Granitic magmatism and tectonic evolution in Qiongdongnan basin and their constraints on the properties of buried hill reservoirs
-
摘要:
琼东南盆地中生代潜山是认识南海西部陆缘构造演化过程的重要窗口。以琼东南盆地陵南与松南低凸起区的花岗岩潜山为研究对象,开展岩心样品的岩相学、年代学与地球化学研究,揭示其岩石成因及构造环境。研究结果表明,陵南低凸起基岩主要为二长花岗岩,松南低凸起基岩为花岗闪长岩与二长花岗岩。LA-ICP-MS锆石U−Pb年龄揭示,陵南低凸起区花岗岩类分别形成于249 Ma和233 Ma,而松南低凸起区花岗岩类形成于222 ~ 219 Ma。陵南低凸起区花岗岩类的铝饱和指数(A/CNK)为0.99 ~ 1.16,岩石整体富集Rb、Th、U等大离子亲石元素,亏损 Ta、Nb、Ti等高场强元素,属于弱过铝质高钾钙碱性I型花岗岩;松南低凸起区花岗岩类富碱(K2O+Na2O=6.74% ~ 8.41%)、贫铝(Al2O3=12.52% ~13.70%),具有较高的Rb/Sr 值(2.03~9.20)和10000 Ga/Al值(>6),且岩石富集轻稀土元素,并具明显的负Eu异常,属于典型的A型花岗岩。岩石成因分析表明,琼东南盆地三叠纪花岗岩类起源于变沉积岩的部分熔融,且经历了不同程度的壳幔混合作用和分离结晶作用。琼东南盆地早三叠世花岗岩类形成于古特提斯域的俯冲汇聚和同碰撞环境,而晚三叠世花岗岩类形成于碰撞后伸展背景。琼东南盆地早三叠世花岗岩不仅含有较高比例的长英质脆性矿物,同时经历了俯冲碰撞-碰撞后伸展等多期次构造作用改造,具备形成裂缝型潜山储层的物质基础和构造动力学条件,是南海潜山油气勘探的重要对象。
Abstract:The Mesozoic buried hill in Qiongdongnan basin is an important window to understand the tectonic evolution of the western continental margin of the South China Sea. This paper presents systematic petrographic, geochronological and geochemical studies on the granite buried hills of Lingnan low uplift and Songnan low uplift in the Qiongdongnan basin, aiming to reveal their petrogenesis and tectonic environment. The results showed that the buried hill in Lingnan low uplift (L321−a and L281−a) is mainly comprised by monzogranite, while those in Songnan low uplift (Y83−a and Y83−b) are mainly composed of granodiorite and monzogranite. Zircon U−Pb dating show that the studied granitoids in Lingnan low uplift were formed at 249 Ma and 233 Ma, while those in Songnan low uplift were formed in 222~219 Ma. Petrogeochemical study shows that the A/CNK values of the granitoids in Lingnan low uplift range from 1.04 to 1.15. They are generally enriched in large ion lithophile elements such as Rb, Th and U, and depleted in high field strength elements such as Ta, Nb and Ti, belonging to weakly peraluminous, high potassium calc−alkali I−type granite. The granitoids in Songnan low uplift have high contents of alkali (K2O+Na2O=6.74%~8.41%), but low contents of aluminum(Al2O3 = 12.52%~13.70%)with high ratios of Rb/Sr (2.03~9.20) and 10000 Ga/Al (>6). They are enriched in light rare earth elements with weak negative Eu anomalies, resembling typical A−type granite. Petrogenesis study shows that the Triassic granitoids in the Qiongdongnan basin are derived by partial melting of sedimentary rocks, followed by different degrees of crust−mantle mixing and fractional crystallization. This study reveals that the Early Triassic granitoids in the Qiongdongnan basin were formed in a convergence and syn−collisional setting during the Paleo−Tethyan subduction, while the Late Triassic granitoids were formed in a post−collision extensional setting. The large−scale Early Triassic granitoids in the Qiongdongnan basin not only contains a high proportion of felsic brittle minerals, but also underwent multiple stages of tectonic transformation during the subduction−collision and post−collisional extension, providing the material basis and dynamics conditions for forming fractured buried hill reservoirs. Thus, the Early Triassic granitoids in the Qiongdongnan basin are an important object for buried hill−related oil and gas exploration in the South China Sea.
