Geophysical exploration and resource potential analysis of dry hot rocks in southeast Guangxi
-
摘要:
研究目的 针对广西干热岩资源探测研究不足的现状,重点围绕桂东南地区开展综合地球物理勘查与研究,探究干热岩资源潜力,进一步提高该地区在该领域的研究工作程度,助力广西能源结构转型升级。
研究方法 基于研究区地球物理场特征,综合运用大地电磁法开展深部探测工作,并结合干热岩地质研究成果,系统分析区域断裂与深部热源通道,通过地球物理与地热地质资料耦合分析,探讨深部结构面埋深及隐伏岩体存在的可能性。
研究结果 通过研究分析,识别出多条深大断裂作为深部热源通道,发现西场盆地底部存在隐伏岩体,埋深3~5 km,规模达数百平方千米。经热储法估算,西场盆地干热岩资源量为182.48×1015 J,折合标准煤622.63×104 t,按20%的采收率,干热岩资源量可开采量为36.5×1015 J,折合标准煤124.53×104 t,占2018年广西全区能源生产总量的3.31%。
结论 桂东南地区干热岩地热资源前景优越,西场盆地为理想的有利远景区,具备进一步开展调查勘探与开发利用的价值。
Abstract:Objective In response to the current situation of insufficient exploration and research on dry hot rock resources in Guangxi, this study focuses on carrying out comprehensive geophysical exploration and comprehensive research in the southeastern Guangxi region to explore its dry hot rock resource potential, further improve the research work level in this field in the region, and assist in the transformation and upgrading of Guangxi's energy structure.
Methods Based on the characteristics of the geophysical field in the study area, magnetotelluric methods are comprehensively used to carry out deep exploration work. Combined with the geological research achievements of dry hot rocks, the regional faults and deep heat source channels are systematically analyzed. Through the coupling analysis of geophysical and geothermal geological data, the burial depth of deep structural planes and the possibility of the existence of hidden rock masses are discussed.
Results Through research and analysis, multiple deep and large faults are identified as deep heat source channels, and hidden rock masses are found at the bottom of the Xichang Basin, with a burial depth of 3~5 km and a scale of hundreds of square kilometers. According to the thermal reservoir method estimation, the dry hot rock resource amount in the Xichang Basin is 182.48×1015 J, equivalent to 622.63×104 tons of standard coal. Calculated based on a 20% recovery rate, the recoverable amount of dry hot rock resources is 36.5×1015 J, equivalent to 124.53×104 tons of standard coal, accounting for 3.31% of the total energy production in Guangxi in 2018.
Conclusions The geothermal resources of dry hot rocks in the southeastern Guangxi region have a superior prospect, and the Xichang Basin is an ideal favorable remote exploration area, with the value of carrying out further investigation, exploration, and development and utilization.
-
-
图 1 桂东南地区陆相盆地分布特征图(据孙明行等,2020修改)
Figure 1.
图 6 广西部分深部钻井测温曲线图(据康志强等,2020a修改)
Figure 6.
图 8 研究区干热岩赋存模式图(据孙明行等,2022)
Figure 8.
