Distribution characteristics, influencing factors, and ecological and environmental effects of soil sulfur in Huai'an agricultural land
-
摘要:
研究目的 淮安地区处于苏北平原腹地,地质背景较复杂,在地质与人为双重影响下,土壤硫元素空间变异性大,影响土壤硫元素空间分布的因素及其对周围生态环境的效应尚不清楚。
研究方法 对比不同深度、土壤类型、地貌、土地利用方式的土壤S含量和开展硫元素平衡状况评估,揭示硫元素分布特征及影响因素,进一步开展生态环境效应初步研究。
研究结果 研究区表层土壤全硫的平均值为388×10−6,远高于江苏省土壤平均值。空间分布上总体表现为南部高于北部,层次土壤分布上自上而下逐渐降低。全S含量在不同土壤类型中表现为沼泽土最高、水稻土次之、潮土最低;在不同地貌类型间,扇缘湖沼平原区最高,冲海积砂坝高地最低;在不同土地利用方式下则表现为水浇地最高、林地最低。土壤全S含量与有机质含量呈显著正相关性(P<0.01)。农用地土壤硫元素平衡状况评估结果表明,年净增量为58.21 kg/hm2,与2004年多目标数据相比,研究区农用地土壤全S含量近15年来出现一定程度的累积。
结论 土壤硫元素分布特征与土壤深度、土壤类型、土地利用方式及有机质密切相关,土壤硫元素显著累积区对应设施农用大棚(种植红椒等)分布范围,成因上与硫酸钾复合肥、有机肥等大量施用密切相关。这些区域土壤已出现酸化趋势,对周围水体产生一定硫元素负荷,建议开展生态风险监测。
Abstract:Objective The study area is located in the core area of the Northern Jiangsu Plain, characterized by complex geological settings. Under the combined influences of geological processes and anthropogenic activities, the spatial variability of soil sulfur exhibits significant heterogeneity. However, the key factors influencing its spatial distribution and its corresponding ecological environmental effects remain poorly understood.
Methods The paper compares soil sulfur content under varying depths, soil types, landforms, and land uses, evaluates sulfur balance, identifies distribution patterns and driving factors, and preliminarily explores ecological environmental effects.
Results The mean concentration of sulfur in topsoil is 388×10−6 and distinctly elevated compared with the mean background level of soil in Jiangsu province. The overall spatial distribution suggests that the southern part is higher than the northern one, and the vertical distribution gradually decreases with depth. The concentration of sulfur in different soil types is the highest in marsh soil, the second in paddy soil, and the lowest in fluvoaquic soil. Among different types of landforms, the fan edge lake marsh plain area is the highest, and the alluvial sand dam highland is the lowest. Based on the comparison of land use patterns, the concentration of soil sulfur is the highest in irrigated land and lowest in woodland. The concentrations of soil sulfur exhibit a significant positive relationship with the contents of organic matter(P<0.01). The evaluation results of soil sulfur balance in agricultural soil show that the net increase will be 58.21 kg/hm2 annually. Compared with the multi-target data in 2004, the content of sulfur in agricultural soil in the study area has been accumulated to some extent in the last 15 years.
Conclusions The distribution characteristics of soil sulfur are closely related to soil depth, soil type, land use patterns, and organic matter content. Hotspots of sulfur accumulation correspond to areas with greenhouse agriculture (e.g., red pepper cultivation), primarily due to the extensive application of sulfur-containing fertilizers such as potassium sulfate compound fertilizers and organic fertilizers. These regions have shown a trend of soil acidification, contributing to sulfur loading in surrounding water bodies. Therefore, ecological risk monitoring is recommended.
