湘东北矿集区黄金洞金矿床成矿机制——来自毒砂和黄铁矿微量元素的约束

吴俊, 隗含涛, 董国军, 范鹏, 吴圣刚, 陈孝刚, 孟亚群, 阴芳圆. 2025. 湘东北矿集区黄金洞金矿床成矿机制——来自毒砂和黄铁矿微量元素的约束. 地质通报, 44(2~3): 298-314. doi: 10.12097/gbc.2023.04.040
引用本文: 吴俊, 隗含涛, 董国军, 范鹏, 吴圣刚, 陈孝刚, 孟亚群, 阴芳圆. 2025. 湘东北矿集区黄金洞金矿床成矿机制——来自毒砂和黄铁矿微量元素的约束. 地质通报, 44(2~3): 298-314. doi: 10.12097/gbc.2023.04.040
WU Jun, WEI Hantao, DONG Guojun, FAN Peng, WU Shenggang, CHEN Xiaogang, MENG Yaqun, YIN Fangyuan. 2025. Formation mechanism of the Huangjindong gold deposit, Northeastern Hunan ore cluster: Constraints from trace elements compositions of arsenopyrite and pyrite. Geological Bulletin of China, 44(2~3): 298-314. doi: 10.12097/gbc.2023.04.040
Citation: WU Jun, WEI Hantao, DONG Guojun, FAN Peng, WU Shenggang, CHEN Xiaogang, MENG Yaqun, YIN Fangyuan. 2025. Formation mechanism of the Huangjindong gold deposit, Northeastern Hunan ore cluster: Constraints from trace elements compositions of arsenopyrite and pyrite. Geological Bulletin of China, 44(2~3): 298-314. doi: 10.12097/gbc.2023.04.040

湘东北矿集区黄金洞金矿床成矿机制——来自毒砂和黄铁矿微量元素的约束

  • 基金项目: 国家自然科学基金项目《脉状金矿床金、钨共同富集机制研究:以江南造山带黄金洞大型矿床为例》(批准号:42272073)、《湘西沃溪大型Au−Sb−W矿床成因:原位微区年代学、同位素和元素分析约束》(批准号:42003039)、湖南省地质调查院项目《江南古陆金成矿带黄金洞矿区深部三维智能预测技术及勘查示范》(编号:HNGSTP202302)
详细信息
    作者简介: 吴俊(1987− ),男,高级工程师,矿产勘查专业。E−mail:371208571@qq.com
    通讯作者: 董国军(1969− ),男,教授级高工,资源勘查专业。E−mail:dgj402@163.com
  • 中图分类号: P618.51

Formation mechanism of the Huangjindong gold deposit, Northeastern Hunan ore cluster: Constraints from trace elements compositions of arsenopyrite and pyrite

More Information
  • 研究目的

    湘东北矿集区黄金洞金矿是江南古陆典型的大型金矿床,探明金资源量约80 t,平均品位5 g/t,矿体主要赋存于新元古代冷家溪群板岩中。通过研究黄金洞金矿中载金硫化物的微量元素组成及其不可见金的赋存状态,揭示巨量金的富集过程。

    研究方法

    本次研究对黄金洞矿区开展了详细的野外地质考察,对金成矿阶段的主要载金矿物毒砂和黄铁矿进行了系统的显微结构、激光剥蚀等离子质谱仪(LA−ICP−MS)微量元素分析。

    研究结果

    电子探针显微结构研究结果表明,黄铁矿和毒砂在背散射图像中主要呈均一结构,环带结构不明显。LA−ICP−MS微量元素分析结果显示,黄铁矿中不可见Au含量为3.1×10−6~111.5×10−6,平均为31.9 ×10−6;毒砂中不可见Au含量为0.6×10−6~279.4×10−6,平均为67.2 ×10−6。黄铁矿中的不可见金含量均分布在饱和线下方,暗示这些不可见金主要为晶格金。系统的剥蚀信号图分析发现,少数分析点位中不可见金的信号出现“尖峰”,暗示存在微米尺度的纳米金颗粒。研究收集了江南古陆已发表的燕山期典型大型金矿床中黄铁矿和毒砂微量元素数据,发现Sb、Cu、Se、Te等元素含量在不同元素组合矿床中存在一定差异,表明载金硫化物的微量元素组成可在一定程度上揭示区域成矿差异。

  • 加载中
  • 图 1  湘东北地区主要金属矿床及岩体分布图(据许德如等,2009修改)

    Figure 1. 

