厚覆盖区磁铁矿空-地-井协同勘查技术体系

吴成平, 于长春, 张迪硕, 熊盛青, 朱裕振, 侯征, 高秀鹤. 2025. 厚覆盖区磁铁矿空-地-井协同勘查技术体系. 地质通报, 44(6): 1164-1173. doi: 10.12097/gbc.2023.12.042
引用本文: 吴成平, 于长春, 张迪硕, 熊盛青, 朱裕振, 侯征, 高秀鹤. 2025. 厚覆盖区磁铁矿空-地-井协同勘查技术体系. 地质通报, 44(6): 1164-1173. doi: 10.12097/gbc.2023.12.042
WU Chengping, YU Changchun, ZHANG Dishuo, XIONG Shengqing, ZHU Yuzhen, HOU Zheng, GAO Xiuhe. 2025. Airborne-surface-borehole cooperative exploration technical system for magnetite exploration in areas with thick overburden. Geological Bulletin of China, 44(6): 1164-1173. doi: 10.12097/gbc.2023.12.042
Citation: WU Chengping, YU Changchun, ZHANG Dishuo, XIONG Shengqing, ZHU Yuzhen, HOU Zheng, GAO Xiuhe. 2025. Airborne-surface-borehole cooperative exploration technical system for magnetite exploration in areas with thick overburden. Geological Bulletin of China, 44(6): 1164-1173. doi: 10.12097/gbc.2023.12.042

厚覆盖区磁铁矿空-地-井协同勘查技术体系

  • 基金项目: 中国地质调查局项目《ND**工程区航空物探调查》(编号:DD20221640)、山东省地质勘查项目《山东省齐河—禹城富铁矿重点勘查区综合研究及成果集成》(编号:鲁勘字(2023)2号)、国家重点研发计划项目《综合航空地球物理探测系统集成与方法技术示范研究》(编号:2017YFC0602201)
详细信息
    作者简介: 吴成平(1982− ),男,教授级高级工程师,从事航空地球物理数据处理和资料综合解释。E−mail:chengpingwu@163.com
    通讯作者: 于长春(1964− ),男,教授级高级工程师,从事航磁方法技术研究和资料解释工作。E−mail:bjycc@126.com
  • 中图分类号: P318; P618.31; P631

Airborne-surface-borehole cooperative exploration technical system for magnetite exploration in areas with thick overburden

  • Fund Project: Supported by China Geological Survey Project (No. DD20221640), ‌Shandong Provincial Geological Survey Project (No.SDGZ(2023)2) and National Key Research and Development Program of China (No. 2017YFC0602201)
More Information
    Author Bio: WU Chengping, male, born in 1982, professor senior engineer, mainly engaged in aerogeophysical data processing and integrated interpretation; E−mail: chengpingwu@163.com .
    Corresponding author: YU Changchun, male, born in 1964, professor senior engineer, mainly engaged in the research of aeromagnetic methods and technologies as well as the interpretation of data; E−mail: bjycc@126.com
  • 研究目的

    厚覆盖区磁铁矿勘查作为深部找矿的重要内容,工作程度低、矿体引起的异常信号弱、找矿难度大,亟待探索形成一套行之有效的勘查技术体系。

    研究方法

    运用空-地-井多维度、多方法勘查手段,采用远景区−航空物探−地面物探及验证孔−空地井联合反演−钻探逐级逼近的多元信息工作方法,使用空-地-井地球物理勘查技术、综合地质找矿信息提取方法、岩性构造填图及靶区圈定、基于多元信息的航空重磁联合反演、三维地质-地球物理建模等关键技术。

    研究结果

    针对厚覆盖区找矿特点,建立了厚覆盖区磁铁矿空-地-井协同勘查技术体系,在山东齐河地区应用,提升了找矿效果,实现了富铁矿找矿突破。

    结论

    该技术体系发挥了空-地-井协同勘查优势,为厚覆盖区磁铁矿勘查提供了理论和技术支撑,也为厚覆盖区寻找其他类型矿床提供参考。

  • 加载中
  • 图 1  示范区位置及大地构造单元划分

    Figure 1. 

    图 2  厚覆盖区磁铁矿空-地-井协同勘查技术体系

    Figure 2. 

    图 3  示范区航空重磁场及其处理结果

    Figure 3. 

    图 4  推断岩性构造及找矿预测

    Figure 4. 

    图 5  三维地球物理−地质模型

    Figure 5. 

