Landslide susceptibility evaluation in the Baiyu-Batang section of upper Jinsha River considering landslide activity
-
摘要:
研究目的 基于滑坡活动性,优化滑坡样本,提高滑坡易发性评价准确性。
研究方法 金沙江上游地形地貌复杂、构造活动强烈、滑坡灾害发育,选取金沙江上游白玉-巴塘段为重点研究区,采用遥感解译、InSAR形变探测、野外调查等技术方法,查明并分析了滑坡活动性。将滑坡划分为A(活动性滑坡)和B(活动性滑坡+非活动性滑坡)2个数据集,选用高程、坡度、坡向、工程地质岩组、到断裂距离、地震动峰值加速度、到河流距离、NDVI八个因子指标,采用加权信息量模型完成滑坡易发性评价。
研究结果 结果表明:基于A、B数据集的AUC分别为0.855和0.810,说明取得了较好的滑坡易发性结果,滑坡极高、高易发区主要集中分布于金沙江、降曲等河流沿岸的若干区域,且明显沿水系线状分布,中易发区主要分布于纵向谷岭之间的区域,低易发区主要分布于地势平坦的区域。
结论 基于A数据集的滑坡易发性精度高于B数据集,且极高、高易发区的识别有所提高,考虑滑坡活动性可以有效提高滑坡易发性评价模型的准确率。滑坡活动性是滑坡易发性评价需要考虑的重要因素,提出的研究思路和评价方法为推进高山峡谷地区的滑坡易发性研究提供了重要参考。
Abstract:Objective This paper optimizes landslide samples based on landslide activity to improve the accuracy of landslide susceptibility evaluation.
Methods The terrain and landforms in the upper of Jinsha River are complex, with strong tectonic activity and the developed landslide disasters. The Baiyu−Batang section of the upper Jinsha River is selected as the key research area, and remote sensing interpretation, InSAR deformation detection, and field investigation techniques are used to identify and analyze landslide activity. All landslides were divided into two datasets: A (active landslides) and B (active landslides and inactive landslides). Eight factors, such as elevation, slope angle, slope direction, engineering geological units, distance to fault, seismic peak ground acceleration, distance to river and NDVI, were selected to complete the landslide susceptibility evaluation by weighted information model.
Results The results show that the AUC based on A and B datasets are 0.855 and 0.810, respectively, indicating that satisfied landslide susceptibility results have been achieved. The very high and high landslide susceptibility is mainly distributed along the Jinsha River and Jiangqu River, and show an obvious band distribution trend along water systems. The middle landslide susceptibility is mainly distributed in the areas between the longitudinal valleys, and the low landslide susceptibility is mainly distributed in flat areas.
Conclusions The accuracy of landslide susceptibility based on A dataset is higher than that of B dataset, and the identification ability of very high and high landslide susceptibility areas is relatively improved. So, landslide activity can effectively improve the landslide susceptibility accuracy, and is an important factor to be considered in the landslide susceptibility evaluation model. The proposed study ideas and methods provide an important reference for promoting landslide susceptibility evaluation in alpine gorge areas.
-
Key words:
- landslide susceptibility /
- landslide activity /
- Jinsha River /
- weighted information model
-
-
表 1 金沙江上游白玉−巴塘段工程地质岩组
Table 1. Engineering geological units in the Baiyu−Batang section of upper Jinsha River
序号 工程地质岩组名称 1 坚硬的厚层状砂岩岩组 2 较坚硬—坚硬的中-厚层状砂岩夹砾岩、泥岩、板岩岩组 3 软硬相间的中-厚层状砂岩、泥岩夹灰岩、泥质灰岩及其互
层岩组4 软弱—较坚硬薄-中厚层状砂、泥岩及砾、泥岩互层岩组 5 坚硬的中-厚层状灰岩及白云岩岩组 6 较坚硬的薄-中厚层状灰岩、泥质灰岩岩组 7 软硬相间的中-厚层状灰岩、白云岩夹砂、泥岩、千枚岩、
