Research on 3D geological modeling method and application of urban underground space based on stratigraphic pinchout: A case study of Beihai City, Guangxi
-
摘要:
研究目的 城市地下空间的开发利用是当前城市建设的重要组成部分,而三维地质模型是评价地下空间开发利用难度的基础工作之一。针对现有三维地质建模方法中地层分区范围不准确的问题,从模型精度的影响因素出发,设计了一种基于影响因素的地层尖灭位置合理计算方法。
研究方法 该方法通过考虑地层厚度、钻孔间距、地层埋深、单孔控制范围等因素,在追踪地层分区时确定尖灭位置,由此构建出精度更高的地层曲面。
研究结果 以广西北海市为研究区,利用该区域的钻孔、剖面等实际地质数据,首先建立了统一的地层层序并生成了地层分区约束,随后成功构建了北海市精细化的三维地质结构模型。通过钻孔数据回代验证和剖面对比分析对模型质量进行了评价,并与传统建模方法进行了对比。对比分析显示,该方法构建的模型在关键区域的地层形态与实际钻孔揭露情况吻合度更高,地层接触关系处理更为合理。
结论 提出的基于影响因素的地层尖灭位置计算方法,能够有效提高三维地质模型的精度,尤其在处理含复杂地层(如尖灭、不整合接触等)的地质结构时表现出明显优势。与传统建模方法相比,该方法构建的模型与实际地质情况更为吻合,为解决复杂地质条件下的三维地质建模问题提供了一种新的、更可靠的解决思路,对城市地下空间精细化开发利用具有重要的参考价值。
Abstract:Objective The development and utilization of urban underground space constitutes a significant component of contemporary urban construction, with the three dimensional geological model serving as a foundational element in the evaluation of the complexity involved in the development and utilization of underground space. Addressing the challenge of inaccurate stratigraphic zoning in existing three−dimensional geological modelling methods, this paper proposes a rational calculation method for determining the stratigraphic pinch−out location, taking into account the factors that influence model accuracy.
Methods The method determines the pinch−out position by considering formation thickness, borehole spacing, formation burial depth, and single−hole control range. This is achieved by tracking the formation partition, thereby constructing a more accurate formation surface.
Results This study selected Beihai City as the research area. Utilizing actual geological data from the region, including boreholes and profiles, a unified stratigraphic sequence was first established, and stratigraphic zoning constraints were generated. Subsequently, a refined three-dimensional geological structure model of Beihai City was successfully constructed. The model’s quality was evaluated through borehole data back-substitution and profile comparisons, and a comparative analysis was conducted against traditional modeling methods. This comparison revealed that the model constructed using the proposed method exhibited a higher degree of conformity with actual borehole-revealed conditions in key areas, and the stratigraphic contact relationships were more reasonably represented.
Conclusions The proposed method for calculating stratigraphic pinch-out locations based on influencing factors effectively enhances the accuracy of three-dimensional geological models, particularly demonstrating a significant advantage when dealing with complex geological structures involving features such as pinch-outs and unconformable contacts. Compared to traditional modeling approaches, the model developed with this method aligns more closely with actual geological conditions. It offers a novel and more reliable solution for addressing challenges in three-dimensional geological modeling under complex geological settings, and holds important reference value for the refined development and utilization of urban underground space.