    图 6  L1剖面航空重磁联合反演

    Figure 6. 

  • [1]

    Jessell M. 2001. Three−dimensional geological modelling of potential−field data[J]. Computers & Geosciences, 27(4): 455−465.

    [2]

    Wang W, Pan Y, Qiu Z. 2009. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 6(3): 226−233, 299. doi: 10.1007/s11770-009-0026-x

    [3]

    Chen H L, Wu L S. 2017. China has established an exploration technology system for gas hydrates[J]. Geological Equipment, 18(4): 7−8(in Chinese with English abstract ).

    [4]

    Guan Z N, Hou J S, Yao C L. 1996. Application of aeromagnetic gradient data in geological mapping and metallogenetic prognosis of gold deposits[J]. Geoscience, 10(2): 239−249 (in Chinese with English abstract).

    [5]

    Hao X Z, Zheng J M, Liu W, et al. 2020. Metallogenic prediction of skarn−type iron deposits in the Qihe−Yucheng area, Shandong Province[J]. Acta Geoscientica Sinica, 41(2): 293−302(in Chinese with English abstract).

    [6]

    Hao X Z, Xiao K Y, Wang Q Y, et al. 2023. Metallogenic regularity and potential analysis of iron ore in Shandong Province[J]. Acta Geoscientica Sinica, 44(5): 834−848(in Chinese with English abstract).

    [7]

    Han Z H, Wu Y G, Zhang C H, et al. 2010. Extracting weak anomaly in gravity and magnetic field with self−correlation filtering method[J]. Global Geology, 29(1): 124−129(in Chinese with English abstract).

    [8]

    Han, Z Y, WU Y, Yang J S, et al. 2007. Research on the technical method system for groundwater exploration in seriously water−deficient areas in the western region[J]. Journal of Hydrogeology and Engineering Geology, (2): 81 – 86(in Chinese with English abstract).

    [9]

    Huang X Z, Fan Z G, He J Z, et al. 2022. A collaborative airborne, ground, and borehole exploration technology system for concealed magmatic copper−nickel deposits[J]. Geophysical and Geochemical Exploration, 46(3): 597−607(in Chinese with English abstract).

    [10]

    Institute of Geophysical and Geochemical Exploration. 2014. Establishment of the detection technology system for concealed ore deposits in basins in China[J]. Geological Equipment, 15(4): 4−5(in Chinese).

    [11]

    Li F T, Miao H L, Fu J, et al. 2023. Gravity and magnetic anomalies and prospecting prediction of iron−polymetallic deposits in the lower reaches of the Nalinguole River[J]. Northwestern Geology, 56(6): 155 − 165(in Chinese with English abstract).

    [12]

    Li Z X, Wang T, Wang H H, et al. 2011. Theory and technical system study on multiple energy mineral resources exploration in coodination[J]. Coal Geology of China, 23(4): 68−72(in Chinese with English abstract).

    [13]

    Liang J W. 1981. Experimental results of a nonlinear filtering method[J]. Electronic Computing Techniques for Geophysical and Geochemical Exploration, (2): 22 − 28(in Chinese).

    [14]

    Liu C, Sun D L, Wu W B, et al. 2022. Analysis and prospect of precise prevention and control technical system ahead of large areas and time for gas disasters in China[J]. Coal Geology & Exploration, 50(8): 82−92(in Chinese with English abstract).

    [15]

    Liu Y, Lü Q T, Yan J Y, et al. 2012. The structure of Luzong ore district and its metallogenic indication from gravity and magnetic information[J]. Acta Petrologica Sinica, 28(10): 3125–3138(in Chinese with English abstract).

    [16]

    Man W. 2009. Study on Uranium prospecting and exploration technical system based on high resolution remote sensing[J]. Journal of Xiamen University of Technology, 17(3): 33−36(in Chinese with English abstract).

    [17]

    Qi G, Lü Q T, Yan J Y, et al. 2012. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit—A case study[J]. Chinese J. Geophys, 55(12): 4194−4206(in Chinese with English abstract).

    [18]

    Shi C Y, Wang H Y. 2022. A system of techniques and methods for three−dimensional geochemical exploration for finding deep concealed mineral resources[J]. Acta Geologica Sinica, 96(11): 3705−3721(in Chinese with English abstract).

    [19]

    Shi R, Zhang Y H, Lu M J, et al. 2018. 3D metallogenic prediction based on geological and gravity−magnetic data integration in the Qian’an iron ore concentration area, Hebei Province[J]. Acta Geoscientica Sinica, 39(6): 762−770(in Chinese with English abstract).

