2 51 56 0.92 0.0503 0.0037 0.2615 0.0191 0.0377 0.0003 209 15 236 17 239 2
    22 8 237 180 1.32 0.0518 0.0014 0.2542 0.0068 0.0356 0.0002 276 7 230 6 225 1
    23 9 227 212 1.07 0.0510 0.0009 0.2646 0.0045 0.0377 0.0002 239 4 238 4 238 2
    24 12 276 267 1.03 0.0510 0.0008 0.2638 0.0038 0.0375 0.0002 241 4 238 3 237 1
    25 12 321 269 1.19 0.0507 0.0009 0.2636 0.0045 0.0377 0.0002 229 4 238 4 238 2
      测试单位:天津地质调查中心实验室;标注*为不谐和测试点
    下载: 导出CSV

    表 2  马拉格复式岩体主量、微量、稀土元素分析结果

    Table 2.  Major, trace and rare earth element compositions of the Malage complex pluton

    元素 202-42 202-46 202-48 202-52 202-53 202-54 203-3 202-43 202-44 202-45 202-51 202-47 203-4 202-50
    花岗斑岩 碱长花岗岩 二长花岗岩 石英二长岩
    SiO2 77.54 77.88 72.99 74.70 74.79 74.73 76.34 78.30 73.69 74.53 70.68 67.34 66.51 58.91
    TiO2 0.20 0.12 0.39 0.26 0.25 0.25 0.21 0.14 0.31 0.33 0.49 0.62 0.74 0.69
    Al2O3 11.59 11.87 13.51 12.94 12.89 13.21 12.42 11.51 13.84 13.43 14.6 15.14 15.55 16.55
    Fe2O3 0.94 0.58 1.55 1.29 1.20 1.55 1.05 0.59 0.69 0.83 1.69 2.77 2.21 2.07
    FeO 0.18 0.15 0.17 0.35 0.42 0.28 0.22 0.12 0.15 0.13 0.70 0.22 1.42 1.20
    MnO 0.02 0.02 0.05 0.04 0.05 0.01 0.05 0.02 0.02 0.02 0.12 0.17 0.09 0.22
    MgO 0.16 0.20 0.32 0.36 0.53 0.42 0.26 0.09 0.15 0.22 0.67 0.80 1.19 0.87
    CaO 0.35 0.66 0.67 0.34 0.59 0.29 0.32 0.35 1.27 1.28 1.06 4.31 2.42 4.29
    Na2O 2.95 2.54 3.08 2.61 2.24 2.53 3.52 3.23 4.00 4.14 4.48 3.83 4.01 4.36
    K2O 5.15 4.89 6.06 5.57 5.03 4.93 4.62 4.86 4.64 4.04 3.68 3.12 4.19 5.81
    P2O5 0.03 0.01 0.04 0.06 0.06 0.06 0.02 0.01 0.08 0.07 0.12 0.14 0.17 0.17
    CO2 0.04 0.06 0.06 1.15 0.16 0.1 0.06 0.08 0.16 0.06 0.29 0.10 0.06 3.16
    H2O+ 0.69 0.87 0.88 0.08 1.58 1.44 0.76 0.58 0.82 0.74 1.19 1.20 1.17 1.45
    总量 99.84 99.85 99.77 99.75 99.79 99.8 99.85 99.88 99.82 99.82 99.77 99.76 99.73 99.75
    Na2O+K2O 8.10 7.43 9.14 8.18 7.27 7.46 8.14 8.09 8.64 8.18 8.16 6.95 8.20 10.17
    K2O/Na2O 1.75 1.93 1.97 2.13 2.25 1.95 1.31 1.50 1.16 0.98 0.82 0.81 1.04 1.33
    A/CNK 1.05 1.11 1.05 1.18 1.26 1.32 1.09 1.03 1.00 0.99 1.10 0.86 1.00 0.78
    σ43 1.9 1.58 2.78 2.11 1.65 1.74 1.98 1.85 2.42 2.12 2.39 1.96 2.83 6.32
    TFeO/MgO 6.41 3.36 4.89 4.19 2.83 3.98 4.48 7.23 5.14 3.98 3.31 3.39 2.86 3.52
    NK/A 0.90 0.80 0.86 0.80 0.71 0.72 0.87 0.92 0.84 0.83 0.78 0.64 0.72 0.81
    DI 94.87 92.78 91.22 89.23 90.9 92.04 95.11 96.73 92.52 91.85 88.79 75.82 80.17 82.15
