考虑滑坡活动性的金沙江上游白玉−巴塘段滑坡易发性评价

邵慰慰, 杨志华, 吴瑞安, 郭长宝, 时红莲, 郁鹏飞, 麦希贸. 2025. 考虑滑坡活动性的金沙江上游白玉−巴塘段滑坡易发性评价. 地质通报, 44(6): 1076-1086. doi: 10.12097/gbc.2023.11.034
引用本文: 邵慰慰, 杨志华, 吴瑞安, 郭长宝, 时红莲, 郁鹏飞, 麦希贸. 2025. 考虑滑坡活动性的金沙江上游白玉−巴塘段滑坡易发性评价. 地质通报, 44(6): 1076-1086. doi: 10.12097/gbc.2023.11.034
SHAO Weiwei, YANG Zhihua, WU Ruian, GUO Changbao, SHI Honglian, YU Pengfei, MAI Ximao. 2025. Landslide susceptibility evaluation in the Baiyu-Batang section of upper Jinsha River considering landslide activity. Geological Bulletin of China, 44(6): 1076-1086. doi: 10.12097/gbc.2023.11.034
Citation: SHAO Weiwei, YANG Zhihua, WU Ruian, GUO Changbao, SHI Honglian, YU Pengfei, MAI Ximao. 2025. Landslide susceptibility evaluation in the Baiyu-Batang section of upper Jinsha River considering landslide activity. Geological Bulletin of China, 44(6): 1076-1086. doi: 10.12097/gbc.2023.11.034

考虑滑坡活动性的金沙江上游白玉−巴塘段滑坡易发性评价

  • 基金项目: 资源与环境信息系统国家重点实验室开放基金项目《基于滑坡活动性差异特征的川藏铁路金沙江段滑坡易发性研究》、国家自然科学基金项目《融合斜坡先存形变的活动断裂带潜在地震滑坡危险性预测研究》(批准号: 42277180)、中国地质调查局项目《全国重大工程地质安全风险区划与综合评价》(编号: DD20221816)
详细信息
    作者简介: 邵慰慰(1997− ),男,硕士,地质工程专业,从事地质灾害评价研究工作。E−mail:sww97222@163.com
    通讯作者: 杨志华(1982− ),男,博士,副研究员,地质工程专业,从事地质灾害评价研究工作。E−mail:yangzh99@163.com
  • 中图分类号: P642.22

Landslide susceptibility evaluation in the Baiyu-Batang section of upper Jinsha River considering landslide activity

  • Fund Project: Supported by the Opening Foundation of the State Key Laboratory of Resources and Environmental Information System, National Natural Science Foundation of China (No. 42277180), and China Geological Survey project (No. DD20221816)
More Information
    Author Bio: SHAO Weiwei, male, born in 1997, master's degree, mainly engaged in geological hazard assessment; E−mail: sww97222@163.com .
    Corresponding author: YANG Zhihua, male, born in 1982, Ph.D., associate researcher, mainly engaged in geological hazard assessment; E−mail: yangzh99@163.com
  • 研究目的

    基于滑坡活动性,优化滑坡样本,提高滑坡易发性评价准确性。

    研究方法

    金沙江上游地形地貌复杂、构造活动强烈、滑坡灾害发育,选取金沙江上游白玉-巴塘段为重点研究区,采用遥感解译、InSAR形变探测、野外调查等技术方法,查明并分析了滑坡活动性。将滑坡划分为A(活动性滑坡)和B(活动性滑坡+非活动性滑坡)2个数据集,选用高程、坡度、坡向、工程地质岩组、到断裂距离、地震动峰值加速度、到河流距离、NDVI八个因子指标,采用加权信息量模型完成滑坡易发性评价。

    研究结果

    结果表明:基于A、B数据集的AUC分别为0.855和0.810,说明取得了较好的滑坡易发性结果,滑坡极高、高易发区主要集中分布于金沙江、降曲等河流沿岸的若干区域,且明显沿水系线状分布,中易发区主要分布于纵向谷岭之间的区域,低易发区主要分布于地势平坦的区域。

    结论

    基于A数据集的滑坡易发性精度高于B数据集,且极高、高易发区的识别有所提高,考虑滑坡活动性可以有效提高滑坡易发性评价模型的准确率。滑坡活动性是滑坡易发性评价需要考虑的重要因素,提出的研究思路和评价方法为推进高山峡谷地区的滑坡易发性研究提供了重要参考。

  • 加载中
  • 图 1  金沙江上游白玉−巴塘段地质背景

    Figure 1. 

