The chromaticity parameters and paleoclimate changes of loess profile in Luonan Basin, Shaanxi Province
-
摘要:
研究目的 以陕西洛南典型剖面(LN剖面)为研究对象,分析色度指标和其他气候替代性指标沿剖面的变化,探究LN剖面色度指标的古环境意义及洛南盆地中更新世中期—末期的古气候变化情况。
研究方法 通过对LN剖面不同深度色度参数、粒度、磁化率及Rb/Sr值进行综合分析,
研究结果 结果表明:①色度参数沿剖面不同地层单元呈有规律的变化,亮度(L*)和色调角(h*)表现为黄土层大于古土壤层,其高值指示了相对干冷的气候条件;而红度(a*)、红度/黄度(a*/b*)表现为古土壤层(S1~S6)大于黄土层(L1~L7),其高值指示了相对温暖湿润的环境。L*、a*、a*/b*、h*均可以作为良好的气候替代指标指示该地区气候的变化情况。②色度及其他气候替代性指标共同揭示了洛南盆地中更新世中期—末期的气候变化,对应黄土层堆积时期,气候条件寒冷湿润;古土壤层堆积时期,气候条件温暖潮湿。
结论 不同于黄土高原地区干冷—温湿的变化,洛南地区呈现寒冷湿润—温暖潮湿的气候旋回,总体沉积环境湿润,风化成壤作用强烈,整体上经历了冷湿—暖湿—冷湿的气候变化。该研究结果对于正确认识东秦岭及周边地区中更新世古人类的生存环境和气候变化具有借鉴意义。
Abstract:Objective Taking the typical Luonan profile (LN profile) as the research object, this study analyzes the variations of chromaticity indices and other climatic proxy indices along the profile, and explores the paleoenvironmental significance of the chromaticity indices of the LN profile and the paleoclimatic changes in the Luonan Basin during the mid-to-late Middle Pleistocene.
Methods Comprehensive analysis was conducted on chromaticity parameters, grain size, magnetic susceptibility, and Rb/Sr values at different depths of the LN profile.
Results The results show that:①The chromaticity parameters exhibit regular variations across different stratigraphic units in the profile. Luminance (L*) and hue angle (h*) are higher in loess layers than in paleosol layers, with high values indicating relatively dry and cold climatic conditions. In contrast, redness (a*) and the redness/yellowness ratio (a*/b*) are higher in paleosol layers (S1–S6) than in loess layers (L1–L7), with high values indicating relatively warm and humid environments. L*, a*, a*/b*, and h* can all serve as good climatic proxy indices to indicate climate changes in this region.② Chromaticity and other climatic proxy indices collectively reveal the climatic changes in the Luonan Basin during the mid-to-late Middle Pleistocene. The accumulation period of loess layers corresponds to cold and humid climatic conditions, while the accumulation period of paleosol layers corresponds to warm and humid conditions.
Conclusions Unlike the dry-cold to warm-wet climate cycles in the Loess Plateau, the Luonan region exhibits a climate cycle of cold-humid to warm-humid. The overall sedimentary environment was humid, with strong weathering and pedogenesis, experiencing a climatic change pattern of cold-wet → warm-wet → cold-wet. The research results provide insights for correctly understanding the living environment and climatic changes of paleohumans in the East Qinling and surrounding areas during the Middle Pleistocene.