    Mg# 21.93 34.90 26.92 30.03 38.89 31.12 28.68 19.94 25.95 31.13 35.21 34.70 38.60 33.85
    Cr - - - 0.34 3.54 - 7.22 1.33 - 0.71 9.50 - 13.20 15.60
    Ni - - - 5.52 17.18 - 9.07 9.84 - 8.35 10.80 - 14.10 9.61
    Rb - - - 216 228 - 155 174 - 109 89 - 96 150
    Nb - - - 11.07 12.90 - 13.84 12.50 - 12.00 11.00 - 12.60 16.60
    Ta - - - 1.66 2.74 - 1.40 1.96 - 1.60 1.55 - 1.23 1.84
    Th - - - 24.15 26.12 - 21.49 28.20 - 17.20 11.90 - 9.49 19.50
    Ba - - - 944.4 831.5 - 351.7 215.0 - 457.0 634.0 - 847.0 1024.0
    Sr - - - 251.5 208.8 - 69.21 75.7 - 162.0 274.0 - 608.0 199.0
    Zr - - - 164.9 172.6 - 151.2 83.5 - 136.0 191.0 - 248.0 292.0
    Hf - - - 5.38 5.67 - 5.54 3.76 - 4.79 5.72 - 6.68 8.33
    La - - - 32.0 45.4 - 6.9 21.9 - 37.4 31.1 - 39.5 49.2
    Ce - - - 69.3 71.4 - 11.5 44.9 - 64.9 61.0 - 75.1 93.9
    Pr - - - 6.91 10.10 - 1.51 4.70 - 9.10 6.50 - 9.08 11.20
    Nd - - - 23.4 35.5 - 5.2 15.3 - 31.3 22.6 - 33.1 40.3
    Sm - - - 3.95 6.70 - 1.03 2.65 - 4.94 3.84 - 5.71 6.70
    Eu - - - 0.53 0.90 - 0.20 0.32 - 0.86 0.85 - 1.40 1.30
    Gd - - - 3.20 5.52 - 1.27 2.07 - 3.60 3.22 - 4.20 5.12
    Tb - - - 0.48 0.82 - 0.24 0.31 - 0.54 0.43 - 0.63 0.73
    Dy - - - 2.66 4.37 - 1.94 1.74 - 2.67 2.23 - 3.30 3.77
    Ho - - - 0.54 0.83 - 0.45 0.34 - 0.48 0.43 - 0.60 0.71
    Er - - - 1.72 2.37 - 1.46 1.07 - 1.43 1.30 - 1.71 2.08
    Tm - - - 0.28 0.37 - 0.26 0.20 - 0.21 0.20 - 0.26 0.32
    Yb - - - 2.01 2.55 - 1.98 1.48 - 1.59 1.47 - 1.79 2.24
    Lu - - - 0.29 0.37 - 0.31 0.21 - 0.24 0.22 - 0.26 0.34
    Y - - - 15.6 22.8 - 13.8 10.0 - 12.8 11.6 - 16.9 20.3
    ΣREE - - - 147.27 187.20 - 34.25 97.19 - 159.26 135.39 - 176.64 217.91
    LREE - - - 136.09 170.00 - 26.34 89.77 - 148.50 125.89 - 163.89 202.60
    HREE - - - 11.18 17.20 - 7.91 7.42 - 10.76 9.50 - 12.75 15.31
    LREE/HREE - - - 12.17 9.88 - 3.33 12.10 - 13.80 13.24 - 12.85 13.23
    δEu - - - 0.44 0.44 - 0.52 0.40 - 0.60 0.72 - 0.84 0.65
    Nb/Ta - - - 6.67 4.71 - 9.89 6.38 - 7.50 7.10 - 10.24 9.02
    (La/Yb)N - - - 11.42 12.78 - 2.52 10.62 - 16.88 15.18 - 15.84 15.76
    (La/Sm)N - - - 5.23 4.37 - 4.36 5.34 - 4.89 5.23 - 4.47 5.56
    (Gd/Yb)N - - - 1.32 1.79 - 0.53 1.16 - 1.87 1.81 - 1.94 1.89
    TZr/℃ - - - 805 816 - 791 738 - 769 805 - 811 782
      备注:主量元素含量单位为%,微量和稀土元素含量单位为10−6,其中标“-”表示未做该项分析,样品测试单位为湖北省地质实验测试中心;Mg#=100×Mg2+/(Mg2++Fe2+
    下载: 导出CSV
  • [1]

    Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic process[J]. Earth and Plantary Science Letters, 38: 1−25. doi: 10.1016/0012-821X(78)90123-1

    [2]

    Brown G C, Nordin G L. 1982. An epizootic model of an insect−fungal pathogen system[J]. Mathematical Biology, 44(5): 731−739. doi: 10.1016/S0092-8240(82)80011-6

    [3]

    Chappell B W. 1999. Aluminium saturation in I−and S−type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535−551. doi: 10.1016/S0024-4937(98)00086-3

    [4]

    Chen J S, Li W W, Shi Y, et al. 2022. Evolution of the eastern segment of the northern margin of the North China Craton in the Triassic: Evidence from the geochronology and geochemistry of magmatic rocks in Kaiyuan area, North Liaoning[J]. Acta Petrologica Sinica, 38(8): 2216−2248(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.08.03

    [5]

    Condie K C. 1989. Geochemical changes in basalts and andesites across the Archean−Proterozoic boundary: identification and significance[J]. Lithos, 23: 1−18. doi: 10.1016/0024-4937(89)90020-0

    [6]

    Feng Z Q, Dong L, Tong Y, et al. 2021. Impacts of the closure of eastern Mongolia−Okhotsk Ocean on formation and evolution of Songliao Basin[J]. Oil & Gas Geology, 42(2): 251−264(in Chinese with English abstract).

    [7]

    Fu A Z, Yang W P, Liu Y, et al. 2022. Discovery of Late Triassic Adakitic Rocks at Nianzishan in the Central Great Xing’an Range and Its Geological Significance[J]. Geoscience, 36(1): 266−281(in Chinese with English abstract).

    [8]

    Fu J Y, Na F C, Li Y C, et al. 2021. Southward subduction of the Mongo−Okhotsk Ocean: Middle Triassic magmatic records of the“Luomahu Group” in northwest of Lesser Khingan Mountains[J]. Geological Bulletin of China, 40(6): 889−904(in Chinese with English abstract).

    [9]

    Gorton M P J, Schandl E S. 2000. From continents to Island Arcs: a geochemical index of tectonic setting for arc−related and within−plate felsic to intermediate volcanic rocks[J]. Canadian Mineralogist, 38(5): 1065−1073. doi: 10.2113/gscanmin.38.5.1065

    [10]

    Guo C L, Wang D H, Chen Y C, et al. 2007. SHRIMP U−Pb zircon ages and major element, trace element and Nd−Sr isotope geochemical studies of a Neoproterozoic granitic complex in western Sichuan: Petrogenesis and tectonic significance[J]. Acta Petrologica Sinica, (10): 2457−2470(in Chinese with English abstract).

    [11]

    Hao S Q, Rong X W, Wang L J, et al. 2022. Discovery of the Late Carboniferous alkali−feldspar granite from the Bulinmiao area in Inner Mongolia and its constraints on the evolution of the Paleo−Asian−Ocean[J]. Geological Bulletin of China, 41(9): 1613−1623(in Chinese with English abstract).

    [12]

    Huang S Q, Dong S W, Hu J M, et al. 2016. The formation and tectonic evolution of the Mongolia−Okhotsk belt[J]. Acta Geologica Sinica, 90(9): 2192−2205(in Chinese with English abstract).