-
-
表 1 淮安农用地土壤全S含量描述性统计特征
Table 1. Descriptive statistical characteristic of contents of sulfur in agricultural soil
10−6 地区 样品数 平均值 最大值 最小值 中值 标准差 变异系数 峰度 偏度 淮安区 903 373 1414 92.6 358 130 0.35 8.8 1.8 淮阴区 861 383 4004 111 345 234 0.61 101.3 7.8 清江浦区 183 527 3328 92.9 385 485 0.92 11.3 3.0 涟水县 78 325 649 93.3 302 109 0.34 0.44 0.67 经济开发区 61 351 1534 114 253 285 0.81 8.9 3.0 研究区 2086 388 4004 92.6 352 235 0.61 68.2 6.3 表 2 土壤硫元素与其他元素及理化指标的相关系数
Table 2. Pearson correlation coefficients for elements and physic-chemical parameters in soils
指标 有机碳 Al Fe CEC pH S 0.501** −0.157 −0.101 −0.173 0.115 注:**在P<0.01水平上显著相关 表 3 不同土壤亚类S含量
Table 3. Statistical characteristic of concentration of sulfur in different soil subcategories
10−6 统计
参数潮土 水稻土 沼泽土 黄潮土 棕潮土 盐化潮土 潜育型
水稻土渗育型
水稻土潴育型
水稻土腐泥土 样品数量 1151 29 125 42 531 188 20 含量平均值 393 379 388 515 377 418 626 标准差 291 166 151 186 145 125 109 -
[1] An Y L, Yin X L, Jin A F, et al. 2023. Ecological stoichiometry and spatial variation characteristics of soil nutrients in a cultivation area of Zhangjiakou city, Hebei Province[J]. Geological Bulletin of China, 42(2/3): 443−459 (in Chinese with English abstract).
[2] Chen B B, Sun Z G. 2020. Effects of nitrogen enrichment on variations of sulfur in plant−soil system of Suaeda salsa in coastal marsh of the Yellow River Estuary, China[J]. Ecological Indicators, 109: 541−551.
[3] Chi Q H, Yan M C. 2007. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House: 92−93(in Chinese).
[4] Cui S, Liu S R, Wang Y, et al. 2022. Soil available sulfur content in Jilin Province and its correlation with soil organic matter and soil total nitrogen[J]. Scientia Agricultural Sinica, 55(12): 2372−2383(in Chinese with English abstract).
[5] Huai’an Municipal Bureau of Statistics. 2022. Huai’an municipal statistical yearbook[M]. Beijing: China Statistics Press: 56−57(in Chinese).
[6] Huang S S, Hua M, Jin Y, et al. 2008. Concentrations and sources of heavy metal in atmospheric dustfall in the Nanjing city, East China[J]. Earth Science Frontiers, 15(5): 161−166(in Chinese with English abstract).
[7] Huang Y A. 2004. Rapid determination of available P2O5 in SSP by one−step EDTA extraction[J]. Phosphate & Compound Fertilizer, 19(1): 70−71(in Chinese with English abstract).
[8] Koprivova A, Kopriva S. 2016. Sulfur metabolism and its manipulation in crops[J]. Journal of Genetics and Genomics, 43(11): 623−629. doi: 10.1016/j.jgg.2016.07.001
[9] Lei W B, Lin X, Duan X X, et al. 2024. Source and migration of selenium in the soil[J]. Journal of Jilin University(Earth Science Editon), 54(1): 264−278(in Chinese with English abstract).
[10] Li J, Lin Q, Chen Z C, et al. 2008. Sulfur balance and plentiful−lack of soil available sulfur in southeast of Fujian Province[J]. Acta Agriculturae Boreali−Sinica, 23(supplement): 178−181(in Chinese with English abstract).
[11] Li L J, Qi S S, Sun L S, et al. 2003. Research progress on soil sulfur fertility and crop sulfur nutrition[J]. Journal of Anhui Agricultural Sciences, 31(2): 188−190(in Chinese with English abstract).
[12] Li W T, Huang S S, Xu W W, et al. 2025. Spatiotemporal variation characteristics and influencing factors of soil pH in Huai’an City[J]. Soil and Fertilizer Sciences in China, 1: 1−14(in Chinese with English abstract).
[13] Li X H, Liu J S, Sun Z G, et al. 2006. Change in soil sulfur under different land use in Sanjiang Plain[J]. Journal of Ecology and Rural Environment, 22(4): 80−82(in Chinese with English abstract).
[14] Liao Q L, Liu C, Xu Y, et al. 2011. Geochemical baseline values of elements in soil of Jiangsu Province[J]. Geology in China, 38(5): 1363−1378(in Chinese with English abstract).