-
Key words:
- Qiongdongnan basin /
- granitoids /
- buried hill /
- zircon geochronology /
- tectonic setting
-
-
图 6 琼东南盆地潜山花岗岩原始地幔标准化微量元素蛛网图(a, c, e)与球粒陨石标准化稀土元素配分图(b, d, f)(球粒陨石据Taylor et al., 1985;原始地幔据Sun et al., 1989)
Figure 6.
图 8 琼东南盆地花岗岩类源区判别图解(a,底图据Vielzeuf et al., 1988; b,底图据Kaygusuz et al., 2008)
Figure 8.
表 1 琼东南盆地潜山花岗岩LA-ICP-MS锆石 U−Th−Pb 定年结果
Table 1. LA-ICP-MS zircon U−Th−Pb dating results of granites in buried hill, Qiongdongnan basin
编号 元素含量 Th/U 同位素比值及误差 同位素年龄及误差/Ma Th/10−6 U/10−6 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ Y83-a 2940 m 花岗闪长岩 ZJ9-04 193 353 0.55 0.2351 0.0100 0.0331 0.0008 214 8 212 5 ZJ9-05 74 209 0.36 0.2354 0.0125 0.0336 0.0008 215 10 213 5 ZJ9-06 232 475 0.49 0.2479 0.0093 0.0362 0.0008 225 8 215 5 ZJ9-07 116 301 0.39 0.2334 0.0108 0.0343 0.0008 213 9 217 5 ZJ9-08 271 561 0.48 0.2335 0.0085 0.0342 0.0008 213 7 217 5 ZJ9-09 263 657 0.40 0.2473 0.0083 0.0343 0.0008 224 7 217 5 ZJ9-10 83 210 0.40 0.2232 0.0125 0.0334 0.0008 205 10 217 5 ZJ9-11 212 413 0.51 0.2481 0.0098 0.0353 0.0008 225 8 217 5 ZJ9-12 577 914 0.63 0.2393 0.0075 0.0345 0.0008 218 6 217 5 ZJ9-13 390 703 0.56 0.2462 0.0083 0.0343 0.0008 224 7 218 5 ZJ9-14 243 527 0.46 0.2353 0.0088 0.0345 0.0008 215 7 219 5 ZJ9-15 518 680 0.76 0.2254 0.0080 0.0318 0.0007 206 7 219 5 ZJ9-16 245 399 0.61 0.2560 0.0104 0.0358 0.0009 231 8 219 5 ZJ9-17 364 696 0.52 0.2306 0.0080 0.0332 0.0008 211 7 221 5 ZJ9-18 357 777 0.46 0.2478 0.0081 0.0361 0.0008 225 7 224 5 ZJ9-19 95 209 0.46 0.2592 0.0135 0.0362 0.0009 234 11 227 5 ZJ9-20 208 393 0.53 0.2675 0.0107 0.0367 0.0009 241 9 229 5 ZJ9-21 421 830 0.51 0.2483 0.0080 0.0366 0.0009 225 7 229 5 Y83-b 2960 m 二长花岗岩 ZJ10-01 487 986 0.49 0.2454 0.0092 0.0338 0.0008 223 7 214 5 ZJ10-02 835 737 1.13 0.2412 0.0079 0.0339 0.0008 219 6 214 5 ZJ10-03 309 719 0.43 0.2549 0.0083 0.0353 0.0008 231 7 215 5 ZJ10-04 212 441 0.48 0.2419 0.0097 0.0338 0.0008 220 8 216 5 ZJ10-05 1108 1337 0.83 0.2597 0.0072 0.0364 0.0008 234 6 219 5 ZJ10-06 329 635 0.52 0.2405 0.0082 0.0352 0.0008 219 7 219 5 ZJ10-07 392 632 0.62 0.2546 0.0087 0.0352 0.0008 230 7 220 5 ZJ10-08 451 550 0.82 0.2559 0.0091 0.0361 0.0008 231 7 221 5 ZJ10-09 286 547 