板岩岩组8 较坚硬-坚硬的薄-中厚层状板岩、千枚岩与变质砂岩互层岩组 9 较弱-较坚硬的薄-中厚层状千枚岩、片岩夹灰岩、砂岩、
火山岩岩组10 坚硬的块状玄武岩为主的岩组 11 坚硬的块状花岗岩、安山岩、闪长岩岩组 12 软质散体结构岩组 表 2 评价因子判断矩阵
Table 2. Judgment matrix of evaluation factor
指标 高程 坡度 坡向 工程地质
岩组到断裂
距离PGA 到河流
距离NDVI 高程 1 1/4 1/2 1/2 1/2 1 1/2 1/2 坡度 4 1 3 2 2 4 2 3 坡向 2 1/3 1 1/2 1/2 1 1 1/2 工程地质岩组 2 1/2 2 1 1/2 2 1 2 到断裂距离 2 1/2 2 2 1 3 1 2 PGA 1 1/4 1 1/2 1/3 1 1/2 1/2 到河流距离 2 1/2 1 1 1 2 1 1 NDVI 2 1/3 2 1/2 1/2 2 1 1 表 3 评价因子信息量计算
Table 3. Information value table of evaluation factor
评价因子 分级 滑坡数量/个 滑坡面积/km2 信息量值/Ii A B A B A B 高程/m <3500 56 127 29.70 99.92 1.624 1.650 3500~4000 58 109 19.45 65.47 0.520 0.546 4000~4500 16 17 3.61 4.93 −1.652 −2.053 4500~5000 3 3 0.22 0.28 −4.284 −4.789 >5000 0 0 0 0 0 0 坡度/° <10 3 3 0.63 0.67 −1.759 −1.580 10~20 16 31 10.28 31.16 −0.096 −0.175 20~30 55 106 25.27 79.66 0.298 0.259 30~40 48 101 13.51 49.75 −0.104 0.013 40~50 10 14 2.83 9.81 −0.296 −0.242 >50 1 1 0.47 0.45 −0.047 −0.536 坡向 平面 0 0 0 0 0 0 N 10 17 4.36 15.06 −0.024 0.027 NE 18 33 14.35 37.01 0.659 0.420 E 20 43 12.02 29.56 0.604 0.317 SE 17 27 8.36 19.31 0.231 −0.119 S 24 45 3.84 19.67 −0.597 −0.152 SW 17 40 3.88 25.46 −0.670 0.025 W 16 31 3.92 15.34 −0.525 −0.350 NW 11 20 2.27 12.36 −1.085 −0.578 工程地
质岩组1 1 2 0.05 0.81 −0.204 1.390 2 5 12 0.62 5.37 −2.362 −1.389 3 0 1 0 1.19 0 −1.976 4 0 0 0 0 0 0 5 14 22 2.54 8.68 −0.884 −0.843 6 0 0 0 0 0 0 7 0 0 0 0 0 0 8 4 5 0.64 2.08 −0.431 −0.433 9 52 100 22.31 73.94 0.578 0.588 10 6 13 1.88 6.52 −0.140 −0.086 11 50 100 24.85 75.13 0.487 0.405 12 1 1 0.03 0.03 −2.280 −3.468 到断层
距离/km<0.5 45 69 22.78 45.57 0.730 0.658 0.5~1 24 67 7.83 43.23 0.302 0.289 1~2 35 35 12.56 13.72 0.167 0.175 2~5 10 49 3.56 36.78 −0.062 0.013 5~10 8 21 2.71 16.03 −0.533 −0.481 >10 11 15 4.27 14.29 −0.652 −0.563 地震动
峰值加
速度/g0.1 8 8 0.37 0.36 −2.555 −3.744 0.15 36 74 19.30 50.79 0.042 −0.179 0.2 89 174 33.28 122.67 0.112 0.228 到河流
距离/km<0.2 20 20 6.57 6.56 0.854 0.841 0.2~0.5 27 44 9.49 28.67 1.353 1.346 0.5~1 26 65 8.68 42.59 1.212 1.293 1~1.5 14 41 7.65 34.59 1.073 1.131 1.5~2 11 26 7.32 23.34 0.846 0.773 2~5 26 49 9.86 34.29 −0.349 −0.418 >5 9 11 3.38 3.78 −2.855 −3.033 NDVI <0.2 0 0 0 0 0 0 0.2~0.4 0 0 0 0 0 0 0.4~0.6 7 8 0.69 1.55 −2.347 −2.728 0.6~0.8 82 147 37.11 105.53 0.422 0.279 >0.8 44 101 15.12 66.68 −0.112 0.183 注:工程地质岩组的分类参考表1 表 4 滑坡易发性面积统计结果
Table 4. Statistical table of landslide susceptibility area
序号 滑坡易
发性面积/km2 面积占比/% 滑坡数
量/个滑坡数量
占比/%A B A B A B A B 1 极高
易发2187 2548 14.30% 16.67% 118 226 88.72% 88.28% 2 高易发 3639 3390 23.80% 22.17% 12 19 9.03% 7.42% 3 中易发 4765 4230 31.17% 27.66% 2 9 1.50% 3.52% 4 低易发 4696 5121 30.71% 33.50% 1 2 0.75% 0.78% -
[1] Ayalew L, Yamagishi H, Ugawa N. 2004. Landslide susceptibilty mapping using GIS−based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan[J]. Landslides, 1(1): 73−81. doi: 10.1007/s10346-003-0006-9
[2] Brabb E E. 1985. Innovative approaches to landslide hazard and risk mapping[C]//International Landslide Symposium Proceedings, Japan: 17−22.