[15] Liu C Q, Cao S Q, Wu X J, et al. 1993. The status of soil sulfur and demand for sulfur in China[C]//Proceedings of the international symposium on the effects of sulfur, magnesium, and trace elements on crop balance. Chengdu: Chengdu University of Science and Technology Press: 10−18.
[16] Liu C Q, Xu J X, Cao S Q, et al. 2000. Sulfur contents in rainfall and irrigation water and their effect on soil s status in Anhui, Guangdong, Jiangxi, and Sichuan Provinces[J]. Journal of Anhui Agricultural University, 27(supplement): 114−118(in Chinese with English abstract).
[17] Liu N L, Ming C Z, Ma X H, et al. 2000. Soil sulfur status and sulfur fertilizer efficiency in Hunan Province[J]. Hunan Agricultural Sciences, 3: 22−23,25(in Chinese with English abstract).
[18] Liu X X, Wan J, Ceng H. 2016. Spatial variation in surface soil sulfur in the temperate grasslands of China and environmental constraints[J]. Acta Ecologica Sinica, 36(24): 7919−7928(in Chinese with English abstract).
[19] Liu Y J, Cao L M, Li Z L, et al. 1984. Element geochemistry[M]. Beijing: Science Press: 457(in Chinese).
[20] Luo M L, Dou T Y, Xiang Q J, et al. 2019. Distribution characteristics and influencing factors of soil surphur in Chongqing farmlands[J]. Journal of Agricultural Resources and Environment, 36(3): 287−297(in Chinese with English abstract).
[21] Luo S, Zhang D M, Lu D B, et al. 2021. Evaluation of trace elements abundance and deficiency in cultivated soil and its influencing factors in Bijie City of Wumeng Mountain[J]. Geological Bulletin of China, 40(9): 1570−1583(in Chinese with English abstract).
[22] Lv H C, Xue S G, Fang Z W, et al. 2004. Influence of different land use patterns upon nitrogen and phosphorus loss in the Qiandaohu drainage area[J]. Geology in China, 31(supplement): 112−117(in Chinese with English abstract).
[23] Ma Y J, Ni Y C, Yang Y Z, et al. 2014. Analysis on fertilizer input and nutrient balance of farmland in Huai’an City[J]. Modern Agricultural Sciences and Technology, 1: 229−236(in Chinese).
[24] Mao L, Sun Z G, Li Y Q, et al. 2023. Spatial distribution of inorganic sulfur and its key influencing factors in wetland sediments in Fuzhou reach of the Min River[J]. Acta Scientiae Circumstantiae, 43(4): 467−477(in Chinese with English abstract).
[25] Ministry of Natural Resources of the People’s Republic of China. 2016. Specification of land quality geochemical assessment(DZ/T 0295−2016)[S]. Beijing: Geological Publishing House: 43(in Chinese).
[26] Ministry of Natural Resources of the People’s Republic of China. 2015. Specification of geochemical reconnaissance survey(1∶50000): DZ/T 0011—2015[S]. Beijing: Geological Publishing House: 14-16(in Chinese).
[27] Mu W Y, Chu H X, Huang N, et al. 2022. Relationship between grain yield and sulfur requirement characteristics of wheat cultivars (lines) in main wheat production regions of China[J]. Acta Agronomica Sinica, 48(12): 3192−3202(in Chinese with English abstract).
[28] Sha C, Wang M L, Jiang Y L. et al. 2018. Interactions between pH and other physicochemical properties of mangrove sediments: A review[J]. China Sciencal Bulletin, 63(26): 2745−2756(in Chinese with English abstract). doi: 10.1360/N972018-00369
[29] Sun A, Duan B H, Wang F, et al. 2022. Geochemical distributions and influencing factors of soil elements in Xianfeng county, Western Hubei Province, China[J]. Soils, 54(3): 637−645(in Chinese with English abstract).
[30] Teng X F. 2000. Composition of soil sulfur and its availability to plants[D]. Master Thesis of Northeast Agricultural University: 26−33(in Chinese with English abstract).
[31] Wang F, Zhu Y J, Lu L. 2007. Sulfur in soil and its transformation[J]. Chinese Agricultural Science Bulletin, 23(5): 249−253(in Chinese with English abstract).