    图 2  黄金洞金矿床平面地质图(据Zhang et al., 2019a修改)

    Figure 2. 

    图 3  黄金洞金矿床不同类型金矿体地质特征

    Figure 3. 

    图 4  黄金洞金矿床不同类型矿石手标本照片

    Figure 4. 

    图 5  黄金洞金矿床不同类型金矿石中自然金、毒砂和黄铁矿显微结构特征(图h为单偏光,其他为反射光)

    Figure 5. 

    图 6  黄金洞金矿床黄铁矿和毒砂电子探针背散射显微结构照片(图中数字为不可见金含量)

    Figure 6. 

    图 7  黄金洞金矿床黄铁矿微量元素特征图解

    Figure 7. 

    图 8  黄金洞金矿床毒砂微量元素特征图解

    Figure 8. 

    图 9  黄金洞金矿床黄铁矿和毒砂LA−ICP−MS测试元素信号随时间变化图解

    Figure 9. 

    图 10  江南古陆黄金洞、万古、沃溪矿床黄铁矿和毒砂微量元素组成对比(万古和沃溪矿床数据分别据万泰安等,2022和Dai et al., 2023

    Figure 10. 

    表 1  黄金洞金矿床测试样品特征

    Table 1.  Characteristics of the analyzed samples from the Huangjindong golddeposit

    样品编号采样位置矿段样品特征
    HJD-4−160 m华家湾宽10~30 cm的石英脉,脉体中可见多条宽1~2 mm的硫化物细脉分布在石英中,围岩未发生明显蚀变
    HJD-5−160 m华家湾宽5~15 cm的石英脉,可见一定量的毒砂、黄铁矿和铁白云石,围岩发育毒砂-黄铁矿化蚀变
    HJD-12−430 m华家湾宽约60 cm的石英脉,脉体发育很多石英细脉,围岩中发育毒砂-黄铁矿
    HJD-13−430 m华家湾宽约60 cm的石英脉,脉体发育很多石英细脉,围岩中发育毒砂-黄铁矿
    HJD-43+280 m杨山庄宽约1 m的石英脉,脉体中可见围岩角砾被石英-黄铁矿胶结
    HJD-46−165 m金塘宽约4 m的破碎带,含硫化物石英网脉充填在围岩中
    HJD-56−40 m金塘宽3~5 cm的石英脉,脉体中发育围岩角砾,取围岩中的毒砂-黄铁矿
    HJD-58−165 m金塘宽1~5 cm的石英脉,围岩中发育毒砂-黄铁矿
    HJD-64−20 m华家湾宽5~15 cm的石英-硫化物脉,围岩未发生蚀变
    HJD-69−30 m华家湾宽15 cm的石英脉,脉体中含硫化物细脉
    下载: 导出CSV

    表 2  黄金洞矿床黄铁矿LA−ICP−MS微量元素组成

    Table 2.  LA−ICP−MS trace element composition of pyrite from the Huangjindong gold deposit 10−6