[3] Chen J P, Li H Z. 2016. Genetic mechanism and disasters features of complicated structural rock mass along the rapidly uplift section at the upstream of Jinsha River[J]. Journal of Jilin University(Earth Science Edition), 46(4): 1153−1167(in Chinese with English abstract).
[4] Chen J, Zhou W, Cui Z J, et al. 2018. Formation process of a large paleolandslide−dammed lake at Xuelongnang in the upper Jinsha River, SE Tibetan Plateau: constraints from OSL and 14C dating[J]. Landslides, 15(12): 2399−2412. doi: 10.1007/s10346-018-1056-3
[5] Fan X M, Xu Q. 2019. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response[J]. Landslides, 16(5): 1003−1020. doi: 10.1007/s10346-019-01159-x
[6] Guo C B, Zhang Y S. 2015. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geomorphology, 248(Nova.1): 93−110.
[7] Huang F M, Yin K L, Jiang S H, et al. 2018. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156−167(in Chinese with English abstract).
[8] Huang R Q. 2007. Large−scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433−454(in Chinese with English abstract).
[9] Lan H X, Wang L J, Zhou C H. 2002. Study on GIS−aided model for analysis of landslide hazard[J]. Journal of Engineering Geology, 10(4): 421−427(in Chinese with English abstract).
[10] Lee S W, Kim G, Yune C Y, et al. 2013. Development of landslide−risk assessment model for mountainous regions in Eastern Korea[J]. Disaster Advances, 6(6): 70−79.
[11] Li L P, Lan H X, Guo C B, et al. 2017. Geohazard susceptibility assessment along the Sichuan−Tibet railway and its adjacent area using an improved frequency ratio method[J]. Geoscience, 31(5): 911−929(in Chinese with English abstract).
[12] Liu C Z. 2014. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 60(4): 858−868(in Chinese with English abstract).
[13] Mei S Y, Chen S S, Zhong Q M, et al. 2022. Detailed numerical modeling for breach hydrograph and morphology evolution during landslide dam breaching[J]. Landslides, 19(12): 2925−2949. doi: 10.1007/s10346-022-01952-1
[14] Ouyang C J, An H C, Zhou S, et al. 2019. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China[J]. Landslides, 16(7): 1397−1414. doi: 10.1007/s10346-019-01177-9
[15] Peng J B, Ma R Y, Lu Q Z, et al. 2004. Geological hazards effects of uplift of qinghai−tibet plateau[J]. Advance in Earth Sciences, 19(3): 457−466(in Chinese with English abstract).
[16] Regmi A D, Devkota K C, Yoshida K, et al. 2014. Application of frequency ratio, statistical index, and weights−of−evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya[J]. Arabian Journal of Geosciences, 7(2): 725−742. doi: 10.1007/s12517-012-0807-z
[17] Wang S J. 2002. Coupling of earth's endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology, 10(2): 115−117(in Chinese with English abstract).
[18] Wu R A, Ma H S, Zhang J C, et al. 2021. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Ggology, 48(5): 120−128(in Chinese with English abstract).
[19] Wu S R, Shi J S, Zhang C S, et al. 2009. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China, 28(8): 995−1005(in Chinese with English abstract).
[20] Xu C, Dai F C, Yao X, et al. 2009. GIS−based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering, 28(S2): 3978−3985(in Chinese with English abstract).
[21] Xu C, Xu X W, Lee Y H, et al. 2012. The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modeling[J]. Environmental Earth Sciences, 66(6): 1603−1616. doi: 10.1007/s12665-012-1624-0
[22] Xu Q, Zheng G, Li W L, et al. 2018. Study on successive landslide damming events of Jinsha River in Baige village on Octorber 11 and November 3[J]. Journal of Engineering Geology, 26(6): 1534−1551(in Chinese with English abstract).