-
-
表 1 LN剖面地层特征
Table 1. The stratigraphic characteristics of the LN profile
地层 深度/m 地层特征 TS 0~0.2 耕植土,橙棕色,干燥,硬塑,疏松多孔,根系发育 L1 0.2~0.7 黄土,苍白棕色—米黄棕色,稍湿、硬塑,致密 S1 0.7~1.4 古土壤,泥土棕色,稍湿,硬塑,孔洞发育,局部有黑色有机质残留 L2 1.4~2.3 黄土,米黄色—沙黄色,稍湿,硬塑,有针状孔隙发育 S2 2.3~3.0 古土壤,泥土棕色,稍湿,硬塑,孔隙发育 L3 3.0~3.4 黄土,沙黄色,稍湿,硬塑,孔隙发育,局部有红棕色碳酸盐盐膜 S3 3.4~3.9 古土壤,泥土棕色,表层风化干燥后呈黄白色,稍湿,硬塑,偶见白色钙质斑点和钙膜 L4 3.9~4.6 黄土,泥土棕色—赭石棕色,稍湿,硬塑,孔隙发育,偶见白色钙质斑点 S4 4.6~5.3 古土壤,棕米色—泥土棕色,稍湿,硬塑,孔隙发育 L5 5.3~6.0 黄土,赭石棕色,表层风化干燥后呈黄白色,稍湿,硬塑,偶见白色钙质斑点 S5 6.0~6.7 古土壤,泥土棕色,稍湿,硬塑,孔隙发育 L6 6.7~7.1 黄土,沙黄色,表层风化干燥后呈黄白色,稍湿,硬塑,孔隙发育,偶见白色钙质斑点 S6 7.1~7.7 古土壤,泥土棕色,稍湿,硬塑,孔隙发育 L7 7.7~8.5 黄土,沙黄色,稍湿,硬塑,孔隙发育,偶见白色钙质斑点 表 2 LN剖面光释光测年结果统计
Table 2. The statistical table of LN profile luminescence dating results
样品编号 深度/cm 含水率/ω 宇宙射线/(Gy·ka−1) K/% Th/10−6 U/10−6 年剂量率/(Gy·ka−1) 测片数量 总剂量/Gy 年龄/ka CN-1 32 9.5 0.22 1.67 13.6 2.82 4.3 6 415±30 96.5 ± 7.0 CN-2 50 9.4 0.22 2.11 13.6 2.82 4.1 6 471±35 114.9.±8.5 CN-3 143 8.9 0.22 2.36 13.6 2.82 4.2 6 541±63 128.8±14.9 CN-4 230 10.1 0.22 2.27 14.4 2.84 4.3 6 699±80 162.5.±18.5 表 3 LN剖面色度参数的垂直变化特征
Table 3. Vertical changes of chromaticity parameters at LN profile
层位 L* a* b* a*/b* h*/° L1 范围 62.69~66.17 9.96~10.57 23.76~24.38 0.412~0.438 66.371~67.610 均值 64.87 10.18 24.17 0.42 67.08 S1 范围 61.99~64.59 9.01~10.17 23.07~24.17 0.384~0.421 67.180~69.007 均值 62.83 9.80 23.72 0.41 67.89 L2 范围 62.85~65.94 8.62~9.78 23.04~24.11 0.358~0.414 67.506~70.327 均值 64.30 9.13 23.70 0.39 68.85 S2 范围 62.12~66.23 9.18~10.41 24.07~25.09 0.372~0.426 66.919~69.597 均值 62.77 10.26 24.55 0.41 67.81 L3 范围 63.31~65.33 9.04~9.92 24.23~24.9 0.361~0.398 68.278~70.144 均值 64.50 9.34 24.60 0.38 69.17 S3 范围 62.62~63.69 9.25~10.5 23.61~24.69 0.389~0.428 66.827~68.753 均值 63.28 9.75 24.27 0.40 68.09 L4 范围 63.21~65.85 8.61~10.28 23.61~24.89 0.355~0.421 67.187~70.453 均值 64.73 9.01 24.07 0.38 69.05 S4 范围 60.46~63.61 9.42~10.56 23.17~23.86 0.401~0.455 65.517~68.140 均值 62.35 9.89 23.61 0.42 67.36 L5 范围 62.7~64.47 8.65~9.64 23.93~24.01 0.376~0.415 67.466~69.389 均值 63.67 9.24 23.39 0.40 68.44 S5 范围 60.97~62.32 9.84~10.37 22.77~23.69 0.432~0.441 66.210~66.629 均值 61.76 10.21 23.31 0.44 66.35 L6 范围 61.45~63.64 9.23~9.88 23.61~24.54 0.395~0.425 66.977~68.468 均值 63.13 9.27 23.02 0.41 67.79 S6 范围 60.72~62.87 9.44~9.98 23.93~24.01 0.399~0.417 67.359~68.257 均值 61.59 9.73 23.76 0.41 67.86 L7 范围 61.82~64.09 8.79~9.93 23.94~24.38 0.366~0.407 67.839~69.877 均值 63.01 9.32 24.18 0.39 68.93 表 4 LN剖面粒度、磁化率、Rb/Sr值的垂直变化
Table 4. Vertical changes of grain-size, magnetic susceptibility and Rb/Sr at LN profile