    样品编号AuAsSbWCoNiCuTiVPbBiSeTe
    HJD-4-1@121.7427142.40.393.5521.38.228.10.26.70.2bdlbdl
    HJD-4-1@23.1310734.632.944.6202.65.79345.825.612.60.2bdlbdl
    HJD-4-1@33.8266084.50.562.5221.811.024.52.467.20.2bdlbdl
    HJD-4-1@415.2701125.30.433.7204.144.750.91.614.00.5bdlbdl
    HJD-4-1@511.1611310.81.03.719.710.174.20.32.20.1bdlbdl
    HJD-12@141.85458613.91.043.095.913.977.10.536.30.6bdlbdl
    HJD-12@237.24830325.72.098.8332.516.3163.80.865.71.1bdlbdl
    HJD-12@320.1483276.00.34.820.012.224.30.217.20.2bdlbdl
    HJD-12@428.94473947.20.4110.8366.133.213.80.2127.61.8bdlbdl
    HJD-12@529.84897015.01.6102.8225.614.0117.30.955.30.5bdlbdl
    HJD-13@136.58389725.86.6101.5271.319.64.4bdl160.80.2bdlbdl
    HJD-13@279.3461817.90.121.259.636.318.7bdl24.50.2bdlbdl
    HJD-13@335.4452641.8bdl43.7108.716.36.3bdl3.60.0bdlbdl
    HJD-13@489.3642043.0bdl21.9106.458.12.6bdl6.30.1bdlbdl
    HJD-13@543.04725243.5bdl9.729.827.15.0bdl84.80.9bdlbdl
    HJD-46@113.63153754.573.69.911.663.92799.616.1404.410.4bdlbdl
    HJD-46@225.129978110.10.6103.4313.3234.214.30.21132.413.4bdlbdl
    HJD-46@323.42808899.310.5182.1377.0214.6460.22.1672.910.4bdlbdl
    HJD-46@47.2353378.50.2bdlbdl11.26.0bdl59.81.3bdlbdl
    HJD-46@56.53124821.15.70.52.813.2207.20.9155.02.8bdlbdl
    HJD-56@187.45754912.63.83.524.852.4603.05.999.70.9bdlbdl
    HJD-56@2111.5561139.01.43.713.583.463.60.727.90.6bdlbdl
    HJD-56@37.3443834.60.911.849.13.775.10.316.10.5bdlbdl
    HJD-56@410.95902411.64.0663.22395.49.5516.82.5286.03.2bdlbdl
    HJD-56@510.14403314.58.0146.8320.715.2608.32.5181.82.722.1bdl
    HJD-56@626.47094213.90.416.689.118.299.20.3381.91.0bdlbdl
    HJD-56@710.1573534.51.697.984.26.3169.30.729.90.5bdlbdl
    HJD-56@828.3482577.40.6224.1245.59.474.6bdl27.20.6bdlbdl
    HJD-69-2@118.13686437.858.616.944.632.01806.57.7337.01.6bdlbdl
    HJD-69-2@356.746211557.6237.6107.6311.9205.94423.5107.7821.83.7bdlbdl
    HJD-69-2@450.733198257.3159.473.5267.2149.93895.838.4594.83.6bdlbdl
      注:bdl表示黄铁矿中的微量元素低于检出限
    下载: 导出CSV

    表 3  黄金洞矿床毒砂LA−ICP−MS微量元素组成

    Table 3.  LA−ICP−MS trace element composition of arsenpyrite from the Huangjindong deposit 10−6

    样品编号AuSbWCoNiCuZnSeTePbTiBi
    HJD-5-1-12.4574.32.816.548.84.75741.83.00.09.4876.65.2
    HJD-5-1-21.4383.10.00.60.80.30.10.40.20.85.21.8
    HJD-5-1-34.3490.50.853.0130.60.50.10.20.02.6193.23.0
    HJD-5-1-40.6278.90.21.24.31.41.00.00.13.325.51.2
    HJD-5-1-5128.857.30.02.97.84.40.60.00.01.51.60.3
    HJD-5-1-683.157.90.010.437.45.712.60.00.25.8308.51.1
    HJD-64-3-11.4493.50.33.411.71.61.12.00.67.87.72.2
    HJD-64-3-23.0767.60.837.0129.54.90.36.10.518.263.33.1
    HJD-64-3-341.9105.10.750.4249.511.90.17.70.033.3260.31.6
    HJD-64-3-441.7121.50.30.74.23.91.30.00.04.88.90.6
    HJD-64-3-546.6110.20.055.859.34.30.20.00.57.15.91.2
    HJD-64-3-699.278.20.43.49.25.00.30.50.06.060.31.4
    HJD-69-118.8514.80.00.30.20.90.24.511.04.20.33.0
    HJD-69-2127.4243.90.1141.7552.64.90.27.734.34.80.00.9
    HJD-69-3140.5217.20.1110.6544.56.40.52.516.22.41.21.1
    HJD-69-418.61024.50.07.36.71.21.32.310.10.90.09.7
    HJD-69-5233.6208.50.273.6302.913.22.64.019.41155.10.012.6
    HJD-69-6279.4197.30.0835.82758.612.712.86.727.518.80.02.2
    HJD-43-1145.2117.80.037.5208.610.70.215.410.618.10.03.1
    HJD-43-2148.1188.70.035.1228.310.40.512.319.127.20.65.2
    HJD-43-3135.9144.50.052.1260.45.00.09.61.60.60.70.9
    HJD-43-41.7732.00.142.9128.91.20.67.81.05.40.03.0
    HJD-43-5234.965.50.327.6171.16.90.24.11.07.70.50.3
    HJD-43-628.5302.90.310.241.12.30.43.60.498.50.03.3
    HJD-46-160.188.80.70.12.02.00.61.61.931.56.23.3
    HJD-46-219.9333.22.43.521.63.22.01.51.08.2143.46.8
    HJD-46-332.192.80.00.00.01.10.63.42.72.67.10.8
    HJD-46-45.2236.41.40.20.20.90.63.91.313.651.84.5
    HJD-46-537.7102.613.80.20.72.710.25.42.816.6597.95.1
    HJD-46-629.4141.81.10.40.75.51.25.52.428.140.310.8
    HJD-58-119.2783.10.72.97.33.65.24.018.31272.4109.226.1
    HJD-58-262.270.10.00.91.63.035.61.60.07.111.43.1
    HJD-58-310.3932.10.00.12.43.38.63.50.89.511.818.6
    HJD-58-47.41032.60.70.72.91.70.62.34.34.422.312.6
    HJD-58-5124.8102.20.43.810.27.00.210.41.13.830.11.8
    HJD-58-642.791.10.40.61.74.40.02.20.211.065.43.8
    下载: 导出CSV
  • [1]