    [13]

    Ji Z, Ge W C, Yang H, et al. 2018. The Late Triassic andean−type andesite from the central Great Xing'an Range: Products of the southward subduction of the Mongol−Okhotsk oceanic plate[J]. Acta Petrologica Sinica, 34(10): 2917−2930(in Chinese with English abstract).

    [14]

    King P L, White A J R, Chappell B W. 1997. Characterization and origin of aluminous A−type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 38(3): 371−391. doi: 10.1093/petroj/38.3.371

    [15]

    Le M R W. 2002. Igneous Rocks: A classification and glossary of terms(2nd Edition[M]. Cambridge University Press, 33−39.

    [16]

    Li Q, Cheng X Q, Chen W, et al. 2021. Discovery of Early−Middle Triassic andesite in Erguna massif and its indication of Southward Subduction of Mongol−Okhotsk Ocean Plate[J]. Earth Science, 46(8): 2768−2785(in Chinese with English abstract).

    [17]

    Li J Y, Liu J F, Qu J F, et al. 2019. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 35(10): 2989−3016(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.04

    [18]

    Li T D, Liu Y, Ding X Z, et al. 2022. Ten advances in regional geological research of China in recent years[J]. Acta Geologica Sinica, 96(5): 1544−1581(in Chinese with English abstract).

    [19]

    Li Y, Ding L L, Xu W L, et al. 2015. Geochronology and geochemistry of muscovite granite in Sunwu area, NE China: Implications for the timing of closure of the Mongol−Okhotsk Ocean[J]. Acta Petrologica Sinica, 31(1): 56−66(in Chinese with English abstract).

    [20]

    Li Y, Li W Q, Sun J L. 2022. Geochronology and geochemistry of Late Triassic−Early Jurassic granites in Moerdaoga area, NE China and its tectonic implications[J]. Acta Petrologica Sinica, 38(10): 3021−3036(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.10.08

    [21]

    Li R L, Zhu Q Q, Hou K J, et al. 2012. Zircon U−Pb dating and Hf isotopic compositions of granite porphyry and rhyolite porphyry from Jingniu basin in the Middle−Lower Yangtze River Belt and its geological significance[J]. Acta Petrologica Sinica, 28(10): 3347−3360(in Chinese with English abstract).

    [22]

    Li S C, Li Y F, Wang X A, et al. 2016. Delineation of the Late Triassic granitic pluton from the middle part of Greater Xing’an Mountains showing tetrad REE patterns and its geological implications[J]. Acta Petrologica Sinica, 32(9): 2793−2806(in Chinese with English abstract).

    [23]

    Li J Y, Guo F, Li C W, et al. 2014. Neodymium isotopic variations of Late Paleozoic to Mesozoic I−and Atype granitoids in NE China: Implications for tectonic evolution[J]. Acta Petrologica Sinica, 30(7): 1995−2008(in Chinese with English abstract).

    [24]

    Li W L, Yang X Q, Qian C, et al. 2022. Composition of the Fukeshan magmatic arc in the northern Great Xing' an Range: Constraints on the southward subduction of the Mongol−Okhotsk oceanic plate[J]. Earth Science Frontiers, 29(2): 146−163(in Chinese with English abstract).

    [25]

    Li W X, Li X H, Li Z X, et al. 2007. U−Pb zircon, geochemical and Sr−Nd−Hf isotopic constraints on age and origin of Jurassic I− and A−type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat−slab?[J]. Lithos, 96(1): 186−204.

    [26]

    Liu J F, Li J Y, Zhao S, et al. 2022. Crustal accretion and Paleo−Asian Ocean evolution during Late Paleozoic−Early Mesozoic in southeastern Central Asian Orogenic Belt: Evidence from magmatism in Linxi−Dongwuqi area, southeastern Inner Mongolia[J]. Acta Petrologica Sinica, 38(8): 2181−2215(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.08.02

    [27]

    Liu X W, Yang H, Dong Y, et al. 2015. Zircon U−Pb ages and geochemical characteristics of the Triassic granites from the Mingshui area in the Da Hinggan Mountains and their tectonic implications[J]. Acta Petrologica et Mineralogica, 34(2): 143−158(in Chinese with English abstract).