地层 粘粒<5 μm/% 细粉砂5~10 μm/% 粗粉砂10~50 μm/% 砂粒>50 μm/% 磁化率/(10−8 m3∙kg−1) Rb/Sr值 L1 36.30 19.29 43.46 0.94 24.83 1.01 S1 36.18 17.72 45.27 0.83 25.19 0.88 L2 37.39 18.74 43.65 0.23 24.52 0.87 S2 42.35 19.83 37.63 0.19 15.72 0.97 L3 40.13 19.60 40.04 0.23 10.93 0.89 S3 40.19 19.37 40.13 0.32 16.02 0.92 L4 38.16 19.28 42.14 0.42 15.87 0.88 S4 38.77 19.17 41.82 0.38 19.23 0.91 L5 37.90 20.51 41.54 0.19 12.07 0.91 S5 38.17 15.28 44.62 1.93 15.36 0.92 L6 33.66 16.67 47.51 2.17 14.1 0.82 S6 33.36 16.60 48.54 1.50 13.61 0.85 L7 30.02 19.35 49.22 1.42 13.22 0.84 黄土层 36.22±3.4a 19.06±1.2a 43.94±3.3a 0.80±0.8a 16.51±5.8a 0.89±0.1a 古土壤层 38.17±3.1a 18.00±1.8a 43.00±3.9a 0.86±0.7a 17.52±4.2a 0.91±0.1a 注:同一列不同字母表示在P<0.05水平上有显著差异 表 5 各指标的相关性分析结果
Table 5. Correlation analysis results of the indexs
指标 L* a* b* a*/b* h*/° 粘粒 砂粒 磁化率 Rb/Sr L* 1 a* −0.59*** 1 b* 0.3** 0.18 1 a*/b* −0.71*** 0.91*** −0.25 1 h* 0.71*** −0.91*** 0.25 −0.99*** 1 粘粒 0.23*** 0.20*** 0.15 0.13 −0.13 1 砂粒 −0.36 0.17*** 0.20 0.25 −0.25 −0.5 1 磁化率 −0.01 0.17*** −0.2 0.25 −0.25 0.01 −0.14 1 Rb/Sr 0.17*** 0.43 0.17*** 0.36*** −0.36 0.51 −0.25 0.20 1 注:**表示相关性在0.01水平(双侧)上显著相关;***表示相关性在0.001水平(双侧)上显著相关 表 6 洛南黄土与其他典型黄土粒度组成对比
Table 6. Comparison of grain size compositions between Luonan Loess and other typical loess
地区 粘粒φ
(<5 μm)细粉砂
(5~10 μm)粗粉砂
(10~50 μm)砂粒φ
(>50 μm)洛川 27.4 12.5 53.3 6.8 豫南 15.8 15.04 57.97 11.19 镇江下蜀 19.13 14.82 55.97 10.07 洛南 37.15 18.62 43.45 0.78 -
[1] Cao H W. 2019. Physicochemical Characteristics of the Loess in Southern Henan Province and Its Paleoenvironmental Significance [D]. Master Thesis of East China Normal University(in Chinese with English abstract).
[2] Chen Y M, Chen X S, Gong H L, et al. 2006. Soil Color: A Reliable Proxy Indicator of Climate Change[J]. Arid Land Geography, (3): 309−313(in Chinese with English abstract).
[3] Du L, Li Z W, Du D D, et al. 2021. Chromaticity Characteristics of the Sediments from the Zhifu Loess Profile in Yantai During the Last Interglacial Period and Their Paleoenvironmental Significance[J]. Tropical Geography, 41(2): 423−430(in Chinese with English abstract).
[4] Dansgaard W, Johnsen S J, Clausen H B, et al. 1993. Evidence for general instability of past climate from a 250−kyr ice−core record[J]. Nature, 364(6434): 218−220. doi: 10.1038/364218a0
[5] Feng L W, Wu K N, Zha L S, et al. 2015. Chromaticity Characteristics of Paleosols in Yangshao Cultural Site Area and Their Climatic Significance[J]. Ecological Environment Sciences, 24(5): 892−897(in Chinese with English abstract).