    图 2  考虑滑坡活动性的滑坡易发性评价思路

    Figure 2. 

    图 3  金沙江上游白玉−巴塘段滑坡分布图

    Figure 3. 

    图 4  金沙江上游典型活动性滑坡

    Figure 4. 

    图 5  滑坡发育的影响因素

    Figure 5. 

    图 6  滑坡易发性评价结果的ROC曲线

    Figure 6. 

    图 7  金沙江上游白玉−巴塘段滑坡易发性分布图

    Figure 7. 

    表 1  金沙江上游白玉−巴塘段工程地质岩组

    Table 1.  Engineering geological units in the Baiyu−Batang section of upper Jinsha River

    序号工程地质岩组名称
    1坚硬的厚层状砂岩岩组
    2较坚硬—坚硬的中-厚层状砂岩夹砾岩、泥岩、板岩岩组
    3软硬相间的中-厚层状砂岩、泥岩夹灰岩、泥质灰岩及其互
    层岩组
    4软弱—较坚硬薄-中厚层状砂、泥岩及砾、泥岩互层岩组
    5坚硬的中-厚层状灰岩及白云岩岩组
    6较坚硬的薄-中厚层状灰岩、泥质灰岩岩组
    7软硬相间的中-厚层状灰岩、白云岩夹砂、泥岩、千枚岩、
    板岩岩组
    8较坚硬-坚硬的薄-中厚层状板岩、千枚岩与变质砂岩互层岩组
    9较弱-较坚硬的薄-中厚层状千枚岩、片岩夹灰岩、砂岩、
    火山岩岩组
    10坚硬的块状玄武岩为主的岩组
    11坚硬的块状花岗岩、安山岩、闪长岩岩组
    12软质散体结构岩组
    下载: 导出CSV

    表 2  评价因子判断矩阵

    Table 2.  Judgment matrix of evaluation factor

    指标 高程 坡度 坡向 工程地质
    岩组
    到断裂
    距离
    PGA 到河流

    距离
    NDVI
    高程 1 1/4 1/2 1/2 1/2 1 1/2 1/2
    坡度 4 1 3 2 2 4 2 3
    坡向 2 1/3 1 1/2 1/2 1 1 1/2
    工程地质岩组 2 1/2 2 1 1/2 2 1 2
    到断裂距离 2 1/2 2 2 1 3 1 2
    PGA 1 1/4 1 1/2 1/3 1 1/2 1/2
    到河流距离 2 1/2 1 1 1 2 1 1
    NDVI 2 1/3 2 1/2 1/2 2 1 1
    下载: 导出CSV