-
-
表 1 建模区域内第四系标准地层层序表的部分内容
Table 1. Some contents of Quaternary standard stratigraphic sequence table in modeling area
系 编码 组 编码 岩性 编码 第四系 1 人工填土 1-1 素填土 1-1-1 填土 1-1-2 海积层 1-2 砾砂 1-2-1 粗砂 1-2-2 冲积层 1-3 耕表土/中砂 1-3-1 三角洲层 1-4 可塑状粉耕表土 1-4-1 北海组 1-5 耕表土 1-5-1 砾砂 1-5-2 湛江组 1-6 可塑状粘土 1-6-1 粉细砂 1-6-2 基岩 2 邕宁组 2-1 风化泥质粉砂岩/砾岩 2-1-1 角砾状细砂岩 2-1-2 寺门组 2-2 风化炭质泥岩/风化泥岩/泥质灰岩 2-2-1 黄金组 2-3 粉土/强风化粉砂质泥岩 2-3-1 中风化泥质粉砂岩 2-3-2 风化砂岩/泥岩/细砂岩 2-3-3 表 2 钻孔均方根误差
Table 2. Root mean square error of drilled holes
地层编码 层底埋深均方根误差 地层厚度均方根误差 ①1 3.744800 3.014634 ①2 0.362730 0.593881 ② 0.000000 10.551066 ②1 59.540487 1.917560 ③1 58.799644 28.269397 ④1 0.000000 18.261098 ⑤1 3.037502 2.672397 ⑤2 1.689583 10.789586 ⑥1 17.953234 9.286725 ⑥2 6.262616 15.151021 ⑦1 2.607139 14.383907 ⑦2 0.452502 18.189948 ⑧1 0.000000 74.707864 ⑨1 0.000000 2.216019 ⑨2 0.000000 0.000000 ⑩3 0.000000 18.665298 ⑪4 0.000000 10.509101 ⑪5 0.000000 4.163690 ⑫5 0.000000 0.000000 ⑬1 32.000410 36.866709 -
[1] Abdollahifard M J. 2016. Fast multiple-point simulation using a data-driven path and an efficient gradient-based search[J]. Computers & Geosciences, 86: 64−74.
[2] Bamisaiye O A. 2018. Subsurface mapping: Selection of best interpolation method for borehole data analysis[J]. Spatial Information Research, 26(3): 261−269. doi: 10.1007/s41324-018-0170-6
[3] Camp C V, Outlaw J E. 1993. Constructing subsurface profiles using GIS[J]. Advances in Engineering Software, 18(3): 151−158.
[4] Chen A Z. 2013. Dictionary of Tourism Geology[M]. Beijing: Science Press (in Chinese with English abstract).
[5] Cheng W Q, Yang K G, Duan W F. 2014. Discussion on engineering geological analysis methods for complex deformation areas: A case study of Danba Hydropower Station[J]. Hydrogeology and Engineering Geology, 41(2): 68−73 (in Chinese with English abstract).
[6] Deng F, Shi Y, Jiang D. 2018. Identification technology and application of stratigraphic pinch-out lines based on principal component analysis de-shielding: Taking the T50 unconformity shielding in the 678 area of Tahe Oilfield as an example[J]. Journal of Oil and Gas Technology, 40(1): 24−29 (in Chinese with English abstract). doi: 10.12677/JOGT.2018.401004
[7] Du Z C, Liu Z, Ming W H. 2019. Unified stratigraphic sequence method for urban-scale three-dimensional geological modeling[J]. Rock and Soil Mechanics, 40(S1): 259−266 (in Chinese with English abstract).
[8] Fang H D, Liu Y H, Shi B, et al. 2002. Three-dimensional geological modeling and its engineering applications[J]. Hydrogeology and Engineering Geology, 29(3): 52−55 (in Chinese with English abstract).
[9] Hao M, Zhang Y, Zhan Q, et al. 2024. Research and application of urban three-dimensional geological modeling technology based on multiple and complex geological structures: A case study of Chengdu, China[J]. Frontiers in Earth Science, 12: 1444861. doi: 10.3389/feart.2024.1444861
[10] Hua W H, Guo D Y, Liu X G. 2023. Unified correction and connection method of stratigraphic sequences with complex inversion[J]. Earth Science, 48(4): 1532−1542 (in Chinese with English abstract).
[11] Huang C, Lang X H, Lou Y M. 2021. Three-dimensional geological modeling and deep visualization of Xiong Village No. 1 orebody in Tibet[J]. Geological Bulletin of China, 40(5): 753−763 (in Chinese with English abstract).