[6] Fujinaga N. 2003. Reconstruction of Quaternary Paleovegetation and Paleoclimate Based on the Pollen Data from the Deep Wells in Lake Biwa, Central Japan, and Comparison with the Global Paleoclimate[J]. Acta Palaeontologica Sinica, (1): 138−147.
[7] Gao P K, Pang J L, Huang C Z, et al. 2015. Characteristics of Chromaticity Parameters of the Loess−Paleosol Profile in Chafang Village, Danfeng, Southern Shaanxi[J]. Acta Sedimentologica Sinica, 33(3): 537−542(in Chinese with English abstract).
[8] Grimm E. 1987. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares[J]. Computers & Geosciences, 13: 13−35.
[9] Hu M J, Li N N, Zhang Y Y, et al. 2020. Characteristics of Chromaticity Parameter Changes and Environmental Evolution of the Ancient Aeolian Sand−Paleosol Sequence in Qinghai Lake since the Last 32 ka[J]. Quaternary Sciences, 40(5): 1105−1117(in Chinese with English abstract).
[10] Hu M J, Ji T Q, Zheng D Y, et al. 2022. Characteristics of Chromaticity Parameter Changes of Aeolian Sediments in the Northeastern Tibetan Plateau since 9.4 ka and Its Environmental Evolution[J]. Geoscience, 36(2): 439−448(in Chinese with English abstract).
[11] Jia Y F, Mao L J. 2010. New Progress in Geochemical Research of Rb and Sr in Loess[J]. Chinese Journal of Soil Science, 41(6): 1501−1504(in Chinese with English abstract).
[12] Li X Y, Li Z W, Zhu Z J, et al. 2023. Chromaticity Characteristics of the Last Glacial Sediments in the Houtian Section of Nanchang City and Their Paleo−environmental Significance[J]. Marine Geology & Quaternary Geology, 43(1): 170−179(in Chinese with English abstract).
[13] Liu D S. 1985. Loess and Environment [M]. Beijing: Science Press(in Chinese).
[14] Liu F, Wang H, Qin Y F, et al. 2015. Chromaticity Characteristics and Significance of Xiashu Loess in Zhoujiashan, Nanjing[J]. Marine Geology & Quaternary Geology, 35(5): 143−151(in Chinese with English abstract).
[15] Liu D Q, Li Y H, Wei D L. 2018. Characteristics of Magnetic Susceptibility of Loess Profiles in Changxingdao Area of Dalian City and Its Paleoclimatic Significance[J]. Territory & Natural Resources Study, (3): 51−53(in Chinese with English abstract).
[16] Liu B H, Wu F, Zhang X J, et al. 2024. Elemental Geochemical Characteristics of the Late Pleistocene Sediments in the Hongsibu Basin on the Northeastern Margin of the Qinghai−Tibet Plateau and Their Environmental Indications[J]. Geological Bulletin of China, 43(1): 33−45(in Chinese with English abstract).
[17] Lu H Y, An Z S. 1997. The Paleoclimatic Significance of the Grain−Size Composition of the Luochuan Loess[J]. Chinese Science Bulletin, (1): 66−69(in Chinese with English abstract).
[18] Lu H Y, Zhang H Y, Wang S J, et al. 2007. Preliminary Study on the Age of the Loess Strata in the Upper Reaches of the Nanluo River in the Eastern Qinling Mountains and Its Significance in Paleolithic Archaeology[J]. Quaternary Sciences, (4): 559−567(in Chinese with English abstract).
[19] Lu H Y, Zhang H Y, Sun X F, et al. 2012. Geomorphology, Loess Deposition and Pleistocene Paleo−human Living Environment in the South Luohe River Basin, Central China[J]. Quaternary Sciences, 32(2): 167−177(in Chinese with English abstract).
[20] Ma Y F, Zhan T, Yang Y, et al. 2021. Characteristics of Chromaticity Changes in the Tianhengshan Borehole in the Eastern Northeast Plain: Paleoclimatic Significance and Implications for the Evolution of the Songnen Paleolake[J]. Acta Geologica Sinica, 95(11): 3519−3531(in Chinese with English abstract).