    Cook N J, Chryssoulis S L. 1990. Concentrations of "invisible gold" in the common sulfides[J]. Canadian Mineralogist, 28: 1−16.

    [2]

    Cook N J, Ciobanu C L, Meria D, et al. 2013. Arsenopyrite–pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements[J]. Economic Geology, 108(6): 1273−1283. doi: 10.2113/econgeo.108.6.1273

    [3]

    Dai J F, Xu D R, Zhang J, et al. 2023. Textural and LA−ICP−MS trace element analyses reveal co−enriched Au−Sb−W metallogeny in the Woxi deposit, west Jiangnan Orogen, South China[J]. Ore Geology Reviews, 154: 105333. doi: 10.1016/j.oregeorev.2023.105333

    [4]

    Deditius A P, Reich M, Kesler S E, et al. 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica Cosmochimica Acta, 140: 644−670. doi: 10.1016/j.gca.2014.05.045

    [5]

    Deng T, Xu D R, Chi G X, et al. 2018. Revisiting the ca. 845~820 Ma S type granitic magmatism in the Jiangnan Orogen: New insights on the Neoproterozoic tectono magmatic evolution of South China[J]. International Geology Review, 61(4): 383−403.

    [6]

    Deng T, Xu D R, Chi G X, et al. 2020. Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen: A case study on gold deposits in northeastern Hunan, South China[J]. Ore Geology Reviews, 124: 103586. doi: 10.1016/j.oregeorev.2020.103586

    [7]

    Ding X, Chen P R, Chen W F, et al. 2005. Zircon LA−ICPMS U−Pb dating in granite from Weishan, Hunan Province: Diagenetic insights and significance. Scienec China[J]. Earth Science, 35(7): 606−616 (in Chinese with English abstract).

    [8]

    Dong G J, Xu D R, Wang L, et al. 2008. Determination of mineralizing ages on gold ore deposits in the eastern Hunan Province south China and isotopic tracking on ore−forming fluids—Re−discussing gold ore deposit type[J]. Geotectonica et Metallogenia, 32(4): 482−491 (in Chinese with English abstract).

    [9]

    Fan H R, Li X H, Zuo Y B, et al. 2018. In−situ LA−( MC)−ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. ActaPetrologica Sinica, 34(12): 3479−3496 (in Chinese with English abstract).

    [10]

    Fleet M E, Mumin A H. 1997. Gold−bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis[J]. American Mineralogist, 82(1/2): 182−193.

    [11]

    Fougerouse D, Micklethwaite S, Tomkins A G, et al. 2016. Gold remobilisation and formation of high grade ore shoots driven by dissolution−reprecipitation replacement and Ni substitution into auriferous arsenopyrite[J]. Geochimica et Cosmochimica Acta, 178: 143−159. doi: 10.1016/j.gca.2016.01.040

    [12]

    Fougerouse D, Reddy S, Aylmore M, et al. 2021. A new kind of invisible gold in pyrite hosted in deformation−related dislocations[J]. Geology, 49(10): 1225−1229. doi: 10.1130/G49028.1

    [13]

    Gao L, Peng J S. 2017. The characteristics and rules of native gold orebody in Jintang oreblock Vein No. 3[J]. Land & Resources Herald, 14(2): 69−73 (in Chinese with English abstract).