[12] Li L, Liu X G, Wu W B. 2018. Key technologies for three-dimensional stratigraphic modeling based on borehole data[J]. Rock and Soil Mechanics, 39(3): 1056−1062 (in Chinese with English abstract).
[13] Li X S, Liu C. 2011. Correlation distance analysis and reasonable determination of sampling spacing for investigation boreholes[J]. Hydrogeology and Engineering Geology, 38(4): 74−77 (in Chinese with English abstract).
[14] Liu F. 2024. Research on three-dimensional geological modeling technology in hydrogeological exploration[J]. Hydraulic Power Technology and Application, 6(22): 169−171 (in Chinese with English abstract).
[15] Lu J J, Tian Z H. 2016. GIS-based island polygon triangulation algorithm[J]. Surveying and Spatial Geographic Information, 39(11): 168−170 (in Chinese with English abstract).
[16] Qu H G, Pan M, Liu X Q, et al. 2015. Urban three-dimensional geological modeling and its application in urbanization construction[J]. Geological Bulletin of China, 34(7): 1350−1358 (in Chinese with English abstract).
[17] Tahmasebi P, Hezarkhani A, Sahimi M. 2012. Multiple-point geostatistical modeling based on the cross-correlation functions[J]. Computational Geosciences, 16(3): 779−797. doi: 10.1007/s10596-012-9287-1
[18] Tao X F, Wu D C. 2007. General Geology[M]. Beijing: Science Press (in Chinese with English abstract).
[19] Wang J, Zhang Z Q, Teng Y B. 2011. Identification technology of delta sandbody pinch-out lines based on seismic instantaneous spectrum analysis[J]. Fault-Block Oil and Gas Field, 18(5): 585−588 (in Chinese with English abstract).
[20] Wang J, Zhou D H, Zhang Z Q. 2010. Exploration of seismic response characteristics of low-level wedge-shaped delta sandbody lithological pinch-out lines[J]. Petroleum Geology and Engineering, 24(5): 33−36 (in Chinese with English abstract).
[21] Wang P, Jiang N. 2007. Modeling method of inverted stratigraphy based on core sequence priority[J]. Geography and Geographic Information Science, 23(5): 52−55 (in Chinese with English abstract).
[22] Wang Y M, Liu X. 2024. Research on three-dimensional geological modeling of pinch-out and bifurcation coal seams: Based on geostatistics and symbolic matrix methods[J]. Science Technology and Engineering, 24(4): 1402−1409 (in Chinese with English abstract).
[23] Wang Z J. 2012. Seismic description technology of sandbody pinch-out lines in the Sha 2 Member of Xiaoying Oilfield, Dongying Sag[J]. Geophysical Prospecting for Petroleum, 51(2): 305−308 (in Chinese with English abstract).
[24] Xia Y H, Bai S W. 2012. Research on borehole data preprocessing for three-dimensional stratigraphic modeling[J]. Rock and Soil Mechanics, 33(4): 1223−1226 (in Chinese with English abstract).
[25] Xiong R, Zhao J L, Liu S Z. 2010. Seismic identification and prediction of sandstone pinch-out lines in the Donghe Sandstone of the Caonan area[J]. Yangtze University Journal (Natural Science Edition, Engineering and Technology), 7(4): 57−60 (in Chinese with English abstract).
[26] Zhou D, Zeng G L, Wang H R. 2022. Three-dimensional geological modeling and ore-forming prediction in the southern part of Taoshan, Jiangxi[J]. Geological Bulletin of China, 41(12): 2256−2264 (in Chinese with English abstract).
[27] Zhu Y, Liu X J, Chen S Z. 2007. Research on GIS-based software for automatic drawing of geological profile maps[J]. Journal of Nanjing Normal University (Natural Science Edition), 30(4): 104−108 (in Chinese with English abstract).
[28] 陈安泽. 2013. 旅游地学大辞典[M]. 北京: 科学出版社.