[32] Wang L H. 2011. Effect of potassium sulfate compound fertilizer on plastic house hot pepper in Huai’an[J]. Journal of Changjiang Vegetables, 12: 49−50(in Chinese with English abstract).
[33] Wei X R, Shao M A, Gao J L, et al. 2008. Relationships between soil organic carbon and environmental factors in gully watershed of the loess plateau[J]. Environmental Science, 29(10): 2879−2884(in Chinese with English abstract).
[34] Wu N N, Ma Z Q, Tan B, et al. 2019. Research progress of nutrient content, flour properties, cooking and sensory quality of rice with different milling degree[J]. Science and Technology of Cereals, Oils and Foods, 27(6): 40−45(in Chinese with English abstract).
[35] Xiao H J. 2003. Study on soil sulfur status and crop response to sulfur fertilization in Guizhou[D]. Master Thesis of Southwest Agricultural University: 15−21(in Chinese with English abstract).
[36] Yang J F, Wei L X, Shi T C, et al. 2022. Geochemical characteristics and source analysis of soil sulfur in Shizuishan area[J]. Journal of Ningxia University(Natural Science Edition), 3(1): 85−89(in Chinese with English abstract).
[37] Yang Z F. 2009. Research on the Current Status of Sulfur Content in Agricultural Soil in Mile, Southeast Yunnan[J]. Tillage and Cultivation, 5: 35−36(in Chinese).
[38] Zhang Y, Xie W X, Dun Y H, et al. 2016. Rearch advances in distribution characteristics and influence mechanism of the wetland soil surlfur[J]. Chinese Journal of Soil Science, 47(3): 763−767(in Chinese with English abstract).
[39] Zhang Z X, Xu M X, Shi C D, et al. 2014. Scaling effect on spatial variability of soil organic carbon in different geomorphic units on the loess hilly region[J]. Journal of Natural Resources, 29(7): 1173−1182(in Chinese with English abstract).
[40] Zhao C, Sun B B, Zhou G H, et al. 2023. Investigation on the characteristics nutrient content and prediction of available nutrients content in soil of Longhai, Fujian Province[J]. Geological Bulletin of China, 42(10): 1784−1791(in Chinese with English abstract).
[41] Zhao K L, Fu W J, Ye Z Q, et al. 2016. Spatial variation of soil heavy metals in an E−waste dismantling area and their distribution characteristics[J]. Environmental Science, 37(8): 3151−3159(in Chinese with English abstract).
[42] Zheng S Z, Liu Z L. 2015. Advances on the availability of sulfur fertilizers for soil quality and biology[J]. Journal of Shangdong Agricultural University (Natural Science Edition), 46(5): 688−693(in Chinese with English abstract).
[43] Zhu B L, Li X Q, Liu N, et al. 2010. Migration behavior of sulfate irons in aquitard[J]. Global Geology, 29(4): 658−662(in Chinese with English abstract).
[44] 安永龙, 殷秀兰, 金爱芳, 等. 2023. 河北张家口市某种植区土壤营养元素生态化学计量与空间分异特征[J]. 地质通报, 42(2/3): 443−459. doi: 10.12097/j.issn.1671-2552.2023.2-3.021
[45] 迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社: 92−93.
[46] 崔帅, 刘烁然, 王寅, 等. 2022. 吉林省旱地土壤有效硫含量及其与土壤有机质和全氮的关系[J]. 中国农业科学, 55(12): 2372−2383. doi: 10.3864/j.issn.0578-1752.2022.12.009
[47] 淮安市统计局. 2022. 淮安统计年鉴[M]. 北京: 中国统计出版社: 56−57.
[48] 黄顺生, 华明, 金洋, 等. 2008. 南京市大气降尘重金属含量特征及来源研究[J]. 地学前缘, 15(5): 161−166. doi: 10.3321/j.issn:1005-2321.2008.05.017
[49] 黄玉安. 2004. EDTA一步提取法快速测定过磷酸钙中有效五氧化二磷含量[J]. 磷肥与复肥, 19(1): 70−71.
[50] 江苏省地质调查研究院. 2007. 江苏省1∶250 000多目标区域地球化学调查报告[R].