[23] Xu Z M. 2011. Deposits of zhaizicun landslide−dammed lake along Jinsha River and its implication for the genesis of Xigeda formation[J]. Geological Review, 57(5): 675−686(in Chinese with English abstract).
[24] Xue Q, Zhang M X, Li L. 2015. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan’an[J]. Geological Bulletin of China, 34(11): 2108−2115(in Chinese with English abstract).
[25] Yang Z H, Guo C B, Wu R A, et al. 2024. Regional engineering geological condition evaluation in the Sichuan−Xizang traffic corridor[J]. Geological Bulletin of China, 43(9): 1650−1662(in Chinese with English abstract).
[26] Yang Z H, Lan H X, Gao X, et al. 2015. Urgent landslide susceptibility assessment in the 2013 Lushan earthquake−mpacted area, Sichuan Province, China[J]. Natural Hazards, 75(3): 2467−2487. doi: 10.1007/s11069-014-1441-8
[27] Yang Z H, Zhang Y S, Guo C B, et al. 2018. Sensitivity analysis on causative factors of geohazards in eastern margin of Tibetan Plateau[J]. Journal of Engineering Geology, 26(3): 673−683(in Chinese with English abstract).
[28] Yao X, Tham L G, Dai F C. 2008. Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China[J]. Geomorphology, 101(4): 572−582. doi: 10.1016/j.geomorph.2008.02.011
[29] Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine[J]. Environmental Earth Science. 61(4): 821−836.
[30] Yin K L, Yan T Z. 1987. Distribution regularity of landslides and prediction of slope instability nearby Xunyang, Han River Valley[J]. Earth Science, 12(6): 631−638(in Chinese with English abstract).
[31] Zhang L, Xiao T, He J, et al. 2019. Erosion−based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018[J]. Landslides, 16(10): 1965−1979. doi: 10.1007/s10346-019-01247-y
[32] Zhang Y S, Guo C B, Yao X, et al. 2016. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 37(3): 277−286(in Chinese with English abstract).
[33] 陈剑平, 李会中. 2016. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理[J]. 吉林大学学报(地球科学版), 46(4): 1153−1167.
[34] 黄发明, 殷坤龙, 蒋水华, 等. 2018. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 37(1): 156−167.
[35] 黄润秋. 2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433−454.
[36] 兰恒星, 王苓涓, 周成虎. 2002. 地理信息系统支持下的滑坡灾害分析模型研究[J]. 工程地质学报, 10(4): 421−427.
[37] 李郎平, 兰恒星, 郭长宝, 等. 2017. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 31(5): 911−929. doi: 10.3969/j.issn.1000-8527.2017.05.004
[38] 刘传正. 2014. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评, 60(4): 858−868.
[39] 彭建兵, 马润勇, 卢全中, 等. 2004. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 19(3): 457−466.
[40] 王思敬. 2002. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, 10(2): 115−117.
[41] 吴瑞安, 马海善, 张俊才, 等. 2021. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J]. 水文地质工程地质, 48(5): 120−128.
[42] 吴树仁, 石菊松, 张春山, 等. 2009. 地质灾害风险评估技术指南初论[J]. 地质通报, 28(8): 995−1005.
[43] 徐则民. 2011. 金沙江寨子村滑坡坝堰塞湖沉积及其对昔格达组地层成因的启示[J]. 地质论评, 57(5): 675−686.
[44] 许冲, 戴福初, 姚鑫, 等. 2009. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报, 28(S2): 3978−3985.
[45] 许强, 郑光, 李为乐, 等. 2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 26(6): 1534−1551.
[46] 薛强, 张茂省, 李林. 2015. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J]. 地质通报, 34(11): 2108−2115.
[47] 杨志华, 张永双, 郭长宝, 等. 2018. 青藏高原东缘地质灾害影响因子敏感性分析[J]. 工程地质学报, 26(3): 673−683.
[48] 杨志华, 郭长宝, 吴瑞安, 等. 2024. 川西藏东交通廊道区域工程地质条件评价[J]. 地质通报, 43(9): 1650−1662.
[49] 殷坤龙, 晏同珍. 1987. 汉江河谷旬阳段区域滑坡规律及斜坡不稳定性预测[J]. 地球科学, 12(6): 631−638.
[50] 张永双, 郭长宝, 姚鑫, 等. 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277−286.
-