    [28]

    Liu Y S, Gao S, Hu Z C. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans−North China Orogen: U−Pb dating, hf isotopes and trace elements in zircons from Mantle Xenoliths[J]. Journal of Petrology, 51(1/2): 537−571.

    [29]

    Ludwig K R. 2003. Isoplot 3.0: A geochronological toolkit for microsoft excel[M]. Berkeley Geochron Centre Special Publication, (4): 1−70.

    [30]

    Morrison W G. 1980. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 13(1): 97−108. doi: 10.1016/0024-4937(80)90067-5

    [31]

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [32]

    Na F C, Fu J Y, Song W M, et al. 2019. Petrological and Geochronological Study of Keluo Complex in Northwestern Lesser Xing'an Range[J]. Earth Science, 44(10): 3265−3278(in Chinese with English abstract).

    [33]

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    [34]

    Qiu J S, Hu J, Wang X L, et al. 2005. The Baishigang pluton in Heyuan, Guangdong Province: A highly fractionated I−type granite[J]. Acta Geologica Sinica, (4): 503−514(in Chinese with English abstract).

    [35]

    Rapp R P, Shimizu N, Norman M D, et al. 1999. Reaction between slab−derived melts and peridotite in the mantle wedge: experimental constrains at 3.8 GPa[J]. Chemical Geology, 160(4): 335−356. doi: 10.1016/S0009-2541(99)00106-0

    [36]

    Rudnick R L, Gao S. 2003. Composition of the continental crust[C]// Rudnick R L. Treatise on geochemistry. Oxford: Elsevier: 1−64.

    [37]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London, Specical Publications, 42(1): 313−345.

    [38]

    Tang Z Y, Sun D Y, Gou J. 2022. Triassic magmatism in Northeast China: Implications for spatiotemporal distribution, continental crustal accretion, and geodynamic evolution[J]. International Geology Review, 64(6): 770−798. doi: 10.1080/00206814.2021.1881919

    [39]

    Tang J, Xu W L, Wang F. 2016. Rock associations and their spatial−temporal variations of the Early Mesozoic igneous rocks in the NE Asia: Constraints on the initial subduction timing of the Paleo−Pacific Plate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1181−1194 (in Chinese with English abstract).

    [40]

    Tang J, Xu W L, Wang F, et al. 2018. Subduction history of the Paleo−Pacific slab beneath Eurasian continent: Mesozoic−Paleogene magmatic records in Northeast Asia[J]. Earth Science, 48(5): 549−583(in Chinese with English abstract).

    [41]

    Tong Y, Hong D V, Wang T, et al. 2010. Spatial and temporal distribution of granitoids in the middle segment of the Sino−Mongolian border and its tectonic and metallogenic implications[J]. Acta Geoscientica Sinica, 31(3): 395−412(in Chinese with English abstract).

    [42]

    Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth Planet. Sci. Lett., 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X

    [43]

    Wang X S, Bi X W, Leng CB, et al. 2014. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo−Cu−(W) mineralization in the southern Yidun Arc, SW China: Implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 61: 73−95. doi: 10.1016/j.oregeorev.2014.01.006

    [44]

    Wang M, Wang C, Hu Y, et al. 2018. Geochemistry, geochronology, whole rock Sr−Nd and zircon Hf isotopes of the Wulansala granite pluton in Xiemisitai area, Xinjiang[J]. Acta Petrologica Sinica, 34(3): 618−636(in Chinese with English abstract).

    [45]

    Wang T, Zhang J J, Li X Z, et al. 2022. Distinctive spatial−temporal evolution of Late Paleozoic to Mesozoic magmatic systems in Northeast Asia: Evidences for identification of the extent and superposition of multiple plate tectonic regimes[J]. Earth Science Frontier, 29(2): 28−44(in Chinese with English abstract).

    [46]

    Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contrib. Miner. Petrol., 95(4): 407−419. doi: 10.1007/BF00402202

    [47]

    Wu F Y, Li X H, Yang J H, et al. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, (6): 1217−1238(in Chinese with English abstract).

    [48]

    Wu F Y, Liu X C, Ji W Q, et al. 2017. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 47(7): 745−765(in Chinese with English abstract).