0.52 0.2501 0.0090 0.0350 0.0008 227 7 221 5 ZJ10-10 248 456 0.54 0.2530 0.0101 0.0349 0.0008 229 8 221 5 ZJ10-11 325 696 0.47 0.2415 0.0082 0.0347 0.0008 220 7 222 5 ZJ10-12 297 406 0.73 0.2489 0.0112 0.0352 0.0008 226 9 222 5 ZJ10-13 240 368 0.65 0.2452 0.0103 0.0341 0.0008 223 8 223 5 ZJ10-14 765 1018 0.75 0.2509 0.0076 0.0360 0.0008 227 6 223 5 ZJ10-15 552 836 0.66 0.2502 0.0080 0.0346 0.0008 227 6 223 5 ZJ10-16 827 916 0.90 0.2498 0.0078 0.0349 0.0008 226 6 223 5 ZJ10-17 233 381 0.61 0.2639 0.0105 0.0368 0.0009 238 8 223 5 ZJ10-18 175 313 0.56 0.2553 0.0111 0.0355 0.0009 231 9 223 6 ZJ10-19 689 945 0.73 0.2443 0.0076 0.0355 0.0008 222 6 223 5 ZJ10-20 230 549 0.42 0.2429 0.0089 0.0349 0.0008 221 7 224 5 ZJ10-21 146 259 0.56 0.2429 0.0118 0.0355 0.0009 221 10 225 5 ZJ10-22 231 405 0.57 0.2541 0.0099 0.0346 0.0008 230 8 225 5 ZJ10-23 281 592 0.47 0.2443 0.0089 0.0352 0.0008 222 7 225 5 ZJ10-24 309 760 0.41 0.2380 0.0080 0.0350 0.0008 217 7 228 5 Y83-b 3234 m 二长花岗岩 ZJ10-25 334 745 0.45 0.2511 0.0084 0.0352 0.0008 228 7 228 5 ZJ10-26 91 195 0.47 0.2480 0.0137 0.0352 0.0009 225 11 231 5 ZJ10-27 298 652 0.46 0.2539 0.0089 0.0352 0.0008 230 7 233 5 ZJ13-01 290 395 0.73 0.2626 0.0126 0.0346 0.0009 237 10 217 5 ZJ13-02 485 809 0.60 0.2545 0.0089 0.0353 0.0008 230 7 219 5 ZJ13-03 217 311 0.70 0.2577 0.0125 0.0352 0.0009 233 10 219 6 ZJ13-04 332 620 0.53 0.2633 0.0100 0.0354 0.0008 237 8 219 5 ZJ13-05 693 920 0.75 0.2414 0.0081 0.0342 0.0008 220 7 219 5 ZJ13-06 269 566 0.48 0.2610 0.0100 0.0356 0.0009 235 8 221 5 ZJ13-07 245 265 0.92 0.2605 0.0133 0.0373 0.0009 235 11 221 5 ZJ13-08 341 646 0.53 0.2589 0.0095 0.0358 0.0009 234 8 222 5 ZJ13-09 105 161 0.65 0.2517 0.0164 0.0371 0.0010 228 13 222 5 ZJ13-10 140 200 0.70 0.2438 0.0143 0.0345 0.0009 222 12 223 5 ZJ13-11 164 201 0.82 0.2498 0.0147 0.0359 0.0009 226 12 223 5 ZJ13-12 146 232 0.63 0.2593 0.0138 0.0357 0.0009 234 11 223 5 ZJ13-13 174 330 0.53 0.2622 0.0131 0.0346 0.0009 236 11 223 5 ZJ13-14 434 556 0.78 0.2503 0.0096 0.0349 0.0008 227 8 224 5 ZJ13-15 468 855 0.55 0.2461 0.0085 0.0350 0.0008 223 7 226 5 ZJ13-16 252 534 0.47 0.2923 0.0110 0.0402 0.0010 260 9 226 6 L281-a 4346 m 二长花岗岩 ZJ13-17 287 321 