    [14]

    Greentree M R, Li Z X, Li X H, et al. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in west south China and relationship to the assembly of Rodinia[J]. Precambrian Research, 151: 79−100. doi: 10.1016/j.precamres.2006.08.002

    [15]

    Hu R Z, Fu S L, Huang Y. 2017. The giant south China Mesozoic low−temperature metallogenic domain: Reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 137: 9−34.

    [16]

    Hu A X, Wen J, Peng J T. 2023. The accumulation mechanism of giant ores in the Xikuangshan antimony deposit, central Hunan: Constraints from fluid inclusions hosted in calcite[J]. Geological Bulletin of China, 42(7): 1166−1178 (in Chinese with English abstract).

    [17]

    Huang J Z, Shun J, Zhou C. 2020. Metallogenic regularity and resource potential of gold deposits of Hunan area in the Jiangnan Orogenic Belt, South China[J]. Acta Scientica Sinica, (2): 230−252.

    [18]

    Large R R, Maslennikov V V, Robert F, et al. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province. Russia[J]. Economic Geology, 102(7): 1233−1267.

    [19]

    Li J A, Zhang Y Q, Dong S W, et al. 2015. LA−MC−ICPMS zircon U−Pb geochronology of the Hongxiaqiao and Banshanpu granitoids in eastern Hunan Province and its geological implications[J]. Acta Geoscientica Sinica, 36(2): 187−196 (in Chinese with English abstract).

    [20]

    Li P, Zhang L P, Li J K, et al. 2021b. Metallogenic regularity of rare metal deposits in Mufushan area of CentralChina, and its application in ore prospecting[J]. Mineral Deposits, 40(4): 819−841 (in Chinese with English abstract).

    [21]

    Li W, X G Q, Zhang Z Y, et al. 2016. Constraint on the genesis of Gutaishan gold deposit in central HunanProvince: Evidence from fluid inclusion and C−H−O isotopes[J]. Acta Petrologica Sinica, 32(11): 3489−3506 (in Chinese with English abstract).

    [22]

    Li W, Cook N J, Xie G Q, et al. 2021. Complementary textural, trace element and isotope analysis of sulfides constrain ore−forming processes for the slate−hosted Yuhengtang Au deposit, South China[J]. Economic Geology, 116: 1825−1848. doi: 10.5382/econgeo.4847

    [23]

    Li W, Cook N J, Xie G Q, et al. 2019. Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au–Sb deposit, south China[J]. Mineralium Deposita, 54: 591−610. doi: 10.1007/s00126-018-0826-0

    [24]

    Li W, Xie G Q, Mao J W, et al. 2023. Precise age constraints for the Woxi Au–Sb–W deposit, South China[J]. Economic Geology, 118: 509−518. doi: 10.5382/econgeo.4971

    [25]

    Li W, Xie G Q, Mao J W, et al. 2018. Muscovite 40Ar/39Ar and in situ sulfur isotope analyses of the slate−hosted Gutaishan Au–Sb deposit, south China: Implications for possible Late Triassic magmatic−hydrothermal mineralization[J]. Ore Geology Reviews, 101: 839−853. doi: 10.1016/j.oregeorev.2018.08.006

    [26]

    Li Y D, Ma M, Cai W Y, et al. 2024. Genesis of Yinan gold deposit in Luxi district: Constrain from REE and trace elements of sulfide ore and wall−rock[J]. Geological Bulletin of China, 43(6): 896−913 (in Chinese with English abstract).

    [27]

    Liang Q L, Xie Z J, Song X Y, et al. 2021. Evolution of invisible Au in arsenian pyrite in Carlin−type Au deposits[J]. Economic Geology, 116(2): 515−526. doi: 10.5382/econgeo.4781

    [28]

    Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.

    [29]

    Liu Y, Zhang L, Sun S C, et al. 2017. Mineralization mechanism of Yangshanzhuang gold deposit, northeastern Hunan Province[J]. Acta Petrologica Sinica, 33(7): 2273−2284 (in Chinese with English abstract).