表 1 研究区部分钻孔地温梯度统计结果(据康志强等,2020a)
Table 1. List of geothermal gradient statistics for some boreholes in the study area
构造单元 钻孔 井深/m 测温深度/m 地温梯度/(℃/100 m) 分段实测值 平均计算值 西场凹陷 西1井 2800.00 123~800 1.85 2.55 800~1204 1.25 1204~1520 3.04 1520~2540 1.91 西参2井 2409.07 914~1500 4.40 3.29 1500~2404 3.63 路1井 1500.00 — — 3.25 亚1井 1700.00 — — 3.67 常乐凹陷 乐参1井 2698.49 56~95 2.05 3.14 95~115 3.50 133~178 2.22 178~207 3.10 表 2 广西地层结构及其密度特征
Table 2. Stratigraphic structure and density characteristics in Guangxi
名称 编号 分层 深度范围/km 密度范围/(103 kg·m−3) 地壳 A — 0~35 2.70~3.00 M界面(莫霍界面) 地幔 B 上地幔 35~400 3.32~3.65 C 转变区 400~1000 3.65~4.68 D 下地幔 1000~2900 4.68~5.69 G界面(核—幔边界) 地核 E 外核 2900~4980 9.40~11.50 F 过渡层 4980~5120 11.50~12.00 G 内核 5120~6371 12.00~12.30 表 3 桂东南地区地层电阻率统计结果
Table 3. Statistic table of formation resistivity in Southeast Guangxi
构造分区 地层层位 代号 电阻率/(Ω·m) 低阻层 高阻层 云开隆起带 上白垩统 K2 50 — 中泥盆统东岗岭组 D2d — 6×104 寒武系黄洞口组 ∈h — 103 加里东期混合岩 P2γ3 — 103 钦州华力西褶皱带 下白垩统新隆组 K1x 15 — 中侏罗统 J2 30 — 下三叠统 T1 90 — 上二叠统—下泥盆统 P2−D1 — 103~104 中志留统合浦组—
下志留统连滩组S2h−S1l 20~80 — 中奥陶统 O2 — 6×103 -
[1] Chen X. 2016. Research on the application of geophysical methods in hot dry rock prospecting[D]. Doctoral Dissertation of Jilin University (in Chinese with English abstract).
[2] Gan H N, Wang G L, Lin W J, et al. 2015. Research on the occurrence types and genetic models of hot dry rock resources in China[J]. Science & Technology Review, 33(19): 22−27 (in Chinese with English abstract).
[3] Huang Q X. 2018. Analysis of the Potential of dry hot rock resources in Guangxi[J]. Southern Land and Resources, (1): 45−48 (in Chinese with English abstract).
[4] Kang Z Q, Zhang Q Z, Guan Y W, et al. 2020. Analysis on the occurrence condition of geothermal resources of hot dry rock in Guangxi[J]. Earth Science Frontiers, 27(1): 55−62 (in Chinese with English abstract).
[5] Kang Z Q, Zhang Q Z, Guan Y W, et al. 2020. Evaluation of thermal conditions and potential of dry hot rock resources in Hepu Basin, Guangxi[J]. Journal of Jilin University(Earth Science Edition), 50(4): 1151−1160 (in Chinese with English abstract).
[6] Kong F Y, Liang L G. 2005. Evaluation of geothermal geological conditions and geothermal resource development prospects in the Nanning Basin[C]//Proceedings of the National Symposium on Sustainable Development of Geothermal Industry: 125−139 (in Chinese).
[7] Leng G J, Lei D, Liu X C, et al. 2024. Evaluation of the development potential of hot dry rock in Hainan Island[J]. Natural Gas Industry B, 11(1): 19−27. doi: 10.1016/j.ngib.2024.01.007
[8] Li D W, Wang Y X. 2015. Major issues of research and development of hot dry rock geothermal energy[J]. Earth science—Journal of China University of Geosciences, 40(1): 1858−1869 (in Chinese with English abstract).
[9] Li J H, Yang J, Meng S J. 2018. Status analysis of geophysical exploration for shale oil and gas in Guangxi Province[J]. CT Theory and Applications, 27(1): 123−136 (in Chinese with English abstract).
[10] Liang L G, Zhu M Z, Zhu S M, et al. 2015. Spatial distribution and enrichment of fluoride in geothermal water from eastern Guangxi, China[J]. Safety and Environmental Engineering, 22(1): 1−6 (in Chinese with English abstract).
[11] Lin W J, Liu Z M, Ma F, et al. 2012. An estimation of HDR resources in China’s mainland[J]. Acta Geoscientica Sinica, 33(5): 807−811 (in Chinese with English abstract).
[12] Ma F, Lin W J, Lang X J, et al. 2015. Deep geothermal structures of potential hot dry rock resources area in China[J]. Geological Science and Technology Information, 34(6): 176−181 (in Chinese with English abstract).
[13] Ou X Y, Shi K, Mo Y J, et al. 2021. Application of comprehensive geophysical exploration in shale gas potential investigation in Guizhong depression[J]. Progress in Geophysics, 36(4): 1597−1606 (in Chinese with English abstract).