    [49]

    Wu F Y, Jahn B M, Wilder S A, et al. 2003. Highly fractionated I−type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 66(3/4): 241−273. doi: 10.1016/S0024-4937(02)00222-0

    [50]

    Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1−30. doi: 10.1016/j.jseaes.2010.11.014

    [51]

    Xiao W J, Windley B F, Hao J, et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 22(6): 1069−1088.

    [52]

    Xu B, Zhao P, Bao Q Z, et al. 2014. Preliminary study on the pre−Mesozoic tectonic unit division of the Xing−Meng Orogenic Belt (XMOB)[J]. Acta Petrologica Sinica, 30(7): 1841−1857(in Chinese with English abstract).

    [53]

    Xu W L, Wang F, Pei F P, et al. 2013. Mesozoic tectonic regimes and regional ore−forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 29(2): 339−353(in Chinese with English abstract).

    [54]

    Xu W L, Sun C Y, Tang J, et al. 2019. Basement nature and tectonic evolution of the Xing’an−Mongolian orogenic belt[J]. Earth Science, 44(5): 1620−1646(in Chinese with English abstract).

    [55]

    Xu W L, Wang Y N, Wang F, et al. 2022. Evolution of western Pacific subduction zones: Constraints from accretionary complexes in NE Asian continental margin[J]. Geological Review, 68(1): 1−17(in Chinese with English abstract).

    [56]

    Zhang J, Zhang D J, Zheng Y J, et al. 2020. LA−ICP−MS U−Pb dating of detrital zircons and geological implications of Linxi Formation in Linxi County, Inner Mongolia[J]. Journal of Jilin University (Earth Science Edition), 50(4): 1090−1103(in Chinese with English abstract).

    [57]

    Zhang P C, Peng B, Zhao J Z, et al. 2022. Petrogenesis of the Syenogranite in the Xiaowulangou Area of Southern Great Xing’an Range: Constraints from Zircon LA−ICP−MS U−Pb Geochronology, Geochemistry and Hf Isotopes[J]. Earth Science, 47(8): 2889−2901(in Chinese with English abstract).

    [58]

    Zhang C, Guo W, Xu Z Y, et al. 2014. Study on geochronology, petrogenesis and tectonic implications of monzogranite from the Yanbian area, eastern Jilin Province[J]. Acta Petrologica Sinica, 30(2): 512−526(in Chinese with English abstract).

    [59]

    Zhao P, Appel E, Xu B, et al. 2020. First paleomagnetic results from the Early Permian volcanic rocks in Northeastern Mongolia: evolutional implication for the Paleo−Asian Ocean and the Mongol−Okhotsk Ocean[J]. Journal of Geophysical Research: Solid Earth, 125(2): E2019jb017338. doi: 10.1029/2019JB017338

    [60]

    Zhao Y D, Che J Y, Xu F M, et al. 2018. Late Jurassic adakitic granites in northeastern Xing’an block: Geochronology and geochemical characteristics and tectonic significance[J]. Earth Science Frontier, 25(6): 240−253(in Chinese with English abstract).

    [61]

    Zheng Y F, Gao P. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries[J]. Lithos, 402/403: 10623.

    [62]

    Zhou J B, Pu X G, Hou H S, et al. 2018. The Mesozoic accretionary complex in NE China and its tectonic implications for the subduction of the Paleo−Pacific plate beneath the Eurasia[J]. Acta Petrologica Sinica, 34(10): 2845−2856(in Chinese with English abstract).

    [63]

    陈井胜, 李崴崴, 时溢, 等. 2022. 华北板块北缘东段三叠纪构造演化——来自辽北开原岩浆岩年代学、地球化学的证据[J]. 岩石学报, 38(8): 2216−2248. doi: 10.18654/1000-0569/2022.08.03

    [64]

    符安宗, 杨文鹏, 刘渊, 等. 2022. 大兴安岭中段碾子山地区晚三叠世埃达克质侵入岩的发现及其地质意义[J]. 岩石学报, 36(1): 266−281.