    [20]

    Wu C P, Yu C C, Wang W P, et al. 2019. Physical characteristics of rocks and ores and their application in Qihe area, Western Shandong[J]. Advances in Earth Science, 34(10): 1099−1107 (in Chinese with English abstract).

    [21]

    Wu C P, Yu C C , Zhou M L, et al. 2020. Residual calculation of airborne and ground magnetic field and its prospecting application in heavily covered plain area[J]. Progress in Geophysics, 35(2): 663–668 (in Chinese with English abstract).

    [22]

    Wu C P, Yu C C, Zhou M L, et al. 2022. Method and effect of delineating concealed plutons with airborne gravity and magnetic data in the Qihe thick coverage area of Shandong Province[J]. Geological Bulletin of China, 41(2/3): 398–406 (in Chinese with English abstract).

    [23]

    Yan J Y, Lü Q T, Chen X B, et al. 2014. 3D lithologic mapping test based on 3D inversion of gravity and magnetic data: A case study in Lu−Zong ore concentration district, Anhui Province[J]. Acta Petrologica Sinica, 30(4): 1041–1053 (in Chinese with English abstract).

    [24]

    Yao Y L. 2016. Analysis on comprehensive exploration technology system of coal resources in China at present stage[J]. Coal Mine Machinery, 37(10): 1−2 (in Chinese with English abstract).

    [25]

    Zhan W F. 2018. Coalmine geological anomalous body multi−field integrated geophysical prospecting technological system and practices[J]. Coal Geology of China, 30(9): 62−66 (in Chinese with English abstract).

    [26]

    Zhu R X, Jin Z J, Di Q Y, et al. 2023. Research and progress of intelligent drilling technology system and related theories[J]. Chinese J. Geophys. 66(1): 1−15(in Chinese with English abstract).

    [27]

    Zhu Y Z, Zhang W Y, Shao G H, et al. 2024. Application of distributed 3D wide field electromagnetic method in the exploration of high−grade iron ore in the thick covered area of Litun in Qihe−Yucheng, Shandong Province[J]. Geological Bulletin of China, 43(9): 1555−1564 (in Chinese with English abstract).

    [28]

    Zuo Q C. 2015. The technological system for design, development and application of data model and data integration of mineral resources potential evaluation in China[J]. Geological Bulletin of China, 34(12): 2334–2351 (in Chinese with English abstract).

    [29]

    陈惠玲, 吴庐山. 2017.我国建成天然气水合物勘探技术体系[J]. 地质装备, 18(4): 7−8.

    [30]

    管志宁, 侯俊胜, 姚长利. 1996. 航磁梯度资料在金矿地质填图和成矿预测中的应用[J]. 现代地质, 10(2): 239−249.

    [31]

    郝兴中, 郑金明, 刘伟, 等. 2020. 山东省齐河—禹城地区矽卡岩型铁矿成矿预测[J]. 地球学报, 41(2): 293−302. doi: 10.3975/cagsb.2020.011401

    [32]

    郝兴中, 肖克炎, 王巧云, 等. 2023.山东铁矿成矿规律及潜力分析[J]. 地球学报, 44(5): 834−848.

    [33]

    韩兆红, 吴燕冈, 张成海, 等. 2010. 自相关滤波法提取重磁场中弱异常[J]. 世界地质, 29(1): 124−129.

    [34]

    韩子夜, 武毅, 杨进生, 等. 2007. 西部严重缺水地区地下水勘查技术方法体系研究[J]. 水文地质工程地质, (2): 81−86. doi: 10.3969/j.issn.1000-3665.2007.02.019

    [35]

    黄旭钊, 范正国, 何敬梓, 等. 2022. 隐伏岩浆型铜镍矿空−地−井协同勘查技术体系[J]. 物探与化探, 46(3): 597−607.

    [36]

    姜振寰, 吴明泰, 王海山, 等. 1990. 技术学辞典[M]. 沈阳: 辽宁科学技术出版.

    [37]

    李凤廷, 苗虎林, 付佳, 等. 2023. 那陵郭勒河下游重磁异常与铁多金属矿找矿预测[J]. 西北地质, 56(6): 155−165. doi: 10.12401/j.nwg.2023185

    [38]

    李增学, 王佟, 王怀洪, 等. 2011. 多能源矿产协同勘查理论与技术体系研究[J]. 中国煤炭地质, 23(4): 68−72. doi: 10.3969/j.issn.1674-1803.2011.04.15

    [39]

    梁锦文. 1981. 一种非线性滤波方法的试验效果[J]. 物探化探电子计算技术, (2): 22−28.