0.90 0.2608 0.0121 0.0359 0.0009 235 10 227 5 ZJ13-18 296 588 0.50 0.2475 0.0095 0.0345 0.0008 225 8 227 6 ZJ13-19 357 634 0.56 0.2454 0.0090 0.0351 0.0008 223 7 227 6 ZJ13-20 380 436 0.87 0.2545 0.0106 0.0349 0.0009 230 9 229 5 ZJ16-01 139 294 0.47 0.2657 0.0114 0.0365 0.0009 239 9 216 6 ZJ16-02 371 721 0.51 0.2646 0.0086 0.0366 0.0008 238 7 222 5 ZJ16-03 117 238 0.49 0.2693 0.0230 0.0382 0.0011 242 18 224 5 ZJ16-04 419 787 0.53 0.2691 0.0087 0.0372 0.0009 242 7 231 5 ZJ16-05 326 641 0.51 0.2857 0.0094 0.0400 0.0009 255 7 232 5 ZJ16-06 204 369 0.55 0.2697 0.0148 0.0372 0.0009 242 12 235 5 L321-a 4300-4310 m 二长花岗岩 ZJ16-07 132 237 0.56 0.2916 0.0200 0.0341 0.0009 260 16 235 6 ZJ16-08 343 535 0.64 0.2579 0.0105 0.0354 0.0008 233 9 242 7 ZJ16-09 131 623 0.21 0.3074 0.0146 0.0385 0.0010 272 11 243 6 ZJ16-10 160 244 0.65 0.2957 0.0146 0.0351 0.0009 263 11 244 6 ZJ16-11 286 888 0.32 0.2758 0.0088 0.0385 0.0009 247 7 253 6 JA208 409 1463 0.28 0.2888 0.0081 0.0395 0.0007 258 6 250 4 JA209 120 265 0.45 0.2681 0.0098 0.0391 0.0009 241 8 247 5 L321-a 4200-4210 m 二长花岗岩 JA213 138 286 0.48 0.2749 0.0097 0.0390 0.0008 247 8 247 5 JA223 399 969 0.41 0.2803 0.0056 0.0403 0.0006 251 4 254 3 JA227 635 1595 0.40 0.2837 0.0067 0.0399 0.0007 254 5 252 5 JA229 635 1688 0.38 0.2743 0.0066 0.0400 0.0008 246 5 253 5 JA230 262 1165 0.23 0.2695 0.0058 0.0389 0.0006 242 5 246 3 JA240 393 1300 0.30 0.2828 0.0064 0.0384 0.0007 253 5 243 4 JA048 182 983 0.18 0.2847 0.0060 0.0399 0.0007 254 5 252 4 JA049 374 1531 0.24 0.2768 0.0052 0.0388 0.0005 248 4 245 3 JA050 226 1140 0.20 0.2873 0.0054 0.0398 0.0006 256 4 252 4 JA054 223 730 0.31 0.2841 0.0065 0.0393 0.0005 254 5 249 3 JA060 1622 2793 0.58 0.2837 0.0057 0.0398 0.0006 254 5 251 4 JA061 359 952 0.38 0.2841 0.0064 0.0398 0.0006 254 5 252 4 JA062 170 879 0.19 0.2830 0.0064 0.0404 0.0008 253 5 256 5 JA063 369 1165 0.32 0.2733 0.0060 0.0387 0.0006 245 5 244 4 JA066 480 1495 0.32 0.2719 0.0055 0.0389 0.0006 244 4 246 4 JA067 523 1341 0.39 0.2731 0.0068 0.0394 0.0007 245 5 249 5 表 2 琼东南盆地潜山花岗岩全岩主量、微量和稀土元素组成
Table 2. Whole-rock major, trace and rare earth element compositions of the granites in buried hill, Qiongdongnan basin