[21] Petit J R, Jouzel J, Raynaud D, et al. 1999. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica[J]. Nature, 399(6735): 429−436. doi: 10.1038/20859
[22] Ren S F. 2010. Research on the Chromaticity Characteristics and Environmental Information of Xiashu Loess Strata [D]. Master Thesis of East China Normal University(in Chinese with English abstract).
[23] Shen M L, Zhang J, Hui Z C. 2021. Quaternary Climate Evolution Recorded by Chromaticity Index of Xijin Loess in Lanzhou[J]. Journal of Glaciology and Geocryology, 43(3): 809−817(in Chinese with English abstract).
[24] Shi P H, Yang T B, Tian Q C, et al. 2012. Analysis of Chromaticity Change Characteristics of Jingyuan Loess−Paleosol and Its Paleoclimatic Significance[J]. Journal of Lanzhou University (Natural Sciences): 48(2): 15−23(in Chinese with English abstract).
[25] Sun J Z. 2005. Loess Science[M]. Hong Kong: Hong Kong Archaeological Society(in Chinese).
[26] Sun Y, He L, Liang L, et al. 2011. Changing color of Chinese loess: Geochemical constraint and paleoclimatic significance[J]. Journal of Asian Earth Sciences, 40(6): 1131−1138. doi: 10.1016/j.jseaes.2010.08.006
[27] Tang J, Lü B, Liu X, et al. 2023. Chromaticity characteristics of soil profiles in the coastal areas of Fujian and Guangdong, southern China and their climatic significance[J]. Quaternary International, 649: 38−45. doi: 10.1016/j.quaint.2023.01.005
[28] Wang S M, Li J R. 1993. Late Cenozoic Lake Deposits in China and the Environmental Overview They Reflect[J]. Journal of Lake Sciences, (1): 1−8(in Chinese with English abstract).
[29] Wang X S, Yang Z Y, Reidar L, et al. 2006. Environmental Magnetic Results of the Loess−Paleosol Sequence on the Southeast Margin of the Loess Plateau and Their Paleoclimatic Significance[J]. Chinese Science Bulletin, (13): 1575−1582(in Chinese with English abstract).
[30] Wang Y, Pan B T, Guan Q Y, et al. 2008. Characteristics of Magnetic Susceptibility Changes in Loess−Paleosol in the Arid Region of Northwest China[J]. Marine Geology & Quaternary Geology, (1): 111−114(in Chinese with English abstract).
[31] Wang H Y, Pang J L, Huang C Z, et al. 2017. Characteristics of Chromaticity Parameters of the Tujiwan Loess Profile in Yunxi County and Its Paleoclimatic Reconstruction[J]. Journal of Soil and Water Conservation, 31(2): 151−156(in Chinese with English abstract).
[32] Wang J. 2019. Study on the Characteristics of Loess Grain−Size Changes and Paleo−environmental Evolution of the Kaole Profile in Linxia [D]. Master Thesis of Lanzhou University(in Chinese with English abstract).
[33] Wu C Y. 1999. Annals of Luonan County [M]. Beijing: Writer's Publishing House(in Chinese).
[34] Wu S H, Pang J L, Cheng H Q, et al. 2015. Weathering Process and Paleoflood Event Records of the Holocene Loess−Paleosol Sequence in Liaowadian, Hanjiang River[J]. Resources and Environment in the Yangtze Basin, 24(5): 846−852(in Chinese with English abstract).
[35] Wu X L, Li R X, Li X G, et al. 2023. Late Paleogene Climate Change and Its Driving Mechanism in the Ningnan Basin on the Northeast Margin of the Qinghai−Tibet Plateau[J]. Acta Sedimentologica Sinica, 41(1): 206−218(in Chinese with English abstract).
[36] Yang J M, Zhou Y L, Pang J L, et al. 2020. Characteristics of Aeolian Loess Soil−Formation and Climate Change on the Second−Order Terrace of the Yanjiapeng Section in the Upper Reaches of the Hanjiang River[J]. Shandong Agricultural Sciences, 52(5): 64−69(in Chinese with English abstract).