    [40]

    刘程, 孙东玲, 武文宾, 等. 2022. 我国煤矿瓦斯灾害超前大区域精准防控技术体系及展望[J]. 煤田地质与勘探, 50(8): 82−92. doi: 10.12363/issn.1001-1986.21.12.0869

    [41]

    刘彦, 吕庆田, 严加永, 等. 2012. 庐枞矿集区结构特征重磁研究及其成矿指示[J]. 岩石学报, 28(10): 3125−3138.

    [42]

    满旺. 2009. 高分辨率遥感铀矿地质勘查技术体系研究[J]. 厦门理工学院学报, 17(3): 33−36. doi: 10.3969/j.issn.1673-4432.2009.03.007

    [43]

    祁光, 吕庆田, 严加永, 等. 2012. 先验地质信息约束下的三维重磁反演建模研究——以安徽泥河铁矿为例[J]. 地球物理学报, (12): 4194−4206. doi: 10.6038/j.issn.0001-5733.2012.12.031

    [44]

    邱道持, 柳源, 许江, 等. 2006. 重庆市地质灾害监测预警与防治技术体系研究及示范[R].

    [45]

    史长义, 王惠艳. 2022. 深部矿产资源立体地球化学勘查方法技术体系[J]. 地质学报, 96(11): 3705−3721. doi: 10.3969/j.issn.0001-5717.2022.11.003

    [46]

    史蕊, 张颖慧, 卢民杰, 等. 2018. 基于地质与重磁数据集成的河北迁安铁矿集区三维成矿预测[J]. 地球学报, 39(6): 762−770. doi: 10.3975/cagsb.2018.081302

    [47]

    吴成平, 于长春, 王卫平, 等. 2019. 鲁西齐河地区岩(矿)石物性特征及应用[J]. 地球科学进展, 34(10): 1099−1107. doi: 10.11867/j.issn.1001-8166.2019.10.1099

    [48]

    吴成平, 于长春, 周明磊, 等. 2020. 空地磁残差计算在平原厚覆盖区找矿应用[J]. 地球物理学进展, 35(2): 663−668. doi: 10.6038/pg2020DD0007

    [49]

    吴成平, 于长春, 周明磊, 等. 2022. 航空重磁在山东齐河厚覆盖区圈定隐伏岩体的方法及效果[J]. 地质通报, 41(2−13): 398−406. doi: 10.12097/j.issn.1671-2552.2022.2-3.017

    [50]

    严加永, 吕庆田, 陈向斌, 等. 2014. 基于重磁反演的三维岩性填图试验——以安徽庐枞矿集区为例[J]. 岩石学报, 30(4): 1041−1053.

    [51]

    姚艳领. 2016. 现阶段我国煤炭资源综合勘查技术体系分析[J]. 煤矿机械, 37(10): 1−2.

    [52]

    占文锋. 2018. 矿井地质异常体多场联合探测技术体系及实践分析[J]. 中国煤炭地质, 30(9): 62−66. doi: 10.3969/j.issn.1674-1803.2018.09.12

    [53]

    中国地质科学院地球物理地球化学勘查研究所. 2014. 我国建立盆地隐伏矿探测技术体系[J]. 地质装备, 15(4): 4−5. doi: 10.3969/j.issn.1009-282X.2014.04.003

    [54]

    朱日祥, 金之钧, 底青云, 等. 2023. 智能导钻技术体系与相关理论研发进展[J]. 地球物理学报, 66(1): 1−15. doi: 10.6038/cjg2022Q0730

    [55]

    朱裕振, 张文艳, 邵贵航, 等. 2024. 分布式三维广域电磁法在山东齐河—禹城李屯厚覆盖区富铁矿勘查中的应用[J]. 地质通报, 43(9): 1555−1564. doi: 10.12097/gbc.2022.09.023

    [56]

    左群超. 2015. 矿产资源潜力评价数据模型研发、应用与数据集成方法技术体系[J]. 地质通报, 34(12): 2334−2351. doi: 10.3969/j.issn.1671-2552.2015.12.020

  • 加载中

(6)

计量
  • 文章访问数:  38
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2023-12-28
修回日期:  2024-04-06
刊出日期:  2025-06-15

目录