[14] Shah M, Yadav K, Sircar A. 2024. Shallow and deep geothermal water sources identification in Unai geothermal field, Gujarat, India with applications of Magnetotelluric (MT)[J]. Unconventional Resources, 4: 100086. doi: 10.1016/j.uncres.2024.100086
[15] Spichak V V, Goidina A G, Zakharova O K. 2023. Electromagnetic prediction of rock thermal properties beyond boreholes: Soultz−sous−Forets (France) case study[J]. International Journal of Heat and Mass Transfer, 216: 1−13.
[16] Sun M H, Liu D M, Kang Z Q, et al. 2020. Analysis of hot—dry geothermal resource potential in southeastern Guangxi[J]. Earth Science Frontiers, 27(1): 72−80 (in Chinese with English abstract).
[17] Sun M H, Zhang Q Z, Liu D M, et al. 2022. Genesis and occurrence models of hot—dry geothermal resources in Guangxi[J]. Bulletin of Geological Science and Technology, 41(3): 1−11 (in Chinese with English abstract).
[18] Teng J W, Si X, Zhuang Q X, et al. 2019. Fine structures of crust and mantle and potential hot dry rock beneath the Zhangzhou Basin[J]. Chinese Journal of Geophysics, 62(5): 1613−1632 (in Chinese with English abstract).
[19] Wang G, Cao H, Xiao D, et al. 2023. Geothermal field model in the southeast of Shijiazhuang Region (China) deduced from magnetotelluric data[J]. Journal of Applied Geophysics, 219: 105235. doi: 10.1016/j.jappgeo.2023.105235
[20] Wang G L, Zhang W, Ma F, et al. 2018. Overview on hydrothermal and hot dry rock researches in China[J]. China Geology, 1(2): 275−283.
[21] Wang J Y, Hu S B, Pang Z H, et al. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & technology review, 30(32): 25−31 (in Chinese with English abstract).
[22] Xue J Q, Gan B, Li B X, et al. 2013. Geological—geophysical characteristics of enhanced geothermal systems(hot dry rocks) in GongHe—GuiDe Basin[J]. Geophysical & Geochemical Exploration, 37(1): 35−41 (in Chinese with English abstract).
[23] Yang Y, Jiang Z H, Yue J H, et al. 2019. Discussion on application of geophysical methods in Hot Dry Rock (HDR) exploration[J]. Progress in Geophysics, 34(4): 1556−1567 (in Chinese with English abstract).
[24] Zhang J S, Wu G J. 2001. The present state of direct utilization of geothermal resources in the world[J]. Geophysical & Geochemical Exploration, 25(2): 90−101 (in Chinese with English abstract).
[25] Zhang S Q, Jia X F, Li B X, et al. 2018. Characteristics of Wudalianchi volcanic edifice and hot dry rock geophysical field in Heilongjiang Province[J]. Geophysical & Geochemical Exploration, 42(3): 473−480 (in Chinese with English abstract).
[26] Zhang Y. 2016. The formation mechanism and development potential of hot dry rock: A case study of Songliao Basin[D]. Master's Thesis of Chang'an University (in Chinese with English abstract).
[27] Zhao X Y, Zeng Z F, Wu Z W, et al. 2015. Delineating the area of HDR in Songliao basin using geophysical methods[J]. Progress in Geophysics, 30(6): 2863−2869 (in Chinese with English abstract).
[28] Zhou N Y. 2021. Geophysical Exploration of the Hot Dry Rock Resources in the Southeast of Guangxi[D]. Master's Thesis of Jilin University (in Chinese with English abstract).
[29] Zhu G Q, Li H L, Wen R X. 2011. Prediction and analysis of deep mineral exploration in Guangxi[J]. Chinese Journal of Engineering Geophysics, 8(6): 713−722 (in Chinese with English abstract).
[30] 陈雄. 2016. 地球物理方法在干热岩勘查中的应用研究[D]. 吉林大学博士学位论文.
[31] 甘浩男, 王贵玲, 蔺文静, 等. 2015. 中国干热岩资源主要赋存类型与成因模式[J]. 科技导报, 33(19): 22−27.