样品号 Y83-a-1 Y83-a-2 Y83-a-3 Y83-a-4 Y83-a-5 Y83-b-1 Y83-b-2 L281-a-1 L281-a-2 L321-a-1 L321-a-2 L321-a-3 L321-a-4 SiO2 73.00 73.35 73.10 72.85 72.68 73.58 69.17 73.36 73.91 69.48 72.39 69.45 69.53 TiO2 0.20 0.23 0.20 0.18 0.18 0.31 0.39 0.05 0.05 0.42 0.26 0.26 0.52 Al2O3 12.89 13.69 13.70 13.69 13.14 12.52 15.11 13.32 13.55 14.81 13.71 14.35 14.8 TFe2O3 3.95 2.58 2.84 3.26 3.63 4.00 3.78 3.11 1.27 2.43 1.74 1.50 2.25 MnO 0.28 0.20 0.21 0.22 0.36 0.23 0.17 0.33 0.11 - - 0.03 - MgO 0.34 0.24 0.20 0.28 0.12 0.63 0.65 0.10 0.16 0.61 0.44 0.65 0.91 CaO 0.29 0.23 0.42 0.26 0.27 0.70 1.61 0.98 1.14 1.30 1.75 1.05 1.56 Na2O 2.46 3.13 3.69 1.21 3.45 3.64 4.30 3.90 3.59 3.23 3.63 3.16 2.20 K2O 4.73 5.00 4.32 6.03 4.96 3.10 3.48 4.23 5.23 5.22 3.67 6.29 5.78 P2O5 0.03 0.03 0.03 0.03 0.02 0.08 0.07 0.01 0.01 0.08 0.06 0.06 0.07 烧失量 1.57 0.97 1.34 1.83 0.75 0.89 1.11 0.29 0.68 2.38 2.32 1.31 2.42 总计 99.74 99.65 100.04 99.84 99.56 99.69 99.84 99.69 99.7 99.94 99.95 98.1 100.05 A/CNK 1.33 1.25 1.19 1.52 1.14 1.18 1.10 1.04 0.99 1.11 1.04 1.03 1.16 A/NK 1.40 1.30 1.27 1.60 1.19 1.34 1.40 1.21 1.17 1.35 1.38 1.20 1.50 Mg# 15 16 12 15 6 24 25 6 20 33 34 46 45 Li 7.59 4.96 3.75 8.87 3.12 11.4 15.3 2.36 4.46 13.5 27.4 8.22 20.7 Be 2.44 2.48 2.48 2.49 2.28 2.01 2.35 2.21 2.01 2.4 1.86 2.11 2.72 Sc 2.69 3.26 2.95 2.68 2.95 2.85 2.46 0.98 1.04 11.2 3.43 2.57 8.22 V 10.6 10.9 8.27 9.16 9.42 24.7 26 7.56 3.6 19 20.5 22.4 39.8 Cr 59.5 40.2 30.7 38.5 92.3 33.5 32.5 82.6 14.1 3.92 4.56 11.2 10.4 Co 5.29 2.6 2.73 2.72 6.21 4.37 3.43 5.7 1.59 4.59 4.68 5.88 7.03 Ni 18.2 11.4 12.2 4.68 25.3 6.46 3.72 20.4 2.88 59.7 59.8 109 48 Ga 61.5 71 63.5 64.2 74.9 40.2 54.7 20.6 20.7 19.8 18.6 17.6 23.4 Rb 179 187 147 239 170 77 58.2 118 145 174 144 189 202 Sr 33.5 66.8 72.3 26.5 75.4 215 266 87.3 131 207 213 191 177 Y 16.4 23.6 19 26 16.9 9.1 10 1.78 1.46 17.3 12.5 13.9 17.9 Zr 187 229 182 184 179 180 239 48.7 32.4 2.11 2.15 3.13 4.05 Nb 9.98 18.8 12.37 11.1 10.0 10.1 14 1.91 2.48 13.6 7.65 8.97 18.7 Cs 2.74 3.22 2.36 2.20 2.17 2.31 1.77 2.27 1.60 4.15 4.77 3.90 7.81 Ba 693 801 732 723 889 421 621 51.4 73.6 1379 1301 1050 1018 La 32.3 34.7 25.1 36.6 16.4 20.3 9.41 2.81 3.66 46.4 53.1 49.2 