[37] Yang S L. 2001. The Climatic Significance of Soil Color[D]. Master Thesis of Lanzhou University(in Chinese with English abstract).
[38] Yang S L, Fang X M, Li J J, et al. 2001. Study on the Qualitative to Semi−Quantitative Relationship between Surface Soil Color and Climate[J]. Science in China (Series D): (S1): 175−181(in Chinese with English abstract).
[39] Yang D. 2017. Study on the Stratigraphic Sequence and Weathering and Soil−Formation Characteristics of Aeolian Loess on the First−Order Terrace of the Hanzhong Basin[D]. Master Thesis of Shaanxi Normal University(in Chinese with English abstract).
[40] Yang Y Z, Yue D P, Zhao J B, et al. 2023. Chromaticity Characteristics and Paleoclimatic Significance of L3 and S3 Loess−Paleosol on the Southeast Margin of the Mu Us Desert[J]. Journal of Desert Research, 43(1): 176−186(in Chinese with English abstract).
[41] Yu S J, Li W. 2020. Characteristics of Sedimentary Filling in the Luonan and Shanyang Basins and Their Constraints on the Meso−Cenozoic Intra−continental Evolution of the Eastern Qinling Mountains[J]. Geoscience, 34(4): 687−699(in Chinese with English abstract).
[42] Zeng Y Y, Zhao B. 2020. Enlightenment of the Paleoclimatic Significance of Loess Magnetic Susceptibility to the Study of the Paleoclimatic Significance of Red Soil Magnetic Susceptibility[J]. Progress in Geophysics, 35(5): 1717−1723(in Chinese with English abstract).
[43] Zhang P, Liu W G, Lu H Y, et al. 2009. Organic Carbon Isotope Composition of Luonan Loess and Its Comparison with Luochuan and Xifeng Loess[J]. Quaternary Sciences, (1): 9(in Chinese with English abstract).
[44] Zhang H, Song C Z, Zhang Y. 2011. Rb, Sr and Magnetic Susceptibility of Loess−Paleosol on the North Piedmont of the Dabie Mountains and Their Paleo−environmental Significance[J]. Geological Science and Technology Information, 30(2): 45−51(in Chinese with English abstract).
[45] Zhang W C. 2013. Environmental Evolution Revealed by Pollen Analysis of Surface Soil and Loess Strata in the Nanluo River Basin of the Eastern Qinling Mountains[D]. Master Thesis of Nanjing University(in Chinese with English abstract).
[46] Zhang W C. 2017. Pollen−Revealed Pleistocene Environmental Changes in the Qinling Region and Their Impacts on Paleo−human Activities[D]. Doctoral Dissertation of Nanjing University(in Chinese with English abstract).
[47] Zhang W T, Pang J L, Zhou Yali, et al. 2017. Characteristics of Weathering and Soil−Formation of the Mitosi Profile in the Upper Reaches of the Hanjiang River and Its Response to Climate Change[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 56(6): 31−37(in Chinese with English abstract).
[48] Zhao J, Lu H Y, Wang X Y, et al. 2008. Rock Magnetic Characteristics of Loess Deposits in the Eastern Qinling Mountains and Exploration of the Magnetic Susceptibility Enhancement Mechanism[J]. Acta Sedimentologica Sinica, 26(6): 1052−1062(in Chinese with English abstract).
[49] Zhao C P, Pang J L, Huang C Z, et al. 2012. Characteristics and Significance of the Holocene Loess−Paleosol Sequence in Nansi Village, Xianyang [J]. Journal of Shaanxi Normal University (Natural Science Edition): 40(2): 93−97(in Chinese with English abstract).
[50] Zhao Y L, Pang J L, Huang C Z, et al. 2014. Study on the Weathering and Soil−Formation and Paleoclimate of the Loess−Paleosol Sequence in the Qianfangcun Profile, Yunxian County[J]. Acta Sedimentologica Sinica, 32(5): 840−845(in Chinese with English abstract).
[51] 曹宏伟. 2019. 豫南黄土理化特性及其古环境意义[D]. 华东师范大学硕士学位论文.