    表 3  评价因子信息量计算

    Table 3.  Information value table of evaluation factor

    评价因子 分级 滑坡数量/个 滑坡面积/km2 信息量值/Ii
    A B A B A B
    高程/m <3500 56 127 29.70 99.92 1.624 1.650
    3500~4000 58 109 19.45 65.47 0.520 0.546
    4000~4500 16 17 3.61 4.93 −1.652 −2.053
    4500~5000 3 3 0.22 0.28 −4.284 −4.789
    >5000 0 0 0 0 0 0
    坡度/° <10 3 3 0.63 0.67 −1.759 −1.580
    10~20 16 31 10.28 31.16 −0.096 −0.175
    20~30 55 106 25.27 79.66 0.298 0.259
    30~40 48 101 13.51 49.75 −0.104 0.013
    40~50 10 14 2.83 9.81 −0.296 −0.242
    >50 1 1 0.47 0.45 −0.047 −0.536
    坡向 平面 0 0 0 0 0 0
    N 10 17 4.36 15.06 −0.024 0.027
    NE 18 33 14.35 37.01 0.659 0.420
    E 20 43 12.02 29.56 0.604 0.317
    SE 17 27 8.36 19.31 0.231 −0.119
    S 24 45 3.84 19.67 −0.597 −0.152
    SW 17 40 3.88 25.46 −0.670 0.025
    W 16 31 3.92 15.34 −0.525 −0.350
    NW 11 20 2.27 12.36 −1.085 −0.578
    工程地
    质岩组
    1 1 2 0.05 0.81 −0.204 1.390
    2 5 12 0.62 5.37 −2.362 −1.389
    3 0 1 0 1.19 0 −1.976
    4 0 0 0 0 0 0
    5 14 22 2.54 8.68 −0.884 −0.843
    6 0 0 0 0 0 0
    7 0 0 0 0 0 0
    8 4 5 0.64 2.08 −0.431 −0.433
    9 52 100 22.31 73.94 0.578 0.588
    10 6 13 1.88 6.52 −0.140 −0.086
    11 50 100 24.85 75.13 0.487 0.405
    12 1 1 0.03 0.03 −2.280 −3.468
    到断层
    距离/km
    <0.5 45 69 22.78 45.57 0.730 0.658
    0.5~1 24 67 7.83 43.23 0.302 0.289
    1~2 35 35 12.56 13.72 0.167 0.175
    2~5 10 49 3.56 36.78 −0.062 0.013
    5~10 8 21 2.71 16.03 −0.533 −0.481
    >10 11 15 4.27 14.29 −0.652 −0.563
    地震动
    峰值加
    速度/g
    0.1 8 8 0.37 0.36 −2.555 −3.744
    0.15 36 74 19.30 50.79 0.042 −0.179
    0.2 89 174 33.28 122.67 0.112 0.228
    到河流
    距离/km
    <0.2 20 20 6.57 6.56 0.854 0.841
    0.2~0.5 27 44 9.49 28.67 1.353 1.346
    0.5~1 26 65 8.68 42.59 1.212 1.293
    1~1.5 14 41 7.65 34.59 1.073 1.131
    1.5~2 11 26 7.32 23.34 0.846 0.773
    2~5 26 49 9.86 34.29 −0.349 −0.418
    >5 9 11 3.38 3.78 −2.855 −3.033
    NDVI <0.2 0 0 0 0 0 0
    0.2~0.4 0 0 0 0 0 0
    0.4~0.6 7 8 0.69 1.55 −2.347 −2.728
    0.6~0.8 82 147 37.11 105.53 0.422 0.279
    >0.8 44 101 15.12 66.68 −0.112 0.183
      注:工程地质岩组的分类参考表1
    下载: 导出CSV

    表 4  滑坡易发性面积统计结果

    Table 4.  Statistical table of landslide susceptibility area

    序号滑坡易
    发性
    面积/km2面积占比/%滑坡数
    量/个
    滑坡数量
    占比/%
    ABABABAB
    1极高
    易发
    2187254814.30%16.67%11822688.72%88.28%
    2高易发3639339023.80%22.17%12199.03%7.42%
    3中易发4765423031.17%27.66%291.50%3.52%
    4低易发4696512130.71%33.50%120.75%0.78%
    下载: 导出CSV
  • [1]

    Ayalew L, Yamagishi H, Ugawa N. 2004. Landslide susceptibilty mapping using GIS−based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan[J]. Landslides, 1(1): 73−81. doi: 10.1007/s10346-003-0006-9

    [2]

    Brabb E E. 1985. Innovative approaches to landslide hazard and risk mapping[C]//International Landslide Symposium Proceedings, Japan: 17−22.

    [3]

    Chen J P, Li H Z. 2016. Genetic mechanism and disasters features of complicated structural rock mass along the rapidly uplift section at the upstream of Jinsha River[J]. Journal of Jilin University(Earth Science Edition), 46(4): 1153−1167(in Chinese with English abstract).