38.8 Ce 52.3 59.0 44.2 72.0 32.5 34.0 17.0 4.11 4.53 83.5 91.1 86.5 68.8 Pr 7.13 7.49 5.47 7.65 3.59 4.86 2.44 0.51 0.47 11.2 11.5 10.8 9.25 Nd 23.4 24.5 18.5 25.3 11.9 16.0 8.68 1.69 1.45 38.1 37.6 34.4 31.9 Sm 3.92 4.24 3.31 4.49 2.16 2.65 1.75 0.26 0.25 7.39 6.03 5.19 6.45 Eu 0.59 0.68 0.57 0.68 0.54 0.6 0.65 0.11 0.13 1.48 1.18 1.37 1.31 Gd 3.22 3.84 3.11 4.18 2.30 2.14 1.64 0.27 0.25 6.27 5.09 4.70 5.64 Tb 0.48 0.62 0.50 0.66 0.42 0.30 0.27 0.04 0.04 0.93 0.70 0.66 0.88 Dy 2.78 3.80 3.07 4.03 2.80 1.62 1.67 0.26 0.22 4.56 3.50 3.16 4.24 Ho 0.59 0.83 0.66 0.85 0.62 0.32 0.38 0.06 0.05 0.77 0.53 0.54 0.71 Er 1.80 2.51 2.04 2.52 1.92 0.92 1.20 0.18 0.16 1.82 1.25 1.28 1.67 Tm 0.28 0.40 0.32 0.38 0.31 0.14 0.20 0.03 0.03 0.27 0.17 0.19 0.25 Yb 1.86 2.60 2.15 2.47 2.02 0.95 1.38 0.23 0.20 1.63 1.08 1.11 1.56 Lu 0.29 0.41 0.33 0.38 0.32 0.16 0.23 0.05 0.04 0.25 0.13 0.18 0.26 Hf 4.96 6.12 4.85 4.99 4.89 4.42 5.73 2.95 1.85 0.16 0.13 0.18 0.32 Ta 0.77 0.99 1.06 0.85 0.77 0.52 1.03 0.12 0.17 1.29 0.55 0.80 1.55 Pb 15.5 10.6 11.3 831 17.0 11.0 18.5 27.7 27.0 1054 1028 1702 790 Th 8.85 11.9 11.7 10.6 9.42 8.00 5.34 10.0 10.2 18.0 36.1 17.6 15.1 U 1.39 1.81 1.88 7.93 1.60 1.36 1.45 2.73 5.07 2.25 5.66 1.85 4.88 ΣREE 147 169 128 188 95.0 94.0 57.0 12.0 13.0 222 225 213 190 (La/Yb)N 11.8 9.00 7.91 9.99 5.48 14.5 4.61 8.18 12.5 19.2 33.2 29.9 16.8 (Gd/Yb)N 1.41 1.19 1.17 1.37 0.92 1.83 0.96 0.94 1.04 3.12 3.82 3.43 2.92 δEu 0.50 0.51 0.53 0.48 0.73 0.75 1.16 1.31 1.53 0.65 0.64 0.83 0.65 注:TFe2O3为全铁含量; A/CNK=molar Al2O3/(CaO+Na2O+K2O); A/NK=molar Al2O3/(Na2O+K2O); Mg# = 100*molar MgO/(MgO+ TFe2O3); δEu=EuN/ (SmN*GdN)1/2; N为球粒陨石标准化,标准化值据Taylor et al.,1985;主量元素含量单位为%,微量和稀土元素含量单位为10−6 -
[1] Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48: 43−55. doi: 10.1016/0009-2541(85)90034-8
[2] Chapman J B, Ducea M N, DeCelles P G, et al. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera[J]. Geology, 43: 919−922.
[3] Chappell B W. 1999. Aluminium saturation in I and S−type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535−551. doi: 10.1016/S0024-4937(98)00086-3
[4] Chappell B W, White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, (8): 173−174.