    [30]

    Lu Y J , Cui W D, Sun C Y, et al. 1989. Study on the occurrence of gold in arsenopyrite of Huang−jindong gold deposit in Hunan Province[J]. Contributions to Geology and Mineral Resources Research, 4(1): 42−49 (in Chinese with English abstract).

    [31]

    Mao J W, Li Y G. 1997a. Researcg on genesis of the gold deposets in the Jiangnan terrain[J]. Geochimica, 26(5): 71−81 (in Chinese with English abstract).

    [32]

    Mao J W, Li Y G, Xu Y, et al. 1997b. Geology and Achievements of Gold Deposits in the Wangu Region of Hunan Province[M]. Beijing: Atomic Energy Publishing House (in Chinese).

    [33]

    Meng Y Q, Li W, Mao J W, et al. 2024. Trace elements and sulfur isotopic composition of sedimentary pyrite on constraining ore genesis of Huangjindong gold deposit[J]. Mineral Deposits, 43 (4): 935–950 (in Chinese with English abstract).

    [34]

    Morey A A, Tomkins A G, Bierlein F P. 2008. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, western Australia[J]. Economic Geology, 103(3): 599−614. doi: 10.2113/gsecongeo.103.3.599

    [35]

    Pokrovski G S, Borisova A Y, Bychkov A Y, et al. 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors[J]. Reviews in Mineralogy Geochemistry, 76(1): 165−218. doi: 10.2138/rmg.2013.76.6

    [36]

    Reich M, Kesler S E, Utsunomiya S, et al. 2005. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 69(11): 2781−2796. doi: 10.1016/j.gca.2005.01.011

    [37]

    Seward T M. 1973. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 37(3): 379−399. doi: 10.1016/0016-7037(73)90207-X

    [38]

    Sun S C, Zhang L, Wu S G, et al. 2018. Metallogenic mechanism of the Huangjindong gold deposit, Jiangnan Orogenic Belt: Constraints from mineral formation environment and physicochemical conditions ofmetallogenesis[J]. Acta Petrologica Sinica, 34(5): 1469−1483 (in Chinese with English abstract).

    [39]

    Wan T A, Xu D R, Ma W, et al. 2022. Trace Element Characteristics of Different Chronology Pyrite in Wangu Gold De−posit, Northeast Hunan and Its Implication to Gold Mineralization Mechanism[J]. Gold Science and Technology, 30(5): 676−690 (in Chinese with English abstract).

    [40]

    Wei H T , Shao Y J, Wang C, et al. 2020. Petrogenesis of the Granitoids in the Jinji Au Deposit, Northeastern Hunan Province[J]. Acta Geoscientica Sinica, 41(2): 253–266 (in Chinese with English abstract).

    [41]

    Wen Z L , Deng T, Dong G J, et al. 2016. Characteristics of ore−controlling Structures of Wangu gold depositin northeastern Hunan Province[J]. Geotectonica et Metallogenia, 40(2): 281–294 (in Chinese with English abstract).

    [42]

    Wu Y F, Fougerouse D, Evans K, et al. 2019. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics[J]. Geology, 47: 641−644.

    [43]

    Xu D R, Wang L, Li P C. 2009. Petrogenesis of the Liyunshan granites in northeastern Hunan Province, South China, and its geodynamic implication[J]. Acta Petrologica Sinica, 25(5): 1056−1078.

    [44]

    Xu D R, Zou F H, Ning J T, et al. 2017a. Discussion on geological andstructural characteristics and associated metallogeny in northeastern Hunan Province, South China[J]. Acta Petrologica Sinica, 33(3): 695−715 (in Chinese with English abstract).

    [45]

    Xu D R, Deng T, Chi G X, et al. 2017b. Gold mineralization in the Jiangnan orogenic belt of south China: Geological, geochemical and geochronological characteristics, ore deposit−type and geodynamic setting[J]. Ore Geology Reviews, 88: 565−618. doi: 10.1016/j.oregeorev.2017.02.004

    [46]

    Xu K, Xu D R. 2022. Study on the formation mechanism of altered rock type gold mineralization of Huangjindong gold deposit in Jiangnan Orogenic Belt[J]. Gold Science and Technology, 30(2): 151−164 (in Chinese with English abstract).