[52] 陈一萌, 陈兴盛, 宫辉力, 等. 2006. 土壤颜色——一个可靠的气候变化代用指标[J]. 干旱区地理, (3): 309−313. doi: 10.3321/j.issn:1000-6060.2006.03.001
[53] 杜兰, 李志文, 杜丁丁, 等. 2021. 烟台芝罘黄土剖面末次间冰期沉积物色度特征及其古环境意义[J]. 热带地理, 41(2): 423−430.
[54] 冯力威, 吴克宁, 查理思, 等. 2015. 仰韶文化遗址区古土壤色度特征及其气候意义[J]. 生态环境学报, 24(5): 892−897.
[55] 高鹏坤, 庞奖励, 黄春长, 等. 2015. 陕南丹凤茶房村黄土-古土壤剖面色度参数特征[J]. 沉积学报, 33(3): 537−542.
[56] 胡梦珺, 李娜娜, 张亚云, 等. 2020. 近32 ka以来青海湖古风成砂-古土壤序列色度参数变化特征及环境演变[J]. 第四纪研究, 40(5): 1105−1117. doi: 10.11928/j.issn.1001-7410.2020.05.02
[57] 胡梦珺, 吉天琪, 郑登友, 等. 2022. 9.4 ka以来青藏高原东北部风成沉积物色度参数变化特征及其环境演变[J]. 现代地质, 36(2): 439−448.
[58] 贾耀锋, 毛龙江. 2010. 黄土Rb、Sr地球化学研究新进展[J]. 土壤通报, 41(6): 1501−1504.
[59] 李星耀, 李志文, 朱志军, 等. 2023. 南昌市厚田剖面末次冰期沉积的色度特征及其古环境意义[J]. 海洋地质与第四纪地质, 43(1): 170−179.
[60] 刘东生. 1985. 黄土与环境[M]. 北京: 科学出版社.
[61] 刘峰, 王昊, 秦艺帆, 等. 2015. 南京周家山下蜀黄土色度特征及其意义[J]. 海洋地质与第四纪地质, 35(5): 143−151.
[62] 刘大齐, 李永化, 魏东岚. 2018. 大连市长兴岛地区黄土剖面磁化率特征及古气候意义[J]. 国土与自然资源研究, (3): 51−53.
[63] 刘博华, 吴芳, 张绪教, 等. 2024. 青藏高原东北缘红寺堡盆地晚更新世沉积物元素地球化学特征及其环境指示意义[J]. 地质通报, 43(1): 33−45.
[64] 鹿化煜, 安芷生. 1997. 洛川黄土粒度组成的古气候意义[J]. 科学通报, (1): 66−69. doi: 10.3321/j.issn:0023-074X.1997.01.020
[65] 鹿化煜, 张红艳, 王社江, 等. 2007. 东秦岭南洛河上游黄土地层年代的初步研究及其在旧石器考古中的意义[J]. 第四纪研究, (4): 559−567.
[66] 鹿化煜, 张红艳, 孙雪峰, 等. 2012. 中国中部南洛河流域地貌、黄土堆积与更新世古人类生存环境[J]. 第四纪研究, 32(2): 167−177.
[67] 马永法, 詹涛, 杨业, 等. 2021. 东北平原东部天恒山钻孔色度变化特征与古气候意义及对松嫩古湖演化的指示[J]. 地质学报, 95(11): 3519−3531. doi: 10.3969/j.issn.0001-5717.2021.11.024
[68] 任少芳. 2010. 下蜀黄土地层的色度特征及环境信息研究[D]. 华东师范大学硕士学位论文.
[69] 沈曼丽, 张军, 惠争闯. 2021. 兰州西津黄土色度指标记录的第四纪气候演化[J]. 冰川冻土, 43(3): 809−817.
[70] 石培宏, 杨太保, 田庆春, 等. 2012. 靖远黄土-古土壤色度变化特征分析及古气候意义[J]. 兰州大学学报(自然科学版): 48(2): 15−23.
[71] 孙建中. 2005. 黄土学[M]. 香港: 香港考古学会.