[5] Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033
[6] Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust−mantle system[J]. Chemical Geology, 120(3/4): 347−359. doi: 10.1016/0009-2541(94)00145-X
[7] Kaygusuz A, Siebel W, Sen C. 2008. Petrochemistry and petrology of I−type granitoids in an arc setting: The composite Torul pluton, Eastern Pontides, NE Turkey[J]. International Journal of Earth Sciences, 97(4): 739−764. doi: 10.1007/s00531-007-0188-9
[8] Li X H, Li Z X, Li W X, et al. 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island[J]. Journal of Geology, 114(3): 341−353. doi: 10.1086/501222
[9] Liu Y, Gao S, Hu Z, et al. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans−North China Orogen: U−Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571. doi: 10.1093/petrology/egp082
[10] Liu Y, Hu Z, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43. doi: 10.1016/j.chemgeo.2008.08.004
[11] Middlemost E. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Science Reviews, 37(3/4): 215−224. doi: 10.1016/0012-8252(94)90029-9
[12] Patiño Douce A, Beard J S. 1996. Effects of P, f (O2) and Mg/Fe ratio on dehydration melting of model metagreywackes[J]. Journal of Petrology, 37: 999−1024. doi: 10.1093/petrology/37.5.999
[13] Pearce J. 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120−125. doi: 10.18814/epiiugs/1996/v19i4/005
[14] Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene Calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63−81. doi: 10.1007/BF00384745
[15] Pitcher W S. 1983. Granite Type and Tectonic Environment[C]//Hsu K J. Mountain building processes. Academic Press, London: 19−40.
[16] Rapp R P, Watson E B, Miller C F. 1991. Partial melting of amphibolite eclogite and the origin of Archean trondhjemites and tonalites[J]. Precambrian Research, 51(1/4): 1−25. doi: 10.1016/0301-9268(91)90092-O
[17] Shen L W, Yu J H, O'Reilly S Y, et al. 2018. Subduction−related middle Permian to early Triassic magmatism in central Hainan Island, South China[J]. Lithos, 318/319: 158−175. doi: 10.1016/j.lithos.2018.08.009
[18] Sun S S, Mcdonough W F. 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 42: 313−345.
[19] Tang L M, Chen H L, Dong C W, et al. 2013. Middle Triassic post−orogenic extension on Hainan Island: Chronology and geochemistry constraints of bimodal intrusive rocks[J]. Science China Earth Sciences, 56(5): 783−793. doi: 10.1007/s11430-012-4562-5
[20] Taylor S R, Mclennan S M. 1985. The continental crust its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell.
[21] Vielzeuf D, Holloway J R. 1988. Experimental determination of the fluid absent melting relations in the pelitic system[J]. Contributions to Mineralogy and Petrology, 98: 257−276. doi: 10.1007/BF00375178
[22] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202
[23] Wei W, Liu C Z, Hou Y F, et al. 2022. Discovery of a hidden Triassic Arc in the Southern South China Sea: Evidence for the breakaway of a ribbon continent with implications for the evolution of the Western Pacific margin[J]. Terra Nova, 34: 12−19. doi: 10.1111/ter.12556
[24] Yan Q S, Metcalfe Y, Shi X F. 2017. U−Pb isotope geochronology and geochemistry of granites from Hainan Island (northern South China Sea margin): Constraints on late Paleozoic−Mesozoic tectonic evolution[J]. Gondwana Research, 49: 333−349. doi: 10.1016/j.gr.2017.06.007
[25] Zhu R, Lai S, Qin J, et al. 2015. Early−Cretaceous highly fractionated I−type granites from the Northern Tengchong Block, western Yunnan, SW China: Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 100: 145−163. doi: 10.1016/j.jseaes.2015.01.014
[26] 陈沛, 于小健, 陈现军, 等. 2021. 琼东南盆地 YL8 区基底潜山岩石类型及其录井识别特征[J]. 世界地质, 40(3): 613−623.
[27] 蒲燕萍, 孙春岩, 陈世成, 等. 2009. 南海琼东南盆地−西沙海槽天然气水合物地球化学勘探与资源远景评价[J]. 地质通报, 28(11): 1656−1661.
[28] 雷超, 任建业, 张静. 2015. 南海构造变形分区及成盆过程[J]. 地球科学, 40(4): 744−762.
[29] 李献华, 周汉文, 丁式江, 等. 2000. 海南岛“邦溪−晨星蛇绿岩片”的时代及其构造意义[J]. 岩石学报, 16: 425−432.
[30] 鲁宝亮, 王璞珺, 张功成, 等. 2011. 南海北部陆缘盆地基底结构及其油气勘探意义[J]. 石油学报, 32(4): 580−587.