[51] 江苏省地质调查研究院. 2021. 淮安城市地质调查报告[R].
[52] 雷万彬, 林鑫, 段星星, 等. 2024. 土壤中硒元素来源和迁移作用研究现状[J]. 吉林大学学报(地球科学版), 54(1): 264−278.
[53] 李娟, 林琼, 陈子聪, 等. 2008. 闽东南耕地土壤硫素平衡及有效硫丰缺状况研究[J]. 华北农学报, 23(增刊): 178−181. doi: 10.7668/hbnxb.2008.S1.043
[54] 李录久, 戚士胜, 孙礼胜, 等. 2003. 土壤硫肥力与作物硫营养研究进展[J]. 安徽农业科学, 31(2): 188−190. doi: 10.3969/j.issn.0517-6611.2003.02.008
[55] 李文婷, 黄顺生, 许伟伟, 等. 2025. 淮安市土壤pH时空变化特征及影响因素[J]. 中国土壤与肥料, 1: 1−14. doi: 10.11838/sfsc.1673-6257.24239
[56] 李新华, 刘景双, 孙志高, 等. 2006. 三江平原不同土地利用方式下土壤硫含量变化特征[J]. 生态与农村环境学报, 22(4): 80−82. doi: 10.3969/j.issn.1673-4831.2006.04.017
[57] 廖启林, 刘聪, 许艳, 等. 2011. 江苏省土壤元素地球化学基准值[J]. 中国地质, 38(5): 1363−1378. doi: 10.3969/j.issn.1000-3657.2011.05.023
[58] 刘崇群, 曹淑卿, 吴锡军, 等. 1993. 中国土壤硫素状况和对硫的需求[C]//硫、镁和微量元素在作物影响平衡中的作用国际学术研讨会论文集. 成都: 成都科技大学出版社: 10−18.
[59] 刘崇群, 徐俊祥, 曹淑卿, 等. 2000. 南方某些省份降水和灌溉水的含硫量及其对土壤供硫的影响[J]. 安徽农业大学学报, 27(增刊): 114−118. doi: 10.3969/j.issn.1672-352X.2000.z1.019
[60] 刘念龙, 明承州, 马晓华, 等. 2000. 湖南省土壤硫素状况及硫肥肥效[J]. 湖南农业科学, 3: 22−23,25. doi: 10.3969/j.issn.1006-060X.2000.03.013
[61] 刘潇潇, 王钧, 曾辉. 2016. 中国温带草地土壤硫的分布特征及其与环境因子的关系[J]. 生态学报, 36(24): 7919−7928.
[62] 刘英俊, 曹励明, 李兆麟, 等. 1984. 元素地球化学[M]. 北京: 科学出版社: 457.
[63] 罗曼琳, 窦添元, 向秋洁, 等. 2019. 重庆农田土壤硫分布特征及其影响因素[J]. 农业资源与环境学报, 36(3): 287−297.
[64] 骆珊, 张德明, 卢定彪, 等. 2021. 乌蒙山毕节市耕地土壤微量元素丰缺评价及其影响因素[J]. 地质通报, 40(9): 1570−1583. doi: 10.12097/j.issn.1671-2552.2021.09.016
[65] 吕唤春, 薛生国, 方志文, 等. 2004. 千岛湖流域不同土地利用方式对氮和磷流失的影响[J]. 中国地质, 31(增刊): 112−117. doi: 10.3969/j.issn.1000-3657.2004.z1.018
[66] 马玉军, 倪言成, 杨用钊, 等. 2014. 淮安市农田肥料投入与养分平衡分析[J]. 现代农业科技, 1: 229−236. doi: 10.3969/j.issn.1007-5739.2014.20.137
[67] 毛立, 孙志高, 李亚勤, 等. 2023. 闽江福州段湿地沉积物无机硫沿程分布特征及其影响因素[J]. 环境科学学报, 43(4): 467−477.
[68] 牟文燕, 褚宏欣, 黄宁, 等. 2022. 中国主要麦区小麦品种(系)产量与需硫特征关系分析[J]. 作物学报, 48(12): 3192−3202.