[32] 黄启勋. 2018. 广西干热岩资源潜力分析[J]. 南方国土资源, (1): 45−48.
[33] 康志强, 张起钻, 管彦武, 等. 2020a. 广西干热岩地热资源赋存条件分析[J]. 地学前缘, 27(1): 55−62.
[34] 康志强, 张起钻, 管彦武, 等. 2020b. 广西合浦盆地干热岩资源成热条件及潜力评价[J]. 吉林大学学报(地球科学版), 50(4): 1151−1160.
[35] 孔繁业, 梁礼革. 2005. 南宁盆地地热地质条件与地热资源开发前景评价[C]//全国地热产业可持续发展学术研讨会论文集: 125−139.
[36] 李德威, 王焰新. 2015. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学—中国地质大学学报, 40(1): 1858−1869.
[37] 李静和, 杨俊, 孟淑君. 2018. 桂地区页岩油气地球物理勘探现状及展望[J]. CT理论与应用研究, 27(1): 123−136.
[38] 梁礼革, 朱明占, 朱思萌, 等. 2015. 桂东地区地热水中氟的分布及其富集过程研究[J]. 安全与环境工程, 22(1): 1−6.
[39] 蔺文静, 刘志明, 马峰, 等. 2012. 我国陆区干热岩资源潜力估算[J]. 地球学报, 33(5): 807−811. doi: 10.3975/cagsb.2012.05.12
[40] 马峰, 蔺文静, 郎旭娟, 等. 2015. 我国干热岩资源潜力区深部热结构[J]. 地质科技情报, 34(6): 176−181.
[41] 区小毅, 石科, 莫亚军, 等. 2021. 综合地球物理勘探在桂中坳陷页岩气资源潜力调查中的应用研究[J]. 地球物理学进展, 36(4): 1597−1606. doi: 10.6038/pg2021EE0270
[42] 孙明行, 刘德民, 康志强, 等. 2020. 桂东南地区干热型地热资源潜力分析[J]. 地学前缘, 27(1): 72−80.
[43] 孙明行, 张起钻, 刘德民, 等. 2022. 广西干热型地热资源成因机制与赋存模式[J]. 地质科技通报, 41(3): 1−11.
[44] 滕吉文, 司芗, 庄庆祥, 等. 2019. 漳州盆地精细壳、幔异常结构与潜在干热岩探讨[J]. 地球物理学报, 62(5): 1613−1632. doi: 10.6038/cjg2019L0595
[45] 汪集旸, 胡圣标, 庞忠和, 等. 2012. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 30(32): 25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002
[46] 薛建球, 甘斌, 李百祥, 等. 2013. 青海共和-贵德盆地增强型地热系统(干热岩)地质-地球物理特征[J]. 物探与化探, 37(1): 35−41.
[47] 杨冶, 姜志海, 岳建华, 等. 2019. 干热岩勘探过程中地球物理方法技术应用探讨[J]. 地球物理学进展, 34(4): 1556−1567. doi: 10.6038/pg2019CC0276
[48] 张季生, 吴功建. 2001. 世界直接利用地热资源的现状[J]. 物探与化探, 25(2): 90−101.
[49] 张森琦, 贾小丰, 李百祥, 等. 2018. 黑龙江省五大连池火山机构与干热岩地球物理场特征[J]. 物探与化探, 42(3): 473−480.
[50] 张杨. 2016. 干热岩形成机理及开发潜力研究——以松辽盆地为例[D]. 长安大学硕士学位论文.
[51] 赵雪宇, 曾昭发, 吴真玮, 等. 2015. 利用地球物理方法圈定松辽盆地干热岩靶区[J]. 地球物理学进展, 30(6): 2863−2869. doi: 10.6038/pg20150654
[52] 周宁远. 2021. 广西东南部区域干热岩资源的地球物理勘查[D]. 吉林大学硕士学位论文.
[53] 朱国器, 黎海龙, 温融湘. 2011. 广西深部找矿特征分析与找矿预测[J]. 工程地球物理学报, 8(6): 713−722. doi: 10.3969/j.issn.1672-7940.2011.06.014
-