[31] 吕方, 辛宇佳, 李建华, 等. 2023. 海南岛二叠纪—三叠纪构造演化: 源自岩浆岩和变质岩同位素年代学和地球化学的约束[J]. 地质学报, 97(1): 30−51.
[32] 马龙, 刘全新, 张景廉, 等. 2006. 论基岩油气藏的勘探前景[J]. 天然气工业, 1: 8−155.
[33] 赵国祥, 王清斌, 杨波, 等. 2017. 渤海海域庙西北凸起中生代花岗岩LA−ICP−MS锆石U−Pb测年及其地质意义[J]. 地质通报, 36(7): 1204−1217. doi: 10.3969/j.issn.1671-2552.2017.07.010
[34] 施和生, 杨计海, 张迎朝, 等. 2019. 琼东南盆地地质认识创新与深水领域天然气勘探重大突破[J]. 中国石油勘探, 24(6): 691−698.
[35] 唐历山, 朱继田, 姚哲, 等. 2017. 琼东南盆地松南低凸起潜山演化及成藏条件[J]. 特种油气藏, 24(1): 87−91. doi: 10.3969/j.issn.1006-6535.2017.01.017
[36] 唐晓音, 郭帅, 熊小峰, 等. 2022. 海北部大陆边缘西区琼东南盆地基底花岗岩锆石U−Pb年龄报道[J]. 中国地质, 49(1): 336−338.
[37] 田立新, 刘杰, 张向涛, 等. 2020. 珠江口盆地惠州26−6大中型泛潜山油气田勘探发现及成藏模式[J]. 中国海上油气, 32(4): 1−11.
[38] 谢才富, 朱金初, 赵子杰, 等. 2005. 三亚石榴霓辉石正长岩的锆石 SHRIMP U−Pb 年龄: 对海南岛海西—印支期构造演化的制约[J]. 高校地质学报, 11: 47−57. doi: 10.3969/j.issn.1006-7493.2005.01.003
[39] 谢文彦, 王涛, 张一伟, 等. 2009. 琼东南盆地西南部新生代裂陷特征与岩浆活动机理[J]. 大地构造与成矿学, 33(2): 199−205. doi: 10.3969/j.issn.1001-1552.2009.02.002
[40] 熊量莉, 杨楚鹏, 吴峧岐, 等. 2020. 南海南−北陆缘盆地地层沉积发育特征及其对油气成藏的差异性控制[J]. 中国地质, 47(5): 1407−1425. doi: 10.12029/gc20200508
[41] 徐守立, 尤丽, 毛雪莲, 等. 2019. 琼东南盆地松南低凸起周缘花岗岩潜山储层特征及控制因素[J]. 地球科学, 44(8): 2717−2728.
[42] 杨希冰, 周杰, 杨金海, 等. 2021. 琼东南盆地深水区东区中生界潜山天然气来源及成藏模式[J]. 石油学报, 42(3): 283−292.
[43] 杨树锋, 虞子冶, 郭令智, 等. 1989. 海南岛的地体划分、古地磁研究及其板块构造意义[J]. 南京大学学报(地球科学), 1: 38−46.
[44] 云平, 雷裕红, 吕嫦艳. 2005. 海南岛中北部三叠纪花岗岩源区的锶、钕同位素制约及其意义[J]. 大地构造与成矿学, 29: 234−241. doi: 10.3969/j.issn.1001-1552.2005.02.011
[45] 张业明, 付建明, 吴桂捷, 等. 1997. 海南岛昌江—邦溪地区海西构造层的变形构造特征及其动力学成因[J]. 华南地质与矿产, 2: 43−50.
[46] 周杰, 杨希冰, 杨金海, 等. 2020. 琼东南盆地深水区中生界潜山裂缝发育特征及形成机理——以松南低凸起Y8区为例[J]. 中国海上油气, 32(3): 1−9.
[47] 朱伟林, 王国纯. 2000. 中国近海前新生代油气勘探新领域探索[J]. 地学前缘, 7(3): 215−226. doi: 10.3321/j.issn:1005-2321.2000.03.020
-