[29] 程万强, 杨坤光, 段伟锋. 2014. 复杂变形区工程地质解析方法探讨——以丹巴水电站为例[J]. 水文地质工程地质, 41(2): 68−73.
[30] 邓锋, 石玉, 姜冬. 2018. 基于主成分分析法去屏蔽的地层尖灭线识别技术及应用——以塔河油田678区不整合面T50屏蔽为例[J]. 石油天然气学报, 40(1): 24−29.
[31] 杜子纯, 刘镇, 明伟华, 等. 2019. 城市级三维地质建模的统一地层层序方法[J]. 岩土力学, 40(S1): 259−266.
[32] 方海东, 刘义怀, 施斌, 等. 2002. 三维地质建模及其工程应用[J]. 水文地质工程地质, 29(3): 52−55. doi: 10.3969/j.issn.1000-3665.2002.03.016
[33] 花卫华, 郭丹阳, 刘修国. 2023. 含复杂倒转的地层层序统一修正与连接方法[J]. 地球科学, 48(4): 1532−1542.
[34] 黄诚, 郎兴海, 娄渝明, 等. 2021. 西藏雄村Ⅰ号矿体三维地质建模与深部可视化应用[J]. 地质通报, 40(5): 753−763.
[35] 李璐, 刘新根, 吴蔚博. 2018. 基于钻孔数据的三维地层建模关键技术[J]. 岩土力学, 39(3): 1056−1062.
[36] 李新生, 刘超. 2011. 相关距离分析与勘察钻孔取样间距的合理确定[J]. 水文地质工程地质, 38(4): 74−77.
[37] 刘飞. 2024. 水利地质勘察中的三维地质建模技术研究[J]. 水利电力技术与应用, 6(22): 169−171.
[38] 芦军军, 田正华. 2016. GIS岛多边形三角剖分算法[J]. 测绘与空间地理信息, 39(11): 168−170.
[39] 屈红刚, 潘懋, 刘学清, 等. 2015. 城市三维地质建模及其在城镇化建设中的应用[J]. 地质通报, 34(7): 1350−1358.
[40] 陶晓风, 吴德超. 2007. 普通地质学[M]. 北京: 科学出版社.
[41] 王军, 张中巧, 滕玉波. 2011. 基于地震瞬时谱分析的三角洲砂体尖灭线识别技术[J]. 断块油气田, 18(5): 585−588.
[42] 王军, 周东红, 张中巧. 2010. 低位楔形三角洲砂体岩性尖灭线地震响应特征探索[J]. 石油地质与工程, 24(5): 33−36.
[43] 王鹏, 江南. 2007. 基于核心序列优先的倒转地层构模方法[J]. 地理与地理信息科学, 23(5): 52−55.
[44] 王艳美, 刘星. 2024. 尖灭分叉型煤层三维地质建模研究: 基于地质统计学和符号矩阵的方法[J]. 科学技术与工程, 24(4): 1402−1409.
[45] 王志杰. 2012. 东营凹陷小营油田沙二段砂体尖灭线地震描述技术[J]. 石油地球物理勘探, 47(2): 305−308.
[46] 夏艳华, 白世伟. 2012. 三维地层建模钻孔数据预处理研究[J]. 岩土力学, 33(4): 1223−1226.
[47] 熊冉, 赵继龙, 刘少治. 2010. 草南地区东河砂岩尖灭线地震识别与预测[J]. 长江大学学报(自然科学版)理工卷, 7(4): 57−60.
[48] 周邓, 曾广亮, 王洪荣. 2022. 江西桃山罗布里南部地区三维地质建模与成矿预测[J]. 地质通报, 41(12): 2256−2264.
[49] 朱莹, 刘学军, 陈锁忠. 2007. 基于GIS的地质剖面图自动绘制软件的研究[J]. 南京师大学学报(自然科学版), 30(4): 104−108.
-