    [65]

    付俊彧, 那福超, 李仰春, 等. 2021. 蒙古-鄂霍茨克洋南向俯冲: 小兴安岭西北部落马湖群中三叠世岩浆记录[J]. 地质通报, 40(6): 889−904. doi: 10.12097/j.issn.1671-2552.2021.06.006

    [66]

    冯志强, 董立, 童英, 等. 2021. 蒙古-鄂霍茨克洋东段关闭对松辽盆地形成与演化的影响[J]. 石油与天然气地质, 42(2): 251−264.

    [67]

    郭春丽, 王登红, 陈毓川, 等. 2007. 川西新元古代花岗质杂岩体的锆石SHRIMP U−Pb年龄、元素和Nd−Sr同位素地球化学研究: 岩石成因与构造意义[J]. 岩石学报, 23(10): 2457−2470. doi: 10.3969/j.issn.1000-0569.2007.10.014

    [68]

    郝书清, 戎秀伟, 王丽娟, 等. 2022. 内蒙古布林庙晚石炭世碱长花岗岩的发现及其对古亚洲洋演化的制约[J]. 地质通报, 41(9): 1613−1623. doi: 10.12097/j.issn.1671-2552.2022.09.010

    [69]

    黄始琪, 董树文, 胡健民, 等. 2016. 蒙古-鄂霍次克构造带的形成与演化[J]. 地质学报, 90(9): 2192−2205. doi: 10.3969/j.issn.0001-5717.2016.09.008

    [70]

    纪政, 葛文春, 杨浩, 等. 2018. 大兴安岭中段晚三叠世安第斯安山岩: 蒙古-鄂霍茨克大洋板片南向俯冲的产物[J]. 岩石学报, 34(10): 2917−2930.

    [71]

    李锦轶, 刘建峰, 曲军峰, 等. 2019. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 35(10): 2989−3016.

    [72]

    李强, 程学芹, 陈伟, 等. 2021. 额尔古纳地块早—中三叠世安山岩的发现及其对蒙古-鄂霍茨克大洋板片南向俯冲的指示[J]. 地球科学, 46(8): 2768−2785.

    [73]

    李廷栋, 刘勇, 丁孝忠, 等. 2022. 中国区域地质研究的十大进展[J]. 地质学报, 96(5): 1544−1581. doi: 10.3969/j.issn.0001-5717.2022.05.004

    [74]

    李宇, 丁磊磊, 许文良, 等. 2015. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古-鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 31(1): 56−66.

    [75]

    李宇, 李文庆, 孙金龙, 等. 2022. 内蒙古莫尔道嘎地区晚三叠世—早侏罗世花岗岩的年代学、地球化学及其地质意义[J]. 岩石学报, 38(10): 3021−3036. doi: 10.18654/1000-0569/2022.10.08

    [76]

    李瑞玲, 朱乔乔, 侯可军. 2012. 长江中下游金牛盆地花岗斑岩和流纹斑岩的锆石U−Pb年龄、Hf同位素组成及其地质意义[J]. 岩石学报, 28(10): 3347−3360.

    [77]

    李世超, 李永飞, 王兴安, 等. 2016. 大兴安岭中段晚三叠世四分组效应花岗岩的厘定及其地质意义[J]. 岩石学报, 32(9): 2793−2806.

    [78]

    李竞妍, 郭峰, 李超文, 等. 2014. 东北地区晚古生代—中生代I型和A型花岗岩Nd同位素变化趋势及其构造意义[J]. 岩石学报, 30(7): 1995−2008.

    [79]

    李文龙, 杨晓平, 钱程, 等. 2022. 大兴安岭北段富克山岩浆弧的组成: 对蒙古-鄂霍茨克洋向南俯冲的制约[J]. 地学前缘, 29(2): 146−163.