    [47]

    Yin F Y, Li W, Xie G Q, et al. 2024. Genesis of the Wangu Au deposit in the Jiangnan orogenic belt: Constraints from texture, trace element, and in−situ Sr isotope of scheelite[J]. Ore Geology Reviews, 106375.

    [48]

    Zhang L, Groves D, Yang L Q, et al. 2020. Utilization of pre−existing competent and barren quartz veins as hosts to later orogenic gold ores at Huangjindong gold deposit, Jiangnan Orogen, southern China[J]. Mineralium Deposita, 55: 363−380. doi: 10.1007/s00126-019-00904-5

    [49]

    Zhang L, Yang L Q, Groves D I, et al. 2019a. An overview of timing and structural geometry of gold, gold−antimony and antimony mineralization in the Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 115: 103173. doi: 10.1016/j.oregeorev.2019.103173

    [50]

    Zhang L, Yang L Q, Groves D I, et al. 2018. Geological and isotopic constraints on ore genesis, Huangjindong gold deposit, Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 99: 264−281. doi: 10.1016/j.oregeorev.2018.06.013

    [51]

    Zhang W L, Hu W X, Hu S X, et al. 1997. Study on the mode of gold in arsenopyrite from Huangjindong gold deposit, Hunan, by using electron probe microanalysis[J]. Geological Journal of China Universities, 3(3): 256−262 (in Chinese with English abstract).

    [52]

    Zhang Z Y, Xie G Q, Olin P, et al. 2022. Texture, in−situ geochemical, and S isotopic analyses of pyrite and arsenopyrite from the Longshan Sb−Au deposit, southern China: Implications for the genesis of intrusion−related Sb−Au deposit[J]. Ore Geology Reviews, 143: 104781. doi: 10.1016/j.oregeorev.2022.104781

    [53]

    Zhang Z Y, Xie G Q, Mao J W, et al. 2019b. Sm−Nd dating and In−situ LA−ICP−MS trace element analyses of scheelite from the Longshan Sb−Au deposit, Xiangzhong Metallogenic Province, South China[J]. Minerals, 9(87). doi:10.3390/min9020087

    [54]

    Zhang Z Y, Xie G Q, Li H C, et al. 2018. Preliminary study on muscovite 40Ar−39Ar geochronology and its significance ofthe Longshan Sb−Au deposit in Hunan Province[J]. Acta Petrologica Sinica, 34(9): 2535−2547 (in Chinese with English abstract).

    [55]

    Zhou Y Q, Dong G J, Xu D R, et al. 2021. Scheelite Sm−Nd age of the Huangjindong Au deposit in Hunanand its geological significance[J]. Geochimica, 50(4): 381–397 (in Chinese with English abstract).

    [56]

    Zhou Y Q, Xu D R, Dong G J, et al. 2021. The role of structural reactivation for gold mineralization in northeastern Hunan Province, South China[J]. Journal of Structural Geology, 145: 104306. doi: 10.1016/j.jsg.2021.104306

    [57]

    丁兴, 陈培荣, 陈卫锋, 等. 2005. 湖南沩山花岗岩中锆石LA–ICPMS U−Pb定年: 成岩启示和意义[J]. 中国科学: 地球科学, 35(7): 606−616.

    [58]

    董国军, 许德如, 王力, 等. 2008. 湘东地区金矿床矿化年龄的测定及含矿流体来源的示踪——兼论矿床成因类型[J]. 大地构造与成矿学, 32(4): 482−491. doi: 10.3969/j.issn.1001-1552.2008.04.012

    [59]

    范宏瑞, 李兴辉, 左亚彬, 等. 2018. LA−(MC)−ICPMS 和(Nano) SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 34(12): 3479−3496.

    [60]

    高磊, 彭劲松. 2017. 湖南省平江县黄金洞矿区金塘矿段3号脉明金矿体特征及规律[J]. 国土资源导刊, 14(2): 69−73.

    [61]

    黄建中, 孙骥, 周超, 等. 2020. 江南造山带(湖南段)金矿成矿规律与资源潜力[J]. 地球学报, (2): 230−252.