    [4]

    Chen J, Zhou W, Cui Z J, et al. 2018. Formation process of a large paleolandslide−dammed lake at Xuelongnang in the upper Jinsha River, SE Tibetan Plateau: constraints from OSL and 14C dating[J]. Landslides, 15(12): 2399−2412. doi: 10.1007/s10346-018-1056-3

    [5]

    Fan X M, Xu Q. 2019. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response[J]. Landslides, 16(5): 1003−1020. doi: 10.1007/s10346-019-01159-x

    [6]

    Guo C B, Zhang Y S. 2015. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geomorphology, 248(Nova.1): 93−110.

    [7]

    Huang F M, Yin K L, Jiang S H, et al. 2018. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156−167(in Chinese with English abstract).

    [8]

    Huang R Q. 2007. Large−scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433−454(in Chinese with English abstract).

    [9]

    Lan H X, Wang L J, Zhou C H. 2002. Study on GIS−aided model for analysis of landslide hazard[J]. Journal of Engineering Geology, 10(4): 421−427(in Chinese with English abstract).

    [10]

    Lee S W, Kim G, Yune C Y, et al. 2013. Development of landslide−risk assessment model for mountainous regions in Eastern Korea[J]. Disaster Advances, 6(6): 70−79.

    [11]

    Li L P, Lan H X, Guo C B, et al. 2017. Geohazard susceptibility assessment along the Sichuan−Tibet railway and its adjacent area using an improved frequency ratio method[J]. Geoscience, 31(5): 911−929(in Chinese with English abstract).

    [12]

    Liu C Z. 2014. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 60(4): 858−868(in Chinese with English abstract).

    [13]

    Mei S Y, Chen S S, Zhong Q M, et al. 2022. Detailed numerical modeling for breach hydrograph and morphology evolution during landslide dam breaching[J]. Landslides, 19(12): 2925−2949. doi: 10.1007/s10346-022-01952-1

    [14]

    Ouyang C J, An H C, Zhou S, et al. 2019. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China[J]. Landslides, 16(7): 1397−1414. doi: 10.1007/s10346-019-01177-9

    [15]

    Peng J B, Ma R Y, Lu Q Z, et al. 2004. Geological hazards effects of uplift of qinghai−tibet plateau[J]. Advance in Earth Sciences, 19(3): 457−466(in Chinese with English abstract).

    [16]

    Regmi A D, Devkota K C, Yoshida K, et al. 2014. Application of frequency ratio, statistical index, and weights−of−evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya[J]. Arabian Journal of Geosciences, 7(2): 725−742. doi: 10.1007/s12517-012-0807-z

    [17]

    Wang S J. 2002. Coupling of earth's endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology, 10(2): 115−117(in Chinese with English abstract).

    [18]

    Wu R A, Ma H S, Zhang J C, et al. 2021. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Ggology, 48(5): 120−128(in Chinese with English abstract).

    [19]

    Wu S R, Shi J S, Zhang C S, et al. 2009. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China, 28(8): 995−1005(in Chinese with English abstract).

    [20]

    Xu C, Dai F C, Yao X, et al. 2009. GIS−based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering, 28(S2): 3978−3985(in Chinese with English abstract).

    [21]

    Xu C, Xu X W, Lee Y H, et al. 2012. The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modeling[J]. Environmental Earth Sciences, 66(6): 1603−1616. doi: 10.1007/s12665-012-1624-0

    [22]

    Xu Q, Zheng G, Li W L, et al. 2018. Study on successive landslide damming events of Jinsha River in Baige village on Octorber 11 and November 3[J]. Journal of Engineering Geology, 26(6): 1534−1551(in Chinese with English abstract).

    [23]

    Xu Z M. 2011. Deposits of zhaizicun landslide−dammed lake along Jinsha River and its implication for the genesis of Xigeda formation[J]. Geological Review, 57(5): 675−686(in Chinese with English abstract).

    [24]

    Xue Q, Zhang M X, Li L. 2015. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan’an[J]. Geological Bulletin of China, 34(11): 2108−2115(in Chinese with English abstract).

    [25]

    Yang Z H, Guo C B, Wu R A, et al. 2024. Regional engineering geological condition evaluation in the Sichuan−Xizang traffic corridor[J]. Geological Bulletin of China, 43(9): 1650−1662(in Chinese with English abstract).