    [80]

    刘建峰, 李锦轶, 赵硕, 等. 2022. 中亚造山带东南部晚古生代—早中生代地壳增生和古亚洲洋演化: 来自内蒙古东南部林西-东乌旗地区岩浆岩的证据[J]. 岩石学报, 38(8): 2181−2215. doi: 10.18654/1000-0569/2022.08.02

    [81]

    刘希雯, 杨浩, 董玉, 等. 2015. 大兴安岭明水地区三叠纪花岗岩的锆石U−Pb年龄、地球化学特征及构造意义[J]. 岩石矿物学杂志, 34(2): 143−158. doi: 10.3969/j.issn.1000-6524.2015.02.002

    [82]

    那福超, 付俊彧, 宋维民, 等. 2019. 小兴安岭西北部科洛杂岩的岩石学与年代学[J]. 地球科学, 44(10): 3265−3278.

    [83]

    内蒙古自治区地质局. 1979.1: 20万贺斯格乌拉牧场幅区域地质调查报告[R].

    [84]

    邱检生, 胡建, 王孝磊, 等. 2008. 广东河源白石冈岩体: 一个高分异的I 型花岗岩[J]. 地质学报, 79(4): 503−514.

    [85]

    山西省地质调查院. 2012.1∶5万勃洛浑迪等四幅区域地质调查报告[R].

    [86]

    唐杰, 许文良, 王枫, 等. 2016. 东北亚早中生代火成岩组合的时空变异: 对古太平洋板块俯冲开始时间的制约[J]. 矿物岩石地球化学通报, 35(6): 1181−1194. doi: 10.3969/j.issn.1007-2802.2016.06.009

    [87]

    唐杰, 许文良, 王枫, 等. 2018. 古太平洋板块在欧亚大陆下的俯冲历史: 东北亚陆缘中生代—古近纪岩浆记录[J]. 中国科学: 地球科学, 48(5): 549−583.

    [88]

    童英, 洪大卫, 王涛, 等. 2010. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J]. 地球学报, 31(3): 395−412.

    [89]

    王敏, 王居里, 胡洋, 等. 2018. 新疆谢米斯台地区乌兰萨拉岩体的地球化学、年代学及全岩Sr−Nd和锆石Hf同位素研究[J]. 岩石学报, 34(3): 618−636.

    [90]

    王涛, 张建军, 李舢, 等. 2022. 东北亚晚古生代—中生代岩浆时空演化: 多重板块构造体制范围及叠合的鉴别证据[J]. 地学前缘, 29(2): 28−44.

    [91]

    吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    [92]

    吴福元, 刘小驰, 纪伟强, 等. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.

    [93]

    徐备, 赵盼, 鲍庆中, 等. 2014. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 30(7): 1841−1857.

    [94]

    许文良, 王枫, 裴福萍, 等. 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 29(2): 339−353.

    [95]

    许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646.

    [96]

    许文良, 王旖旎, 王枫, 等. 2022. 西太平洋俯冲带的演变: 来自东北亚陆缘增生杂岩的制约[J]. 地质论评, 68(1): 1−17.

    [97]

    张健, 张德军, 郑月娟, 等. 2020. 内蒙古林西上二叠统林西组碎屑锆石LA−ICP−MS年代学及其构造意义[J]. 吉林大学学报(地球科学版), 50(4): 1090−1103.

    [98]

    章培春, 彭勃, 赵金忠, 等. 2022. 大兴安岭南段小乌兰沟正长花岗岩成因: 锆石LA−ICP−MS U−Pb年代学、地球化学及Hf同位素的制约[J]. 地球科学, 47(8): 2889−2901. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208017

    [99]

    张超, 郭巍, 徐仲元, 等. 2014. 吉林东部延边地区二长花岗岩年代学、岩石成因学及其构造意义研究[J]. 岩石学报, 30(2): 515−526.

    [100]

    赵院冬, 车继英, 许逢明, 等. 2018. 兴安地块东北部晚侏罗世C型埃达克质花岗岩年代学、地球化学特征及构造环境意义[J]. 地学前缘, 25(6): 240−253.

    [101]

    周建波, 蒲先刚, 侯贺晟, 等. 2018. 东北中生代增生杂岩及对古太平洋向欧亚大陆俯冲历史的制约[J]. 岩石学报, 34(10): 2845−2856.

  • 加载中

(9)

(2)

计量
  • 文章访问数:  42
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2022-06-21
修回日期:  2023-04-09
刊出日期:  2025-06-15

目录