    [62]

    胡阿香, 文静, 彭建堂. 2023. 湘中锡矿山锑矿床巨量矿石堆积机制: 来自方解石流体包裹体的约束[J]. 地质通报, 42(7): 1166−1178. doi: 10.12097/j.issn.1671-2552.2023.07.009

    [63]

    李建华, 张岳桥, 董树文, 等. 2015. 湘东宏夏桥和板杉铺岩体LA−MC−ICPMS锆石U−Pb年龄及地质意义[J]. 地球学报, 36(2): 187−196. doi: 10.3975/cagsb.2015.02.07

    [64]

    李鹏, 张立平, 李建康, 等. 2021. 江南造山带中段幕阜山地区稀有金属成矿规律及其在找矿中的应用[J]. 矿床地质, 40(4): 819−841.

    [65]

    李伟, 谢桂青, 张志远, 等. 2016. 流体包裹体和C−H−O同位素对湘中古台山金矿床成因制约[J]. 岩石学报, 32: 3489−3506.

    [66]

    李亚东, 马明, 蔡文艳, 等. 2024. 鲁西地区沂南金矿床成因: 硫化物矿石与围岩稀土和微量元素的制约[J]. 地质通报, 43(6): 896−913. doi: 10.12097/gbc.2022.12.019

    [67]

    刘英俊, 崔卫东, 孙承辕, 等. 1989. 湖南黄金洞金矿床毒砂中金的赋存状态的研究[J]. 地质找矿论丛, 4(1): 42−49.

    [68]

    刘育, 张良, 孙思辰, 等. 2017. 湘东北杨山庄金矿床流体成矿机制[J]. 岩石学报, 33(7): 2273−2284.

    [69]

    毛景文, 李红艳. 1997a. 江南古陆某些金矿床成因讨论[J]. 地球化学, 26(5): 71−81.

    [70]

    毛景文, 李红艳, 徐钰, 等. 1997b. 湖南万古地区金矿地质与成果[M]. 北京: 原子能出版社.

    [71]

    孟亚群, 李伟, 毛景文, 等. 2024. 沉积黄铁矿微量元素和硫同位素组成对黄金洞金矿床的成因约束[J]. 矿床地质, 43(4): 935−950.

    [72]

    孙思辰, 张良, 吴圣刚, 等. 2018. 江南造山带黄金洞金矿床成矿机制: 矿物形成环境与金成矿物理化学条件制约[J]. 岩石学报, 34(5): 1469−1483.

    [73]

    万泰安, 许德如, 马文, 等. 2022. 湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示[J]. 黄金科学技术, 30(5): 676−690.

    [74]

    隗含涛, 邵拥军, 汪程, 等. 2020. 湘东北金鸡金矿床岩体成岩机制[J]. 地球学报, 41(2): 253−266. doi: 10.3975/cagsb.2020.010701

    [75]

    文志林, 邓腾, 董国军, 等. 2016. 湘东北万古金矿床控矿构造特征与控矿规律研究[J]. 大地构造与成矿学, 40(2): 281−294.

    [76]

    许德如, 王力, 李鹏春, 等. 2009. 湘东北地区连云山花岗岩的成因及地球动力学暗示[J]. 岩石学报, 25(5): 1056−1078.

    [77]

    许德如, 邹凤辉, 宁钧陶, 等. 2017. 湘东北地区地质构造演化与成矿响应探讨[J]. 岩石学报, 33(3): 695−715.

    [78]

    许可, 许德如. 2022. 江南造山带黄金洞金矿蚀变岩型金矿化形成机制研究[J]. 黄金科学技术, 30(2): 151−164. doi: 10.11872/j.issn.1005-2518.2022.02.139

    [79]

    张文兰, 胡文宣, 胡受奚, 等. 1997. 湖南黄金洞金矿毒砂中Au 赋存状态的电子探针研究[J]. 高校地质学报, 3(3): 256−262.

    [80]

    张志远, 谢桂青, 李惠纯, 等. 2018b. 湖南龙山锑金矿床白云母40Ar−39Ar年代学及其意义初探[J]. 岩石学报, 34(9): 2535−2547.

    [81]

    周岳强, 董国军, 许德如, 等. 2021. 湖南黄金洞金矿床白钨矿Sm−Nd 年龄及其地质意义[J]. 地球化学, 50(4): 381−397.

  • 加载中

(10)

(3)

计量
  • 文章访问数:  403
  • PDF下载数:  58
  • 施引文献:  0
出版历程
收稿日期:  2023-04-26
修回日期:  2023-06-22
刊出日期:  2025-03-15

目录