    [26]

    Yang Z H, Lan H X, Gao X, et al. 2015. Urgent landslide susceptibility assessment in the 2013 Lushan earthquake−mpacted area, Sichuan Province, China[J]. Natural Hazards, 75(3): 2467−2487. doi: 10.1007/s11069-014-1441-8

    [27]

    Yang Z H, Zhang Y S, Guo C B, et al. 2018. Sensitivity analysis on causative factors of geohazards in eastern margin of Tibetan Plateau[J]. Journal of Engineering Geology, 26(3): 673−683(in Chinese with English abstract).

    [28]

    Yao X, Tham L G, Dai F C. 2008. Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China[J]. Geomorphology, 101(4): 572−582. doi: 10.1016/j.geomorph.2008.02.011

    [29]

    Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine[J]. Environmental Earth Science. 61(4): 821−836.

    [30]

    Yin K L, Yan T Z. 1987. Distribution regularity of landslides and prediction of slope instability nearby Xunyang, Han River Valley[J]. Earth Science, 12(6): 631−638(in Chinese with English abstract).

    [31]

    Zhang L, Xiao T, He J, et al. 2019. Erosion−based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018[J]. Landslides, 16(10): 1965−1979. doi: 10.1007/s10346-019-01247-y

    [32]

    Zhang Y S, Guo C B, Yao X, et al. 2016. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 37(3): 277−286(in Chinese with English abstract).

    [33]

    陈剑平, 李会中. 2016. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理[J]. 吉林大学学报(地球科学版), 46(4): 1153−1167.

    [34]

    黄发明, 殷坤龙, 蒋水华, 等. 2018. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 37(1): 156−167.

    [35]

    黄润秋. 2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433−454.

    [36]

    兰恒星, 王苓涓, 周成虎. 2002. 地理信息系统支持下的滑坡灾害分析模型研究[J]. 工程地质学报, 10(4): 421−427.

    [37]

    李郎平, 兰恒星, 郭长宝, 等. 2017. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 31(5): 911−929. doi: 10.3969/j.issn.1000-8527.2017.05.004

    [38]

    刘传正. 2014. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评, 60(4): 858−868.

    [39]

    彭建兵, 马润勇, 卢全中, 等. 2004. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 19(3): 457−466.

    [40]

    王思敬. 2002. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, 10(2): 115−117.

    [41]

    吴瑞安, 马海善, 张俊才, 等. 2021. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J]. 水文地质工程地质, 48(5): 120−128.

    [42]

    吴树仁, 石菊松, 张春山, 等. 2009. 地质灾害风险评估技术指南初论[J]. 地质通报, 28(8): 995−1005.

    [43]

    徐则民. 2011. 金沙江寨子村滑坡坝堰塞湖沉积及其对昔格达组地层成因的启示[J]. 地质论评, 57(5): 675−686.

    [44]

    许冲, 戴福初, 姚鑫, 等. 2009. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报, 28(S2): 3978−3985.

    [45]

    许强, 郑光, 李为乐, 等. 2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 26(6): 1534−1551.

    [46]

    薛强, 张茂省, 李林. 2015. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J]. 地质通报, 34(11): 2108−2115.

    [47]

    杨志华, 张永双, 郭长宝, 等. 2018. 青藏高原东缘地质灾害影响因子敏感性分析[J]. 工程地质学报, 26(3): 673−683.

    [48]

    杨志华, 郭长宝, 吴瑞安, 等. 2024. 川西藏东交通廊道区域工程地质条件评价[J]. 地质通报, 43(9): 1650−1662.

    [49]

    殷坤龙, 晏同珍. 1987. 汉江河谷旬阳段区域滑坡规律及斜坡不稳定性预测[J]. 地球科学, 12(6): 631−638.

    [50]

    张永双, 郭长宝, 姚鑫, 等. 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277−286.

  • 加载中

(7)

(4)

计量
  • 文章访问数:  39
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2023-11-25
修回日期:  2024-01-13
刊出日期:  2025-06-15

目录