[72] 王苏民, 李建仁. 1993. 中国晚新生代湖泊沉积及其反映的环境概貌[J]. 湖泊科学, (1): 1−8. doi: 10.18307/1993.0101
[73] 王喜生, 杨振宇, Reidar Lφvlie, 等. 2006. 黄土高原东南缘黄土-古土壤序列的环境磁学结果及其古气候意义[J]. 科学通报, (13): 1575−1582. doi: 10.3321/j.issn:0023-074X.2006.13.015
[74] 王勇, 潘保田, 管清玉, 等. 2008. 西北干旱区黄土-古土壤磁化率变化特征[J]. 海洋地质与第四纪地质, (1): 111−114.
[75] 王海燕, 庞奖励, 黄春长, 等. 2017. 郧西县庹家湾黄土剖面色度参数特征及其古气候重建[J]. 水土保持学报, 31(2): 151−156.
[76] 王晶. 2019. 临夏考勒剖面黄土粒度变化特征及古环境演变研究[D]. 兰州大学硕士学位论文.
[77] 吴承英. 1999. 洛南县志[M]. 北京: 作家出版社.
[78] 吴帅虎, 庞奖励, 程和琴, 等. 2015. 汉江辽瓦店全新世黄土-古土壤序列风化过程及古洪水事件记录[J]. 长江流域资源与环境, 24(5): 846−852.
[79] 吴小力, 李荣西, 李小刚, 等. 2023. 青藏高原东北缘宁南盆地晚古近纪气候变化及其驱动机制[J]. 沉积学报, 41(1): 206−218.
[80] 羊俊敏, 周亚利, 庞奖励, 等. 2020. 汉江上游晏家棚段二级阶地风成黄土成壤特征及气候变化[J]. 山东农业科学, 52(5): 64−69.
[81] 杨胜利. 2001. 土壤颜色的气候意义[D]. 兰州大学硕士学位论文.
[82] 杨胜利, 方小敏, 李吉均, 等. 2001. 表土颜色和气候定性至半定量关系研究[J]. 中国科学(D辑), (S1): 175−181.
[83] 杨丹. 2017. 汉中盆地一级阶地上风成黄土地层序列及风化成壤特征研究[D]. 陕西师范大学硕士学位论文.
[84] 杨宇哲, 岳大鹏, 赵景波, 等. 2023. 毛乌素沙地东南缘L3、S3黄土-古土壤色度特征及古气候意义[J]. 中国沙漠, 43(1): 176−186.
[85] 余尚江, 李玮. 2020. 洛南、山阳盆地沉积充填特征及其对东秦岭中—新生代陆内演化的约束[J]. 现代地质, 34(4): 687−699.
[86] 曾永耀, 赵博. 2020. 黄土磁化率的古气候意义对研究红土磁化率古气候意义的启示[J]. 地球物理学进展, 35(5): 1717−1723. doi: 10.6038/pg2020DD0407
[87] 张普, 刘卫国, 鹿化煜, 等. 2009. 洛南黄土有机碳同位素组成及其与洛川、西峰黄土对比[J]. 第四纪研究, (1): 9.
[88] 张华, 宋传中, 张妍. 2011. 大别山北麓黄土-古土壤Rb、Sr与磁化率及其古环境意义[J]. 地质科技情报, 30(2): 45−51.
[89] 张文超. 2013. 东秦岭南洛河流域表土及黄土地层孢粉分析揭示的环境演变[D]. 南京大学硕士学位论文.
[90] 张文超. 2017. 孢粉揭示的秦岭地区更新世环境变化及其对古人类活动的影响[D]. 南京大学博士学位论文.
[91] 张文桐, 庞奖励, 周亚利, 等. 2017. 汉江上游弥陀寺剖面风化成壤特征及其对气候变化的响应[J]. 中山大学学报(自然科学版), 56(6): 31−37.
[92] 赵军, 鹿化煜, 王晓勇, 等. 2008. 东秦岭地区黄土堆积的岩石磁学特征及磁化率增强机制探索[J]. 沉积学报, 26(6): 1052−1062.
[93] 赵彩萍, 庞奖励, 黄春长, 等. 2012. 咸阳南寺村全新世黄土-古土壤序列特征及其意义[J]. 陕西师范大学学报(自然科学版), 40(2): 93−97.
[94] 赵艳雷, 庞奖励, 黄春长, 等. 2014. 郧县前坊村剖面黄土-古土壤序列风化成壤及古气候研究[J]. 沉积学报, 32(5): 840−845.
-