[69] 沙聪, 王木兰, 姜玥璐, 等. 2018. 红树林土壤pH和其他土壤理化性质之间的相互作用[J]. 科学通报, 63(26): 2745−2756.
[70] 孙奥, 段碧辉, 王芳, 等. 2022. 鄂西咸丰地区土壤元素地球化学分布及其影响因素[J]. 土壤, 54(3): 637−645.
[71] 滕险峰. 2000. 土壤中硫的组成及其对植物的有效性研究[D]. 东北农业大学硕士学位论文: 26−33.
[72] 王凡, 朱云集, 路玲. 2007. 土壤中的硫素及其转化研究综述[J]. 中国农学通报, 23(5): 249−253. doi: 10.3969/j.issn.1000-6850.2007.05.057
[73] 王立华. 2011. 硫酸钾复合肥对淮安大棚辣椒产量的影响[J]. 长江蔬菜, 12: 49−50. doi: 10.3865/j.issn.1001-3547.2011.06.018
[74] 魏孝荣, 邵明安, 高建伦, 等. 2008. 黄土高原沟壑区小流域土壤有机碳与环境因素的关系[J]. 环境科学, 29(10): 2879−2884. doi: 10.3321/j.issn:0250-3301.2008.10.034
[75] 吴娜娜, 马占倩, 谭斌, 等. 2019. 不同加工精度稻米的营养物质含量、米粉特性及米饭品质研究进展[J]. 粮油食品科技, 27(6): 40−45.
[76] 肖厚军. 2003. 贵州主要耕地土壤硫素状况及硫肥效应研究[D]. 西南农业大学硕士学位论文: 15−21.
[77] 杨建锋, 魏丽馨, 石天池, 等. 2022. 宁夏石嘴山地区土壤中硫的地球化学特征及其来源分析[J]. 宁夏大学学报(自然科学版), 3(1): 85−89.
[78] 杨宗飞, 2009. 滇东南弥勒农业土壤S含量现状研究[J]. 耕作与栽培, 5: 35−36.
[79] 张艳, 谢文霞, 杜云鸿, 等. 2016. 湿地土壤硫分布及其影响机制研究进展[J]. 土壤通报, 47(3): 763−767.
[80] 张志霞, 许明祥, 师晨迪, 等. 2014. 黄土丘陵区不同地貌单元土壤有机碳空间变异的尺度效应[J]. 自然资源学报, 29(7): 1173−1182. doi: 10.11849/zrzyxb.2014.07.008
[81] 赵辰, 孙彬彬, 周国华, 等. 2023. 福建龙海市土壤营养元素全量特征及有效量预测[J]. 地质通报, 42(10): 1784−1791. doi: 10.12097/j.issn.1671-2552.2023.10.014
[82] 赵科理, 傅伟军, 叶正钱, 等. 2016. 电子垃圾拆解区土壤重金属空间异质性及分布特征[J]. 环境科学, 37(8): 3151−3159.
[83] 郑诗樟, 刘志良. 2015. 硫肥对土壤质量和生物有效性的研究进展[J]. 山东农业大学学报(自然科学版), 46(5): 688−693.
[84] 中国地质调查局. 2005. 生态地球化学评价样品分析技术要求(试行)(DD2005—03)[S]. 北京: 中国标准出版社: 5−30.
[85] 中国地质调查局. 2014. 多目标区域地球化学调查规范(1∶250 000)(DZ/T 0258—2014)[S]. 北京: 中国标准出版社: 3−15.
[86] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 2016. 耕地质量等级(GB/T 33469—2016)[S]. 北京: 中国标准出版社: 28-44.
[87] 中华人民共和国国土资源部. 2015. 地球化学普查规范(1∶50 000): DZ/T 0011—2015[S]. 北京: 中国地质出版社: 14-16.
[88] 中华人民共和国国土资源部. 2016. 土地质量地球化学评价规范(DZ/T 0295—2016)[S]. 北京: 地质出版社: 43.
[89] 朱博麟, 李绪谦, 刘娜, 等. 2010. 硫酸根离子在弱透水层中的迁移行为[J]. 世界地质, 29(4): 658−662. doi: 10.3969/j.issn.1004-5589.2010.04.019
-